Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Перегруппировки направление

    Химическая связь образуется в большинстве случаев в результате той или иной перегруппировки электронов, содержащихся во взаимодействующих атомах. Важнейшими формами таких перегруппировок являются 1) передача одного или большего числа электронов от одного из атомов другому и 2) смещение электронов в направлении к одному из атомов, причем большей частью при этом образуются электронные пары, общие для взаимодей- [c.56]


    Кинетически реакция Дильса-Альдера вполне, очевидно, является бимолекулярной, а обратная реакция — простым мономолекулярным разложением. Для изучения кинетики эта реакция представляет наилучший образец обратимой реакции, оба направления которой могут изучаться как в жидкой, так и в паровой фазах. Ее механизм стал предметом большой дискуссии, в ходе которой было высказано три точки зрения 1) это полярная реакция, включающая нуклеофильное присоединение диена к диенофилу, 2) она является реакцией, идущей через радикальный механизм, и 3) это есть практически молекулярный процесс, включающий электронную перегруппировку образующегося в качестве промежуточного соединения комплекса. [c.180]

    Примером такой реакции, сопровождающейся перегруппировкой углеродного скелета, служит реакция гетеролиза неопентилбромида. Несмотря на то что этот бромид — первичный алкилгалогенид, он практически не способен к реакциям нуклеофильного замещения по механизму N2 из-за пространственных затруднений, создаваемых разветвленным трег-бутиль-ным радикалом при подходе нуклеофильного реагента. Сольво-лиз неопентилбромида по механизму 5ы1, т. е. в протонных растворителях, также исключается, потому что он — первичный алкилгалогенид. Однако его можно заставить реагировать по механизму N1 в присутствии водных растворов солей серебра, так как ион серебра вырывает из молекулы алкилгалогенида анион брома, образуя бромид серебра. При этом первоначально образовавшийся менее устойчивый карбокатион (23), у которого положительный заряд находится на первичном атоме углерода, перегруппировывается в более энергетически выгодный третичный карбокатион (24), который затем и реагирует по трем возможным направлениям  [c.132]

    Реакции, протекающие при окислении кумола и разложении гидропероксида с образованием фенола и ацетона, а также побочных продуктов, рассмотрены в [61]. Направления использования фенола (получение фенолоформальдегидных смол, циклогексана и далее капролактама, дифенилолпропана, о-крезола и 2,6-ксиленола, анилина и т. д.) рассмотрены в работах [42, 62]. Гидрированием бензола получают циклогексан, окислением последнего — циклогексанон и далее оксимированием и бекмановской перегруппировкой — капролактам [63]. [c.333]

    Кроме того, сам карбокатион, прежде чем прореагировать по одному из трех возможных направлений, может претерпевать перегруппировку, приводящую к образованию другого, более стабильного карбокатиона. Такие перегруппировки заключаются в миграции к атому углерода, несущему положительный заряд, гидрид-иона или карбаниона. [c.131]


    Эта реакция приводит к образованию индивидуальных спиртов и не сопровождается перегруппировкой. Направление реакции соответствует правилу Марковникова, реакция проводится в очень мягких условиях с выходами, близкими к количественному (подробно см. гл. 5, часть 1)  [c.232]

    Легкость получения спиртов убывает в ряду третичный > вторичный > первичный легкость дегидратации следует- такому же порядку. Процесс часто осложняется перегруппировками. Направление присоединения соответствует правилу Марковникова (см. стр. 165,171, 341 и 358—360) [c.344]

    По аналогичной реакции бензоат калия при нагревании с солями кадмия диспропорционирует на бензол и ион 43. Такие перегруппировки называются реакциями Хенкеля (по названию компании, владеющей патентами па этот процесс) [402]. Для этих превращений предложен механизм SeI [403]. Основным продуктом является терефталат он кристаллизуется из реакционной смеси, смещая тем самым равновесие в желаемом направлении [404]. [c.385]

    Эти авторы отмечали Несмотря на то, что нет ничего особенно нового в методах, примененных для синтеза этих углеводородов, полученные результаты могут служить иллюстрацией ценности методов синтеза по пути карбинол—олефин—парафин. Теоретически возможно приготовить любой парафин при помощи этих методов исходные вещества в большинстве случаев доступны, не слишком дороги, и реакция протекает гладко, без осложнений. Ясно, однако, что следует соблюдать осторожность при интерпретации направления реакций, особенно если проводится дегидратация карбинолов, в которых гидроксильная группа находится рядом с третичным углеродным атомом. Широкий интервал температур кппения продуктов дегидратации обычно указывает на перегруппировку, но последняя может быть столь сложной, что остается нерасшифрованной . [c.401]

    Независимо от того, какой именно электрофильный метод смещения двойной связи используется, в наибольшем количестве, как правило, образуется наиболее термодинамически устойчивый олефин, хотя известны и некоторые отклонения от этого правила. Однако существует и другой, косвенный метод изомеризации двойной связи, посредством которого можно осуществить миграцию в другом направлении. Этот метод заключается в превращении олефина в боран (т. 3, реакция 15-13), перегруппировке борана (т. 4, реакция 18-13), окислении и гидролизе образовавшегося борана в спирт (реакция 12-26) и дегидратации спирта (т. 4, реакция 17-1)  [c.426]

    Таким образом, алкилирующие ациклические агенты при контакте с катализаторами или при конкурирующем взаимодействии ароматических соединений с комплексами [НХ-Катализатор] в зависимости от условий, химического состава и структуры реагирующих компонентов претерпевают внутримолекулярные гидридные и скелетные перегруппировки. Близость величин изотопных перегруппировок свидетельствует в пользу идентичного механизма превращения разных алкилирующих групп, тогда как значительный диапазон глубин другого типа изомеризационных превращений указывает на зависимость их от долевой значимости отдельных направлений в общем механизме реакции. [c.118]

    Аналогия с механизмом 5, 2 налагает определенные требования на пространственное расположение реакционных центров при 1,2-перегруппировках насыщенных углеводородов, причем кинетика и механизм перегруппировок цикланов оказываются тесно связанными конформационными особенностями молекул. Существует два типа влияний, оказываемых конформацией на направление и скорость реакций. Первое из них обусловлено доступностью реакционного центра (стерические факторы) и не нуждается в особых пояснениях. Более сложным является второе, связанное со специфическим пространственным расположением образующихся и разрушающихся связей (стерео-электронные требования) [34]. [c.163]

    В реакциях цикланов именно стереоэлектронные требования во многом определяют кинетику и направление перегруппировок. Рассматриваемые нами 1,2-перегруппировки требуют для их осуществления особых геометрических условий они протекают быстрее тогда, когда мигрирующая группа атакует конечное место миграции со стороны тетраэдра, противоположной той, из которой уходит элиминирующая группа (так называемая атака с тыла). При этом требуется соблюдение копланарности четырех реакционных центров, участвующих в реакции [35]. Алициклические системы отличаются от алифатических тем, что последнее условие не может быть выполнено автоматически. Ограничение это имеет первостепенное значение для понимания реакционной способности цикланов. [c.163]

    Следует, однако, отметить, что делать априорГный расчет состава продуктов алкилирования на основе только стабильности карбокатионов нельзя, так как важную роль имеют и кинетические факторы, которые вносят значительные коррективы в направленность протекания реакции. Например, в соответствии с термодинамическими данными, пропилхлорид должен преимущественно превращаться в более стабильный изопропил-катион, который при атаке бензола должен давать изопропилбензол. Образование значительных количеств пропилбензола при алкилировании бензола этим агентом в присутствии А1С1з можно объяснить тем, что пер ичный алкил-катион в силу своей высокой реакционной способности присоединяется к ароматическому ядру раньше, чем произойдет его перегруппировка. [c.109]


    Реализовать перестройку молекулярных цепей ниже температуры плавления можно, подвергая полимер отжигу или добиваясь перегруппировки и выстраивания цепей в определенном направлении при помощи ряда технологических операций, составляющих методы холодного формования . К этим методам относятся прежде всего холодная прокатка и холодная вытяжка, которые производят при температуре, лежащей между температурами и Т 1. [c.64]

    Перегруппировка обычно направлена в сторону образования более стабильного карбокатиона (или свободного радикала) в соответствии с рядом третичный>вторичный>первичный. Однако известны перегруппировки, протекающие и в другом направлении [80]. Часто продуктом реакции является равновесная смесь всех возможных карбокатионов. [c.130]

    Напротив, перегруппировка по типу 15]у2-замещепия способствует стереохимически направленному протеканию реакции. При ]у2-реакциях мигрирующая группа атакует неискаженный, тетраэдрический заряженный атом углерода. Такой атаке более доступна сторона, противоположная элиминированному заместителю (в рассматриваемых случаях это гидрид-ион). Следствием определенной ориентации реакционных центров является фиксированное положение входящего (мигрирующего) заместителя, а отсюда — высокая степень стереоспецифичности замещения. В этом случае уже невозможно существование двух, разделенных Энергетическим барьером ионов, как это имеет место в реакциях типа а существует лишь один неклассический ион , про- [c.162]

    В пользу данного механизма свидетельствует тот факт, что перегруппировки такого рода происходят в условиях, когда, как было показано ранее, образуются карбокатионы, а именно, в реакциях 8к1, при алкилировании по Фриделю — Крафтсу и т. д. Сольволиз неопентилбромида приводит к образованию продуктов перегруппировки, причем скорость реакции возрастает с увеличением ионизирующей способности растворителя, но не зависит от концентрации основания [4] это подтверждает, что первой стадией является образование карбокатиона. То же самое соединение в условиях протекания реакции 8к2 не дает продуктов перегруппировки, в этом случае происходит, хотя и медленно, обычное замещение. Таким образом, перегруппировка неопентилбромида объясняется исключительно образованием карбокатиона. Обычно карбокатионы перегруппировываются в более устойчивые карбокатионы, и направление перегруппировки имеет вид первичные->вторичные тре-тичные. Неопентил (МезССНг), неофил (РЬСМегСНг) и норборнил (например, 4), а также подобные им производные особенно склонны к реакциям, включающим перегруппировки карбокатионов. Показано, что скорость миграции возрастает [c.112]

    При нагревании кетоны, содержащие вторичную аминогруппу, перегруппировываются [126] аналогично тому, как описано в реакции 18-4, и в результате две группы К меняются местами [127]. Группа Н может быть арилом или алкилом. Механизм реакции отличается от механизма перегруппировки 18-4, хотя и включает две миграции в противоположных направлениях. В этом случае 1,2-миграция К сопровождается 1,4-миграцией водорода от О к N1 [c.139]

    Появление большого числа различных фрагментов часто помогает установить структуру молекулы. Однако даже в этом случае необходимо соблюдать осторожность. Ион, образующийся в ионизационной камере, подвергается многим колебательным процессам эти процессы могут сопровождаться перегруппировками с образованием связей, которых нет в исходном соедиР1снии [см., например, уравнение (16.14)]. Образование новых ионов затрудняет установление химических процессов. которые приводят к появлению в масс-спектре различных пиков. Это в свою очередь создает трудности для выяснения влияния прочности связи или других свойств молекулы на относительные количества образующихся ионных фрагментов. Была предпринята попытка количественно рассмотреть масс-спектрометрическую фрагментацию на основании так называемой квазиравновесной теории [10]. Внутреннюю энергию распределяют по всем возможным осцилляторам и ротаторам молекулы и рассчитывают скорости распада по различным направлениям. Каждому колебательному уровню приписывается весовой фактор или частотный фактор (т.е. энтропийный член). Для молекулы реального размера полный анализ сложен. Вводятся приближения, приводящие [c.322]

    Бекмановскую перегруппировку оксима проводят в реакторе 6 цикленного типа, снабженном циркуляционным насосом и мощным хололильником 7. Олеум вводят в циркулирующую смесь перед насосом, рециркулирующую жидкость — в тангенциальном направлении циклона, помещенного внутри реактора, а оксим — по его осевому направлению. Все это создает условия для интенсивного перемешивания реагентов и безопасной работы, обычно не сопровождающейся выбросами смеси и перегревами. Полученная масса стекает 1ерез боковой перелив в нейтрализатор 8, куда вводят необ-xoди [oe количество аммиачной воды. Во избежание перегревов и гидрслиза полученного лактама ведут нейтрализацию при 40— 50 С, что достигается циркуляцией смеси через выносной холодильник 9. Нейтрализованная масса стекает в сепаратор 10, где водный сульфат аммония отделяют от так называемого лактамного масла. Лактам растворим в водном сульфате аммония, и во избежание потерь лактама проводят дополнительную его экстракцию из сульфата аммония органическим растворителем (на схеме не показано). [c.567]

    Образующийся ион 1-метилбицикло(4,3,0)нонана не имеет строгой фиксации заряда, так как, судя по составу продуктов реакции, заряд распределен по всему циклононановому кольцу и стабилизация катионов происходит с образованием всех возможных метил-бицикло(4,3,0)нонанов. Частично протекает и непосредственная стабилизация этого иона. Высокая скорость перегруппировки определяет ее стереохимическую направленность, так как в ходе превращения образуются преимущественно метил-1 ис-бицик-ло(4,3,0)нонаны. Как и обычно, в реакции сужения цикла первым этапом является элиминирование экваториального атома водорода (гидрид-ион при С-9). [c.223]

    Второе направление реакции 1-метил-2-этилциклопентана (в данном случае подчиненное) заключается в миграции связи С-5—С-З с образованием связи С-5—С-2. Перегруппировка эта ведет к образоланию 1,3-димети лцик логексанов. Стереохимия этой перегруппировки также связана с конформацией метильной группы при С-2 и, конечно, с соблюдением правила копланарности четырех реакционных центров (в данном случае Н , С-2, С-З и С-5). Более реакционноспособной здесь также оказалась конформация исходной молекулы типа Б (внутреннее расположение метильной группы у С-2), приводящая к тракс-1,3-диметилцик-логексану, причем аксиальную ориентацию в момент реакции принимает метильный заместитель, находящийся у С- ,  [c.166]

    В обоих случаях молекула исходного бицикло(3,3,1)нонана претерпевает трансаннулярную перегруппировку, в ходе которой происходит разрыв мостиковых связей и образование новых углерод-углеродных связей по всем возможным 1—5-направлениям циклооктанового кольца. [c.220]

    В настоящее время трудно исчерпывающе объяснить механизм трансаннулярных переходов, исходя только из концепции ионных перегруппировок с 1,2-смещением. Особенности перегруппировок углеводородов ряда бицикло(3,3,1)нонана предопределены главным образом стереохимическими факторами. Сближенность аксиальных водородов нри С-З и С-7 ведет к деформации циклогексановых звеньев в молекуле [13] и к значительному напряжению в системе, которое легко устраняется путем образования новых связей в циклооктановом кольце с одновременным разрывом одной из мостиковых связей. Можно допустить, что гетеролитический разрыв мостиковой связи несколько опережает трансаннулярное замыкание. В результате также образуется короткоживущее неустойчивое промежуточное соединение А, в котором замыкание новой связи происходит по всем различным направлениям и обусловлено лишь возможностью перемещения заряда но кольцу. Замыкание новых связей облегчено возникновением ионов карбония, появляющихся при разрыве мостиковых связей 1—9 или 5—9. Конечно, более естественным представляется перегруппировка, осуществляемая путем образования связи 3—7 (ввиду близ- [c.220]

    Основным направлением в реакциях изомеризации насыщенных циклических углеводородов является консекутивная многостадийная схема, приводящая к получению термодинамически наиболее устойчивых углеводородов. При этом промежуточные продукты накапливаются в продуктах реакции в количествах, определяемых соотношением скоростей их возникновения и дальнейшего превращения в соответствии с хорошо известными закономерностями для консекутивных реакций. Все это дает возможность выделить и исследовать промежуточные углеводороды и таким образом доказать предполагаемую схему реакции. Однако иногда схема изомеризации усложняется тем, что реакция протекает без образования промежуточных углеводородов или последние образуются только частично. Такое направление реакции связано с тем, что промежуточно возникающие ионы карбония имеют тенденцию к дальнейшим перегруппировкам без стабилизации в виде углеводородов. Такое затруднение в стабилизации обычно бывает вызвано стерическими факторами, препятствующими присоединению гидрид-иона, как, например, в мостиковом атоме углерода среди норборнанов. В этих случаях реакции протекают или сразу до образования конечных термодинамически устойчивых углеводородов (согласованный механизм) или в процессе реакции происходит стабилизация ионов в углеводороды на какой-то одной из промежуточных стадий. [c.247]

    Энергия активации процессов перегруппировки в ионах невелика и соизмерима с таковой в нейтральных молекулах. Благодаря малой энергии активации достигается высокая степень подннжиости атомов и связей в молекулярном ионе [43]. В углеводородах разница в энергиях происходящих атомных перегруппировок невелика и эти процессы были названы Мак-Лафферити случайными . Этот термин отражает отсутствие преимущественного направления подобных реакций. [c.25]

    Промежуточный карбкатион может стабилизироваться не только выбросом протона, но и захватом нуклеофила — спирта, образуя простой эфир. Это направление преобладает при более низких температурах. Возможна также перегруппировка карбониевого иона (перегруппировка Вагнера — Меервейна), если перемещение гидрид-или алкиланиона приводит к образованию более стабильного (более замещенного) иона  [c.79]

    Тригональная бипирамида—это стереохимически нежесткая конфигурация у нее легко происходит перегруппировка через квадратную пирамиду в новую тригональную бипирамиду с изменением аксиального направления на 90 "  [c.165]

    Ниже мы приведем несколько примеров реакционных графов. В каждом случае мы начинаем с небольшого, графа В, который имеет п вершин, помеченных 1,2,. .., (а в одном случае граф В имеет также несколько дополнительных непомеченных вершин). Сушест-вует также правило перегруппировки, согласно которому мы можем применять некоторые перестановки к меткам вершин. Две нумерации графа В считаются эквивалентными, если автоморфизм графа В превращает одну нумерацию в другую. (В более общем случае мы, возможно, захотим рассмотреть эквивалентность для соответствующей подгруппы aut В.) Для данного правила перегруппировки реакционный граф В — это граф Г, вершины которого соответствуют различным неэквивалентным нумерациям графа Вив котором имеется направленное ребро, связывающее вершину а с вершиной , если и только если вершина может быть получена из а при применении правила перегруппировки только один раз. Фактически во всех рассматриваемых нами примерах перегруппировки обратимы, так что вместо пар направленных ребер <> мы будем использовать ненаправленные ребра — . Поскольку мы имеем п различных меток, легко рассчитать число вершин графа Г оно равно п / злх1 В , где Х обозначает число элементов в множестве X. На первый взгляд можно предположить существование простой взаимосвязи между aut В и aut Г однако это не так. Как мы увидим, aut Г часто является группой 5 всех перестановок множества N = (1,2,. ..,я],ив разд. 3 мы покажем, что aut Г всегда содержит S.  [c.291]

    Возникающий я-пропильный катион V может дальше реагировать по трем направлениям взаимодействовать с водой, выполняющей функцию нуклеофила [путь (а)], с образованием пропанола-1 (Via) отщеплять протон от соседнего атома углерода [путь (б)], давая пропилен VI6 или претерпевать перегруппировку, осуществляемую в данном случае за счет миграции иона H [путь (в)] с образованием изопропил-катиона VIb, который далее, участвуя в реакциях (б) или (а), может давать соответственно либо дополнительное количество пропилена VI6, либо пропанол-2 (VII). В типичных условиях реакции было зафиксировано образование 7% пропанола-1, 28% пропилена и 22% пропанола 2. Более высокая устойчивость мзопропил-кати-оиа по сравнению с катионом к-пропила приводит к более высокому выходу вторичного спирта. [c.122]

    Все рассмотренные нами реакции с перегруппировкой углеродного скелета имеют одну общую черту, состоящую в том, что миграция алкильной или арильной группы со своей электронной парой происходит в направлении атома углерода, который независимо от того, несет ли он положительный заряд или нет, является электронодефицитным. Электронодефицитным является [c.130]


Смотреть страницы где упоминается термин Перегруппировки направление: [c.97]    [c.469]    [c.530]    [c.123]    [c.211]    [c.166]    [c.207]    [c.579]    [c.217]    [c.124]    [c.181]    [c.351]    [c.127]    [c.129]    [c.138]    [c.141]    [c.269]   
Введение в электронную теорию органических реакций (1965) -- [ c.497 ]




ПОИСК





Смотрите так же термины и статьи:

Влияние заместителей направление, пинаколиновой перегруппировки

Конформация и направление перегруппировки

Механизм реакции перегруппировки и предсказание ее направления

Направление перегруппировки при наличии в молекуле различных заместителей

Перегруппировки направление и стабильность ионов

Перегруппировки нуклеофильные направление

Пинаколиновая перегруппировка направление при наличии различных заместителей

Пространственная направленность перегруппировки Бекмана



© 2024 chem21.info Реклама на сайте