Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Установление механизмов фотохимических реакций

    Установление механизмов фотохимических реакций [46] [c.321]

    В идеале, для установления механизма фотохимической реакции следовало бы знать состояния всех молекул, участвую-ш,их в реакции, их энергию и время жизни, а также все побочные реакции. Практически далеко не все эти данные бывают доступны. Установление истинных путей превраш,ения всех молекул, поглотивших квант света, и всех свободных радикалов, образуюш,ихся в фотохимическом процессе, представляет собой аналитическую задачу, решение которой до настоящего времени едва ли было возможно... [47]. Методы определения механизмов фотохимических реакций по существу не отличаются от методов определения механизмов обычных органических реакций (гл. 6) идентификация продуктов, изотопная метка, детектирование и улавливание интермедиатов, изучение кинетики. Однако в случае фотохимических реакций появляется ряд новых факторов 1) образование большого числа продуктов, до 10—15 соединений 2) возможность изучать кинетику реакции в зависимости от большего числа переменных, так как на скорость реакции влияет интенсивность или длина волны падающего света 3) возможность детектировать исключительно короткоживущие интермедиаты, используя технику флеш-фотолиза. Кроме того, имеются еще два специальных метода. [c.321]


    Фотохимия. Задача фотохимии — установление связи между поглощением световой энергии и химическими процессами. Исследование фотохимических реакций необходимо для понимания сложного механизма процессов фотосинтеза, который является непременным условием жизни растений и животных и самым крупномасштабным синтетическим процессом на Земле. [c.6]

    Хотя при облучении комбинации донор — акцептор происходит окислительно-восстановительная реакция, при этом редко образуются продукты, соответствующие простому переносу водорода. Обычно наблюдается конденсация двух молекул донора, двух молекул акцептора или донора и акцептора с образованием соединений из промежуточно образующихся свободных радикалов. В классических фотохимических исследованиях Чамичана и Зильбера [101, 102] приводятся один-два достоверных примера переноса пар атомов водорода от одной молекулы к другой. Единственная фотохимическая реакция с переносом водорода, носящая общий характер, — это окисление первичных и вторичных спиртов действием хинонов. Механизм этой реакции в настоящее время довольно точно установлен. Основные стадии реакции можно представить следующим образом  [c.356]

    Квантовые выходы хлористого водорода при фотолизе видимым светом смеси и хлора и водорода могут достигать 10 —10 при комнатной температуре. Квантовые выходы продуктов очень важны при установлении механизма фотохимической реакции. Вычисление констант скорости реакций свободных радикалов и других промежуточных частиц, образующихся в большинстве фотохимических реакций, вызывает затруднения. В обычных системах концентрация свободных радикалов очень мала (около 10 ° моль/л), что является следствием очень высокой реакционной способности этих частиц и относительно малой интенсивности поглощаемого света. Если фотохимическая система при данной температуре освещается светом постоянной интенсивности, разумно предположить, что очень реакционноспособные частицы, такие как свободные радикалы и атомы, не являющиеся конечными продуктами реакции, быстро достигают постоянной относительно низкой концентрации. В это время скорости реакций таких частиц равны скорости их образования — данный принцип известен как принцип стационарности. Он аналогичен принципу, который был использован при рассмотрении каталитических реакций. [c.55]


    Для установления механизма фотохимической реакции должны быть известны природа и выходы продуктов этой реакции. Часто в работах по определению механизма фотохимических реакций употребляется небольшое количество реагентов, иногда несколько процентов от общего веса и даже меньше (часто до 0,05%), для того чтобы избежать осложнений, которые могут возникнуть в результате последующих термических или фотохимических реакций первичных продуктов фоторазложения. Поэтому необходимо использовать хроматографические методы разделения и идентификации вместе с современными микрометодами масс-спектрометрии, инфракрасной и ультрафиолетовой спектроскопии и т. д. Причина использования вышеуказанных методов станет понятной, если рассмотреть типичный пример фотолиза в газовой фазе. Обычно общее количество исходных реагентов в опыте составляет приблизительно 100 мкл. Если реакция проходит только на 0,1% и образуется, скажем, от 10 до 15 продуктов реакции, общий объем которых [c.472]

    Квантовые выходы продуктов очень важны при установлении механизма фотохимической реакции и их определение необходимо при фундаментальных фотохимических исследованиях. Экспериментальные методы определения квантового выхода даны в разд. 7-4 и 7-5. [c.478]

    Наблюдения над изолированными хлоропластами, бактериями, адаптированными к водороду водорослями, описанные в главах IV, V, VI, а также кинетические измерения указывают, что фотосинтез — не прямая реакция между двуокисью углерода и водой, а сложная цепь физических, химических и фотохимических процессов. Одна из наболее важных проблем в изучении механизма фотосинтеза — установление первичной фотохимической реакции (или реакций) и выделение ее из нефотохимических процессов последние могут предшествовать фотохимической реакции или следовать за ней. [c.155]

    Не менее важной задачей фотохимика является установление природы вторичных реакций и других промежуточных соединений, возникаюш,их в результате первичных процессов. Так. в настоящее время большая часть полезной информации по механизму и константам скорости элементарных реакций получена из фотохимических исследований. Поэтому вторая часть этой главы посвящена рассмотрению основных методов химической кинетики и специальных кинетических приемов, используемых в фотохимии (например, метод вращающегося сектора, определение спектров испускания и времени жизни и ряд других методов, которые являются важными при определении механизма фотохимических реакций). [c.472]

    В 1924 г. Христиансен [2] высказал предположение о цепном механизме реакций окисления и объяснил действие ингибиторов тем, что они обрывают реакционные цепи. Несколько лет спустя, при изучении фотохимического окисления альдегидов и сульфита натрия [3—5], на основании высоких квантовых выходов был установлен цепной механизм этих реакций и роль ингибиторов как агентов, обрывающих цепи. Как ни странно, но после того, как общие черты действия ингибиторов стали ясными, а цепная теория даЛа простые формулы для описания эффектов торможения, интерес к теоретической стороне проблемы значительно ослаб. Между тем, простые представления о реакциях окисления как о неразветвленных цепных процессах, далеко не достаточны. Еще в 1931 г. Н. Н. Семенов создал теорию медленных цепных разветвленных реакций, объяснившую особенности окисления углеводородов [6]. Несмотря на это вопрос о действии ингибиторов на цепные реакции с вырожденными разветвлениями до недавнего времени фактически не рассматривался. И только в последние годы выполнены теоретические и экспериментальные работы [7—13], в которых выяснены характерные особенности действия ингибиторов на цепные реакции с вырожденными разветвлениями [14]. [c.238]

    Химическая кинетика и теория скоростей реакций являются важными средствами, которыми пользуется фотохимик при установлении механизма реакции, а также при выяснении роли электронно-возбужденных молекул и свободных радикалов, образующихся в процессе фотодиссоциации. Ниже дан краткий обзор основ кинетики реакций и применения кинетических методов к изучению механизмов фотохимических реакций. [c.489]

    Одной из основных задач фотохимии является установление природы и определение эффективности первичных фотохимических процессов, выявление механизма химической реакции, инициированной квантами света. Если в результате первичного процесса образуется устойчивый продукт, то квантовый выход этого [c.52]

    Термическая генерация активных центров в газовой фазе. Как указывалось, цепная химическая реакция осуществляется при помощи свободных атомов и радикалов. Поэтому образование активных центров этого типа есть необходимое условие возникновения цепной реакции. Оставляя в стороне фотохимические реакции и реакции, возбуждаемые действием радиоактивных излучений и быстрых электронов, где возникновение активного центра реакции, связанное с первичным актом воздействия излучения на молекулу реагирующего вещества, в большинстве случаев представляет собой процесс, механизм которого может быть установлен с большой достоверностью, остановимся здесь лишь на термических реакциях. В противоположность упомянутым реакциям механизм рождения радикалов и атомов в термических реакциях далеко не во всех случаях в достаточной мере ясен. При любой температуре некоторое количество свободных атомов и радикалов всегда присутствует в газе как результат термической (равновесной) диссоциации газа. Однако при температурах ниже 1000° К их концентрация и скорость образования в процессе простого соударения молекул [c.485]


    Миллер и Бигелоу уже в ранних работах указывали на то, что реакции фторирования элементарным фтором имеют все признаки свободнорадикальных процессов. Сейчас цепной механизм, аналогичный ранее установленному для фотохимического хлорирования, представляется общепринятым  [c.381]

    Первая глава, посвященная природе связей в органических соединениях, и вторая глава, в которой излагаются методы установления механизмов реакций, определяют рамки последующего обсуждения каждая из этих глав снабжена дополнением, в котором материал, изложенный в главе, иллюстрируется данными новейших исследований. В остальных пяти главах с их дополнениями рассмотрены механизмы отдельных типов реакций. При их выборе автор руководствовался двумя критериями 1) важностью реакции для синтетической органической химии и 2) наличием достаточных сведений о ее механизме. Тем не менее некоторые важные типы реакций (например, каталитическое гидрирование, алифатическое электрофиль-ное замещение, фотохимические реа(кции) не включены в обсуждение с целью сохранения объема книги на уровне, доступном для ее потенциальных читателей Однако автор надеется, что избранные им темы позволили показать широту и глубину современных теорий механизмов реакций. [c.10]

    Для инициирования процессов твердофазной полимеризации наиболее часто применяют ионизирующие излучения, поскольку они обладают большой проникающей способностью и позволяют проводить инициирование практически по всему объему твердого мономера без введения добавок специальных инициаторов. В процессе облучения образуются радикалы, ионы, вторичные электроны [31], т.е. налицо большая универсальность действия излучения. Однако образование различного типа частиц вызывает определенные трудности при установлении механизма реакции. Более однозначные результаты удается получить при фотохимическом инициировании, используя радикальные фотоинициаторы. Однако и здесь не обходится без трудностей, так как в твердой фазе происходит снижение потенциала ионизации и возможны процессы фотоионизации [304]. Высокие коэффициенты поглощения и рассеяния света при фотоинициировании приводят к неравномерному распределению в образце образующихся под действием света активных центров. Это обстоятельство затрудняет изучение кинетики. [c.76]

    Присутствие активных кислородсодержащих хромофорных групп в приповерхностных слоях образцов из по-лиолефинов способствует ускорению фотохимических превращений, в результате которых образуются свободные радикалы. Другим возможным источником свободных радикалов служат примеси, оставшиеся в полимере после полимеризации. Несмотря на высказанные соображения, механизм образования свободных радикалов нельзя считать установленным [50]. Основные трудности, встречающиеся при выяснении истинной причины образования свободных радикалов, состоят в удалении следов примесей, остающихся в полимере после его получения. Эти примеси (окисленные продукты, остатки катализатора и т. п.) могут действовать как хромофоры или сенсибилизаторы. Свободные радикалы, образовавшиеся в результате не-фотохимического процесса, также играют важную роль в фотодеструкции полимера. Исследования фотодеструкции полипропилена показали, что инициирование и развитие цепного окисления, приводящего к деструкции полимера, происходит за счет фоторазложения гидроперо-ксида [51, 52]. Судя по малым значениям квантовых выходов реакции распада по типу Нориш-1, в результате которой образуются свободные радикалы, влияние кето-и альдегидных групп в процессе фоторазложения полио-лефинов сводилось к минимуму. Схема этой реакции может быть представлена следующим образом  [c.81]

    Имеется несколько случаев, примеры которых будут приведены ниже, когда фотохимические процессы ведут к необычным реакциям, которые обычно не встречаются при использовании других способов. Однако, вообще говоря, вещества, получаемые фотохимически, могут быть получены и другими методами, и преимущества фотохимического пути основываются главным образом либо на удобстве его, либо на чистоте продукта реакции. В определенных случаях химик-органик может использовать фотохимические реакции как подспорье при установлении механизма реакции. [c.9]

    В результате многочисленных работ по фотохимическому хлорированию с несомненностью был установлен цепной радикальный механизм реакции. Так, например, для хлорирования метана [c.53]

    С момента выхода в свет первого издания в работу по выяснению механизмов органических реакций включилось большое число химиков во всем мире, что привело к накоплению огромного количества новых фундаментальных данных, касающихся механизмов органических реакций. За это время были развиты представления об участии ионных пар в реакциях замещения и отщепления, был открыт ферроцен, что способствовало углублению взглядов на природу ароматичности, были вскрыты закономерности термических и фотохимических реакций электроциклизации (правила Вудварда — Гофмана), был развит корреляционный анализ. В последние 10—15 лет большие успехи были достигнуты в исследовании механизмов свободнорадикальных реакций в растворе, начато изучение механизма электрофильного замещения у насыщенного атома углерода и нуклеофильного замещения в ароматическом ряду. Наконец, значительный прогресс был достигнут в теории влияния растворителя на скорость реакций, и динолярные апротонные растворители стали широко применяться в химических лабораториях и в производственной практике. Кроме перечисленных важнейших достижений и открытий, было решено множество других более частных, по трудных проблем, например установлен механизм бензидиновой перегруппировки. Выросли в самостоятельные области химия карбониевых ионов и карбанионов, развита химия карбенов, большое внимание в изучении механизмов реакций стало уделяться промежуточно образующимся нестабильным частицам. Все эти вопросы нашли отражение в книге Ингольда, поэтому по сравнению с первым [c.5]

    В результате многочисленных работ по фотохимическому хлорированию с несомненностью был установлен цепной радикальный механизм реакции. Так, например, для хлорирования метана Н. Н. Семеновым предложен следующий механизм (Sr. стр. 57)  [c.59]

    В первые годы после этого открытия метод ЭПР применялся в основном физиками для решения частных физических задач. В конце сороковых годов этот метод начал с успехом применяться для исследования тонких деталей электронной структуры парамагнитных ионов в кристаллических решетках разной симметрии. С начала пятидесятых годов началось бурное применение метода ЭПР к решению химических задач. Это связано с тем, что для современной химии имеет чрезвычайно большое значение выяснение структуры и химических свойств парамагнитных частиц, принимающих участие в сложных химических процессах. Это, с одной стороны, парамагнитные ионы металлов переходных групп периодической системы, являющиеся активными центрами огромного числа различных гетерогенных катализаторов и входящие в состав различных металлоорганических комплексов, определяющих активность сложных органических катализаторов, в том числе большинства биологических ферментов. С другой стороны, детальное исследование огромного числа сложных химических реакций в газовой и жидкой фазах, в том числе фотохимических, радиационно-химических и биохимических процессов, привело к представлению о чрезвычайно большой распространенности в химии свободно-радикальных и цепных механизмов. В большинстве случаев, и особенно в случае быстрых процессов, заключение о радикальном характере того или иного процесса в связи с трудностями непосредственного обнаружения, измерения концентраций и установления строения свободных радикалов основывалось на косвенных кинетических данных. Как будет показано ниже, метод ЭПР позволил подойти к решению обеих проблем, которые можно объединить [c.7]

    Изучение сенсибилизированной флуоресценции и фосфоресценции стало важным средством установления механизма фотохимических реакций. Рассмотрим одно из исследований такого типа, проведенное Хейкленом и Нойесом [145]. Они установили, что выход Фсо при фотолизе ацетона светом 3130 А при 40° и давлении ацетона 52 мм рт. ст. уменьшается при увеличении степени превращения. Известно, что продуктом реакции является диацетил, и, так как было показано раньше, что испускание диацетила сенсибилизируется, если в его присутствии облучать ацетон [146], они сделали вывод, что диацетил возникает в ходе опыта и действует как тушитель. В самом деле, оказалось, что добавление небольших количеств диацетила уменьшает квантовый выход образования продукта из ацетона при 0,1 мм рт. ст. добавленного диацетила фотолиз полностью подавляется. [c.535]

    Химическая поляризация стала новым и мощным методом установления механизмов химических реакций, детектирования радикалов и радикальных стадий. С помощью ХПЯ легко определить спиновую мультиплетность пар, легко установить, из каких состояний — синглетных или триплетных — рождаются радикалы и молекулы метод позволяет разделить радикальные и нерадикальные пути реакции и оценить количественно их конкуренцию, идентифицировать нестабильные промежуточные продукты и обратимые радикальные стадии, которые не удается установить никакими другими. методами. Из кинетики ХПЯ можно определять константы скорости реакций, а из количественных данных по значению поляризации — кинетику быстрых реакций в радикальных парах (распад, изомеризация радикалов, реакции замещения, переноса электрона и т. д.), происходящих с характеристическими временами 10 - 10-9 с. С помощью ХПЯ можно определять знаки констант СТВ в радикалах, знаки констант спин-спипового взаимодействия в молекулах, времена ядерной релаксации в радикалах и молекулах, устанавливать участие горячих радикалов в реакциях. Методом ХПЯ широко исследованы механизмы всех классов химических реакций — термических, фотохимических, радиационно-химических — и получена новая богатая информация, обобщенная в ряде книг и обзоров (см., например, [14], там же сформулированы условия наблюдения ХПЯ и техника эксперимента).  [c.27]

    В основе современных представлений о реакциях медленного окисления органических веществ лежат перекисная теория окисления и теория цепных вырожденно-разветвленных реакций. Перекисная теория, сформулированная в 1896— 1897 гг. Бахом [1] и Энглером [2], заключается в следующем. Молекула кислорода в своем обычном состоянии пассивна. Активация такой молекулы путем ее разрыва на отдельные атомы энергетически чрезвычайно трудна. Значительно легче активировать молекулу, разорвав в ней лишь одну связь 0=0 —О—-О—. Именно такая активация происходит при окислении легко реагирующих веществ, в результате чего образуются перекиси — единственные первичные продукты этой реакции. Это положение перекисной теории было доказано работами целого ряда исследователей (Иванов [3], Рихе [4 и др.), которые доказали образование гидроперекисей при окислении разнообразных углеводородов и установили их строение. Дальнейшее развитие представлений о механизме окисления органических веществ неразрывно связано с теорией цепных реакций. В 1927 г. Бекстром на основании высоких квантовых выходов, установленных им при фотохимическом окислении альдегидов, доказал цепнрй механизм жидкофазного окисления [5]. Несколько лет спустя акад. Н. Н. Семенов создал теорию разветвленных и вырожденно-разветвленных цепных реакций [6], которая количественно объяснила [c.9]

    Может ли связь Со—С в коферменте или каком-нибудь другом органокорриноиде обратимо разрываться по гомолитическому механизму с образованием Со и свободного радикала в соответствии с уравнением (А) Некоторые термические и фотохимические реакции такого типа показывают, что в принципе подобное равновесие существовать может. Эффекты, которые можно отнести за счет обратимого чисто термического гомолитического разрыва связи Со—С, наблюдаются при температуре 90°С и выше, например, при взаимном превращении изомерных метилкорриноидов, которые различаются между собой положением метильной группы. Последняя может быть связана с кобальтом выше или ниже асимметричного корринового кольца. Однако устойчивость большинства органо-корриноидов, включая кофермент, по отношению к кислороду (который должен быстро и необратимо реагировать с любым образующимся свободным радикалом) показывает, что при комнатной температуре равновесие в этой системе смещено так далеко влево, что свободный радикал не образуется в качестве кинетически независимой промежуточной частицы, если только белок не влияет существенным образом на положение равновесия и (или) скорость его установления. [c.248]

    Суммарная формула фотосинтеза СО2 + свет (СН )+02 характеризует только исходные и конечные продукты реакции. Она не вскрывает сущности промежуточных звеньев, отдельных реакций, составляющих весь процесс фотосинтеза. Сложность образующихся в процессе фотосинтеза веществ, трудность восстановления углекислого газа, участие нескольких квантов энергии в восстановлении одной молекулы СО заставили предположить, что фотосинтез илет в несколько этапов и включает ряд реакций с образованна аромеяуточвых продуктов. Огромным достижением в изучении фотосинтеза, в выяснении его механизма было установление того факта, что фотосинтез кроме фотохимических включает и темновые ферментативные реакции, протекащие без непосредственного участия световой энергии. [c.10]

    Проверка теории Христиансена Бекстрёмол [52] заключалась в установлении аналогии между фотохимх ческим и темповым окислением бензальдегида, гептальдегида и сернистокислого натрия. Убедительным доказательством теории энергетических цепей явился параллелизм в действии различных ингибиторов на темповую и фотохимическую реакции. Бекстрём установил, что длина цепи термической реакции совпадает с величиной, вычисленной для фотохимического процесса.. Следовательно, обе реакции развиваются по одинаковому цепному механизму. Различие состоит лишь в способе первичной активации молекул в случае темпового процесса она вызывается не поглощением света, а молекулярным столкновением. [c.221]

    В третьей главе изложены количественные методы исследования двухквантовых реакций. Рассмотрены различные кинетические методы определения абсолютной квантовой эффективности у двухквантовой реакции. В этой же главе обсуждается фотохимический механизм двухквантовых реакций на основб установленной в последние годы зависимости у от энергии высо ковозбужденного состояния и других факторов. [c.4]

    В настоящее время ХПЯ обнаружена в самых разных классах реакций распад перекисей и азосоединений, термические перегруппировки и изомеризации молекул, фотохимические реакции распада, фотосенсибилизированные реакции, реакции с участием металлоорганических соединений ртути, магния, кремния, лития, свинца, олова и т. д., реакции переноса электрона, азосочетания, окисления, полимеризации, цепного галоидирования и т. д. [25]. ХПЯ дает важную информацию о механизмах, вскрывает их новые стороны. К новым результатам, полученным методом ХПЯ, относится обнаружение радикальных реакций синглетных карбепов и ориентации нуклеофильного типа в реакциях ароматического присоединения радикалов, установления ряда стабильности ацилоксиради-калов при распаде ацильных перекисей, доказательство роли диа-зофенильного радикала в ряде реакций термического распада и переноса электрона, обнаружение фотохимического распада кетонов в эксиплексах, установление радикального механизма для ряда реакций, считавшихся классическими примерами нуклеофильного или электрофильного замещения, и т. д. [c.223]

    Рассмотрим вновь механизм, установленный для фотохимического образования хлористого водорода из элементов. Цепная реакция инициируется нри фотохимическом разложении молекулы хлора и поддерживается в результате протекания двух реакций С14- Hg—> H l -pH и Н lj—>НС1 -f I. В каждом из этих бимолекулярных процессов образуется одна молекула НС1, исчезает одна активная частица и вновь образуется другая активная частица. Эти процессы существенны для продол кения цепи. Хрпстиав-сен и Крамере предположили, что цепи могут разветвляться, т. е. что при простом бимолекулярном столкновении, сопровождающемся исчезновением одной активной частицы, возникает несколько новых активных частиц. [c.544]

    Нам кажется, что включение реакции 6 в качестве единственного превращения перекиспого радикала нельзя считать правомочным, так как это противоречит другим фактам, многократно подтвержденным в литературе. Действительно, можно считать твердо установленным, что при проведении окисления при низких температурах, например при фотохимическом сенсибилизированном ртутью окислении того же пропана (см. стр. 448), почти единственным продуктом реакции является гидроперекись изопронила. Шир и Тэйлор не указывают перекисей в числе продуктов окисления, индуцированного азометапом, и, по-видимому, анализа перекисей не проводили вовсе. На самом же деле эти соединения, несомненно, образуются, и, следовательно, предложенная схема вряд ли вскрывает истинный механизм процесса. [c.480]

    В настоящее время знание всех этих обстоятельств привело бы к выводу, в справедливости которого нет сомнения, о протекании процесса автоокисления по свободно-радикальному механизму. Поэтому не удивительно, что удовлетворительно объяснить данные по окислению полимеров оказалось возможным только после того, как было установлено существование свободно-радикального механизма реакций. Проведенные после этого исследования с применением методов, обычно используемых при изучении радикальных цепных реакций (например, метод ингибирования реакции небольшими количествами некоторых добавок), атакл установление высокогоквантового выхода при фотохимических процессах окончательно подтвердили предположение о действительной природе механизма реакции. [c.129]

    Первый из двух приведенных в табл. 39 механизмов тушения флуо- ресценцин ртути парами воды отвечает хорошо установленной эффективности молекул Н2О в переводе возбужденных атомов ртути в метастабильное состояние [1317, 845, 1100], второй учитывает реакцию фотохимического сенсибилизированного ртутью разложения воды [1129]. [c.365]

    Установление наличия в фотосинтезе кроме световых и темновых реакций имело очень большое значение для направленности путей исследования зтого процесса и сыграло огромную роль в развитии наших представлений о механизме фотосинтеза. Многочисленными исследованиями не только подтвервдено существование в процессе фотосинтеза фотохимических л темновых реакций, но многие из них уже точно известны, конкретизированы. [c.19]

    Важную информацию о механизме окисления можно получить из опытов по фотолизу, ингибированному KIi лopoдoм. Однако кислород редко использовали в качестве акцептора свободных радикалов в фотохимических исследованиях, проводимых для установления природы первичных процессов. Сейчас мало кто сомневается в том, что первичная реакция менаду свободным радикалом ] и кислородом при обычных температурах описывается уравнением [c.485]


Смотреть страницы где упоминается термин Установление механизмов фотохимических реакций: [c.117]    [c.350]    [c.53]    [c.421]    [c.288]    [c.487]    [c.292]    [c.112]    [c.102]    [c.421]    [c.85]   
Смотреть главы в:

Органическая химия. Т.1 -> Установление механизмов фотохимических реакций




ПОИСК





Смотрите так же термины и статьи:

Механизм реакции, установление

Механизм фотохимических реакций

Установление механизма

Фотохимическая реакция



© 2025 chem21.info Реклама на сайте