Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Белки при старении

    Деструкция, являясь одним из видов старения полимеров, — довольно распространенная реакция в химии высокомолекулярных соединений. Она может играть как положительную роль (например, для установления строения полимеров, получения некоторых индивидуальных веществ из природных полимеров аминокислот из белков, глюкозы из крахмала и целлюлозы и т. д.), так и отрицательную. Являясь необратимой химической реакцией, деструкция приводит к нежелательным изменениям в структуре полимеров при их эксплуатации. Это необходимо учитывать при использовании полимерных материалов в строительстве, когда они подвергаются многим неизбежным отрицательным воздействиям. Факторы, приводящие к деструкции полимеров, можно разделить на физические (тепло, свет, ионизирующее излучение, механическая энергия и др.) и химические (гидролиз, алкоголиз, окисление и т. д.). [c.409]


    Кларк, Холт и Вент [249] выполнили весьма важные исследования действия кремневой и поликремневой кислот в водном растворе на мономолекулярные слои альбумина и найлона, находящиеся на поверхности раствора. Наблюдалось, что воздействие монокремневой или поликремневой кислот проявляется по мере того, как кислота адсорбируется снизу на мономолеку-лярном органическом слое. Пленки при этом становятся более прочными и жесткими, так что сжимаемость мономолекулярного белка или слоя органического полимера, понижается. Наиболее важным в этих наблюдениях оказалось то, что монокремневая кислота совсем не адсорбировалась. Кремнезем должен был сначала полимеризоваться, а затем уже мог адсорбироваться на монослое белка. В рассматриваемом случае полимерные цепи белка становятся менее сжимаемыми, и это хорошо подтверждает такие факты, основанные на влиянии величины рн в процессе старения, что адсорбированная поликремневая кислота под поверхностью пленки белка полимеризуется, формируя слой силикагеля. Этот кремнеземный слой толщиной всего лишь, вероятно, в несколько ангстрем придает белковой пленке жесткость, что предотвращает ее от последующего сжатия. В случае найлона легко формировались мономолекулярные слои, которые взаимодействовали с поликремневой кислотой при рн 2—9 и становились особенно жесткими, или дублеными, в интервале pH 4,5—6,5, т. е. именно тогда, когда, как известно, [c.1054]

    ГИББЕРЕЛЛИНЫ, группа прир, регуляторов роста растений (фитогормонов). Стимулируют деление клеток, рост стебля, ускоряют цветение, задерживают старение листьев и плодов благодаря активированию синтеза нуклеиновых к-т и белков. [c.544]

    Протеазы. В листьях обнаружено, по меньшей мере, четыре типа этих ферментов [101]. Они локализованы среди других в хлоропластах и вакуолях [85, 112]. Физиологическое значение этих протеаз неясно. Однако замечено, что их содержание нередко повышается в вакуолях в-процессе старения тканей [115]. Кроме того, природные поликатионы, такие, как кадаверин, спермин, путресцин или спермидин, подавляют активность некоторых протеаз в клетках [18]. В листьях люцерны потери белков могут достигать 40 % между заготовкой зеленой массы и ее гомогенизацией Финли и др. [31] относят их за счет протеаз, выявленных в листьях. Из люцерны была выделена протеаза с молекулярной массой 68 ООО Да, у которой оптимальная активность проявляется при pH 7—9, это позволяет ей оставаться активной даже после обработки зеленого клеточного сока люцерны [108]. [c.256]


    Конфигурацию сдвоенной спирали, как установили Джеймс Уотсон и Фрэнсис Крик (1953 г.), имеют макромолекулы нуклеиновых кислот ДНК и РНК, которые связаны с белками и выполняют определяющие функции в процессах синтеза белка, передачи наследственности, старения организма. Каждая их спираль свернута из своей цепи  [c.40]

    Старение как отдельных органов, так и целого растения связано с уменьшением метаболической активности и снижением скоростей синтеза РНК и белка. Мы уже говорили об изменениях в интенсивности дыхания и проницаемости мембран, сопровождающих созревание плода. Действие большинства гормонов замедляющих старение, по крайней мере частично обусловлен тем, что они поддерживают синтез РНК и белка. Старение ткани плода, например, у бобов подавляется ауксином или цито-кинином. В одних листьях старение замедляется под воздействием одного цитокинина, тогда как в других эффективен только один гиббереллин. Многие исследования показывают, что старение у растений представляет собой не просто какой-то замедляющийся и затухающий процесс, а скорее активную физиоло-гическую стадиЮ жизненного цикла, в такой же мере регулируемую гормонами, как и любая другая предшествующая ей стадия. Смерть индивидуальных клеток или тканей в растении, может быть нормальным, контролируемым и локализованны1Л. событием, помогающим в создании окончательной формы растения. В качестве примера можно привести гибель клеток тра-хеид и сосудов, из которых образуются полые, но эффективные клетки водопроводящей системы. [c.317]

    Предложена теория, согласно которой гидрофильность белков крови человека и их способность к адсорбции на холестерине с возрастом уменьшается и соответственно понижается их защитное действие на холестерин. Холестерин откладывается в стенках сосудов, обусловливая возрастные изменения сосудов, а в связи с этим и соответствующие изменения в тканях. Вероятно, этот процесс является одним из существенных факторов старения организма. [c.187]

    Увеличение степени измельченности влияет на скорость набухания, так как это вызывает увеличение поверхности соприкосновения набухающего вещества с растворителем и скорости проникновения молекул растворителя в глубь его. Влияние возраста или свежести ВМС особенно важно для белков. Чем свежее ВМС, тем больше степень и скорость набухания его. Уменьшение этих показателей связано с явлением старения ВМС, проявляющимся в уплотнении структуры. [c.381]

    Двухвалентные катионы оказывают иное влияние на коллоидно-химическое состояние белков, нежели одновалентные. В то время как ионы калия и натрия способствуют набуханию коллоидов, ионы кальция вызывают обратный процесс. Двухвалентные ионы оказываются антагонистами по отнощению к одновалентным. Все это имеет большое значение, так как старение (увядание) кожи в значительной степени характеризуется как явление свертывания коллоидов борьба с этим явлением частично возможна применением веществ, способствующих набуханию коллоидов. [c.70]

    При отрицательном азотистом балансе количество вьщеляемого азота превышает количество азота, поступающего в организм в течение суток. Это состояние встречается при голодании, белковой недостаточности, при тяжелых заболеваниях, когда происходит интенсивный распад белков у больных, получающих полноценную белковую пищу, а также при старении. [c.361]

    Важно отметить, что увеличение концентрации малых молекул в окружении структуры ДНК (хроматина) приводит к увеличению 7 , если эти молекулы предпочтительно связываются с двойной спиралью, а не с одиночными цепями. Когда малые молекулы предпочтительно связываются с одиночным , цепями, наблюдается уменьшение. Сделанное заключение, в принципе, относится к любым супрамолекулярным структурам, содержащим ДНК, РНК, белки, полисахариды и многие другие молекулы [19]. На отдельные прикладные аспекты взаимодействия генетических структур с малыми молекулами указано в заметке, касающейся термодинамики генов и старения [21]. [c.14]

    Несомненной является огромная роль воды в установлении оптимальной структуры полипептидов типа коллагена [149, 152]. Вода является неотъемлемой частью пространственной структуры такого рода белков, и при понижении влажности молекулы воды, выходя из тройной спирали, заставляет полипептид принять иную конформацию (возможно, что с этим связаны вопросы старения организмов). Надо полагать, что при этом структура полипептида будет изменяться дискретно. [c.145]

    В случае, когда количество введенного азота меньше, чем количество выделенного, организм находится в отрицательном азотистом балансе. Отрицательный азотистый баланс указывает, что процессы распада преобладают над процессами синтеза и организм теряет запасы белка. Отрицательный азотистый баланс наблюдается при старении организма, при различных истощающих заболеваниях, голодании или неполноценном белковом питании. [c.208]


    Азотсодержащие вещества состоят, по-видимому, гл. обр. из белков, а также продуктов их разложения — аминокислот. Белковые вещества ускоряют вулканизацию К. н., защищают его от старения и повышают набухание резин в воде. Зола содержит соединения Ка, К, Са, Mg, Р, Ре, а также следы Си (< 0,0008%) и Мп (<0,001%). к-рые являются сильными катализаторами окисления К. н. Соли Ре также ускоряют окисление. [c.498]

    Л. н. состоят из плотной эластичной каучуковой оболочки (гель-каучук), внутри к-рОй находится жидкая низкомолекулярная фракция (золь-каучук). Наружная поверхность каучуковой оболочки окружена защитным слоем, состоящим из белковых веществ (в свежесобранном Л. н. их содержится 4%), смол, мыл и гидратно-связанной воды. По мере старения Л. н. белки постепенно гидролизуются в аминокислоты по содержанию последних можно судить о возрасте латекса. [c.18]

    Наряду с синтезом в растениях постоянно идет распад белков. Процессы распада особенно активизируются при прорастании семян, когда расщепляются запасные белки эндосперма или семядолей и образуются аминокислоты и другие простые азотистые соединения, которые используются для построения белков развивающегося зародыша. Распад белков может идти довольно интенсивно и при старении растений, когда расщепляются белки вегетативных органов, и азотистые соединения перемещаются в репродуктивные органы, где идет интенсивный синтез белков, а также при автолизе клеток и тканей, когда клеточные белки разрушаются. [c.299]

    Такого типа реакция между молекулами белка или нуклеиновых кислот, конечно, приводит к расстройству выполняемых ими функций, имеющих существенное значение для нормальной жизнедеятельности клетки. В результате этого клетки постепенно вырождаются и отмирают, что в конечном итоге приводит к смерти всего организма. Гидрохинон, а возможно, и витамин Е выступают в качестве ловушек для радикалов. Если витамин Е действительно замедляет процесс старения, то это можно легко объяснить тем, что он поддерживает концентрацию радикалов достаточно низкой, препятствуя тем самым их взаимодействию друг с другом. [c.193]

    И несколько замедляется старение листьев. Растения образуют мощные стебли и листья, имеющие интенсивно зеленую окраску, хорошо растут и кустятся, улучшается формирование и развитие репродуктивных органов. В результате резко повышается урожай и содержание белка в урожае. Однако одностороннее избыточное азотное питание в течение вегетации иногда задерживает созревание растений, они образуют большую вегетативную массу, но мало зерна или клубней и корнеплодов. [c.187]

    Особый вид старения, например, наблюдается в процессе черствения хлеба. В свежей пшеничной муке связанной воды содержится примерно 447о от общего ее содержания, в тесте количество ее достигает уже 53%, в свежеиспеченном хлебе— 83%. Однако уже через пять суток в хлебе остается 67% связанной воды. Таким образом, процесс черствения хлеба обусловлен потерей воды и является, по существу, необратимым процессом старения. Вот почему попытка сохранить хлеб свежим путем хранения его в герметической упаковке, например в целлофановых пакетах, пе дает положительных результатов. Хлеб прн этом быстро запо-тевает>, покрывается плесенью и все равно черствеет. Опыт показывает, что наиболее приемлемый метод сохранения хлеба свежим — хранение его при повышен-но "1 температуре (около 333 К), При этом белки значительно дольше сохраняют в себе связанную, воду и хлеб остается свежим в течение щести-семи дней. На этом принципе основан старинный русский способ освежения черствого хлеба путем смачивания и последующего выдерживания в подовой печи. [c.335]

    Процесс синерезиса имеет важное биологическое значелие. В процессе старения коллоидов происходит их уплотнение, что не может не сказаться на проницаемости клеточных мембран и цито-плаз.мы. Снижение проницаемости может нарушить обмен вещест между клеткой и окружающей средой. Исследования показывают, что при возрастных из.менениях организма происходит уменьшение величины электрического заряда и степени гидратации коллоидных частиц. В результате уменьшается способность коллоидов тканей и органов связывать воду. Более поздние исследования показали, что процессы старения белков связаны не только со структурообразова-нием в растворах высокополимеров, но и с явлениями медленно протекающей денатурации. Именно процессами синерезиса и дегидратации объясняется появление у тканей с увеличением возраста организма новых качеств — большей жесткости и меньшей эластичности. [c.398]

    Процессы старения белков, видимо, не столько связаны со струк-турообразованием в растворах полимеров, сколько с медленно протекающей денатурацией (И. Н. Буланкин, 1957). При этом происходит изменение в укладке полипептидных цепей, приводящее к появлению в периферической части белковой молекулы большего количества негидратируемых гидрофобных группировок. Создаются благоприятные условия для агрегации молекул при контакте указанных группировок, затем постепенное уплотнение и стягивание внутренних структур. Старение животного организма связано со старением его коллоидов, но эта причина далеко не единственная и к тому же зависящая от целого ряда других биологических факторов. Появление у тканей с увеличением возраста организма таких новых качеств, как большая жесткость и меньшая эластичность, объясняется процессами синерезиса и дегидратации. [c.210]

    К физическим факторам могут быть отнесены температурный—нагревание растворов выше 50—60° С многократное чередование замораживания и оттаивания денатурация под высоким давлением в 1000 кг/см и выше так, напрнмер, ферменты трипсин и химотрипсин при pH 5,0—5,2 под воздействием давления 7750 кг см через 5 мин инактивируются на 50% денатурация при воздействии ультразвуковых волн связана с разворачиванием молекул, а при более сильном воздействии ультразвука происходит даже paзpyшefIi e ковалентных связей при образовании мономолекулярных пленок на поверхности белковых растворов наблюдается так называемая поверхностная денатурация белка ультрафиолетовые лучи и ионизирующая радиация вызывают химические говреждеиия белковой молекулы, разрушая водородные связи, окисляя дисульфидные группировки, обусловливают исчезновение нативных третичных и вторичных структур белка. Интересными также являются наблюдения, указывающие на процессы денатурации, происходящие при старении белков. [c.209]

    Процессы старения белков, видимо, не столько связаны со структурообразованием в растворах полимеров, сколько с медленно протекающей денатурацией (И. Н. Буланкин, 1957). При этом происходит изменение в укладке полипептидных цепей, приводящее к появлению в периферической части белковой молекулы большого количества негидратируемых гидрофобных группировок. Создаются благоприятные условия для агрегации молекул гтри контакте указанных группировок, затем постепенное уплотнение и стягивание внутренних структур. Старение животного организм [c.243]

    Полиненасыщенные ацилы. В препаратах зеленых белков линоленат (18 3) представляет 46 % всех ацилов, а на долю линолеата (18 2) приходится 18% [33]. Первый из них является незаменимой жирной кислотой, второй — витамином Р. Этим определяется их питательная ценность. Будучи связанными с ламеллярными белками, они способствуют появлению у зелены.х белков гидрофобных свойств. Эти полиненасыщенные ацилы особенно чувствительны к окислениям, катализируемым катионами металлов либо нативными или денатурированными металло-протеинами [29]. В процессе их окисления появляются свободные радикалы и перекиси, которые, в свою очередь, содействуют окислению некоторых аминокислот или таких полиненасыщенных пигментов, как каротиноиды [23]. Окисление этих полиненасыщенных остатков жирных кислот приводит также к появлению боле1 мелких летучих молекул с характерным запахом (листвы, плесени, фасоли, прогорклости и пр.), которые делают зеленые белки при их старении малоаппетитными [89, 83]. [c.254]

    Одним из основных преимуществ натурального каучука перед синтетическим стереорегулярным изопреновым каучуком является повышенная клейкость резиновых смесей на его основе и более высокая сопротивляемость резин старению. Как показывают многочисленные исследования, причиной такого явления является наличие в натуральном каучуке природных белков, причем первостепенную роль играют белковые фрагменты непосредственно связанные с макромолекулами каучука. Исследованные образцы латекса НК содержат 3,5-3,7% масс, белка, из которых 1,1-1,2% приходятся на гидрофобизирован-ные белки и до 0,05% фосфолипидов. Именно наличие природных белков позволяет обеспечивать высокий уровень технологических свойств резиновых смесей и физико-механических свойств резины. По этой причине были развернуты широкие испытания изопреновых каучуков, содержащих различные виды белков. Большие надежды возлагались на каучуки СКИ-3, модифицированные сульфитом натрия с белкозином и нитритом натрия соответственно (табл. 2.3). Предполагалось, что эти каучуки придадут резиновым смесям высокую клейкость и обеспечат высокий уровень адгезии резин к кордам. В результате проведения расширенных лабораторных и промышленных испытаний выяснилось, что несмотря на увеличение адгезии и улучшение пласто-эластических свойств смесей их клейкость осталась на уровне смесей на основе СКИ-3 и СКИ-3-01, но существенно ухудшилось сопротивление подвулканизации и увеличилась усадка после каландрирования. В этой связи данные каучуки не нашли широкого применения в шинной промышленности. [c.29]

    После определенного времени функционирования (для разньгх белков оно составляет от нескольких минут до нескольких недель и даже месяцев) белки подвергаются протеолитической деградации. Механизмы деградации различны, они зависят от типа белков, их расположения в том или ином компартменте и от протеолитического потенциала клетки или ткани. Например, в клетках свободные белки деградируют в два этапа. Функционирование белков связано, как правило, с изменением их структуры и релаксацией к исходному состоянию. По мере биологического действия накапливаются некоторые изменения структуры, которые релаксируются не полностью, в результате происходит старение белков. Изменение структуры является сигналом для атаки цитоплазматических, сериновых протеиназ, которые разрывают полипептидные связи или вырезают некоторые аминокислотные последовательности. Частично деградированный белок поступает в лизосомы, где происходит его полная деградация. Иногда сигналом для протеолитической атаки служит присоединение к старому белку низкомолекулярных полипептидов, например убиквитина. [c.470]

    Характерно, что всеми свойствами истинных фитогормонов обладает этилен. Он образуется главным образом во фруктах иэ 8-аденозилметионина, причем зтот процесс протекает через промежуточное образование 1-аминоциклопропан-1-карбоновой кислоты и индуцируется индолилуксусной кислотой. Этилен регулирует старение различных органов растений, ускоряет Ъпадение листьев, дозревание плодов, тормозит рост корней, побегоа и потому используется на практике для ускорения дозревания фруктов и увеличения их сахаристости. Помимо этилена широко применяется также ряд синтетических соединений, способных разлагаться в растительных тканях с выделением зтилена наиболее известным среди них является хлорэтилфосфоновая кислота, или зтрел. Механизм биологического действия этилена. по видимому, состоит во взаимодействии со специфическими белками клеточных мембран и в торможении биосинтеза индолилуксусной кислоты. [c.719]

    Аналогичные данные были получены и в других исследованиях, где определялись изменения величины отношения углерода к азоту. Например, в опытах X. Бурстрема (1943 г.) было показано, что <ъ молодых листьях пшеницы количественное отношение С N было равно 4,6, а в более старых листьях оно составляло 17,6. Одновременно с ростом листьев относительное содержание в них белкового азота в процентах от общего азота понижалось. Было замечено также, что с возрастом листьев меняется и природа синтезируемых белков в молодых листьях синтезируется большое количество нуклеопротеидов с большим содержанием основных аминокислот, а при старении листьев образуются качественно иные белки. [c.287]

    Исследователей, изучавших поверхностные свойства белков, всегда интересовало поведение молекул белка при различных pH среды. Однако имеющиеся в литературе данные весьма противоречивы. При изучении поверхностного натяжения белковых растворов Булл и Нейрат [142] обнаружили минимальное значение поверхностного натяжения в изоэлектрическом состоянии и существование максимальных значений в кислой и щелочной областях. ГаузериСвирингеп [143], изучая поверхпостпое патяжеппе 0,005%-ного водного раствора яичного альбумина на границе с воздухом, нашли минимальное значение поверхностного натяжения в изоэлектрической точке и увеличение поверхностного натяжения при отклонениях от нее. После старения слоя эти закономерности становятся более четко выраженными. [c.208]

    При старении некоторых эмульсий, особенно стабилизированных белком, происходит необратимая коагуляция защитной нлен ки, что приводит к расслоению эмульсии. Стабилизированные мылом эмульсии ведут себя подобным же образом при долгом стоянии, причем мыло отделяется в виде творожистой массы, скопляясь у поверхности раздела фаз. [c.270]

    Диснерсная фаза Л. п. состоит из частиц (глобул) пгарообразной илп грушевидной фо])мы размером от 0,25 до 5. икм средний размер — 2 мкм. Глобулы Л. н. состоят из плотной эластичной каучуковой оболочки (гель-каучук), внутри к-рой нахсдится жидкая низкомолекулярная фракция (золь-каучук). Наружная поверхность каучуковой оболочки окружена защитным слоем, состоящим из белковых веществ (в свежесобранном Л. II. их содержится 4%), смол, мыл и шдратно-связанной воды. По мере старения Л. н. белки постепенно гидролизуются в аминокислоты но содержанию последних можно судить о вое расте латекса. [c.20]

    КРЕМ ГЕРОНТОЛ . Для сухой и увядающей кожи лица. В состав крема входят биологически активные вещества орото-вая кислота, которая нормализует нарушающийся при старении кожи синтез белка и нуклеиновых кислот норковый жир, улучшающий липидный обмен, а также традиционные виды косметического сырья ланолин, воск пчелиный, масло оливковое и др. [c.21]


Смотреть страницы где упоминается термин Белки при старении: [c.200]    [c.293]    [c.388]    [c.112]    [c.28]    [c.159]    [c.209]    [c.162]    [c.209]    [c.137]    [c.425]    [c.538]    [c.81]    [c.425]    [c.348]   
Биохимия растений (1968) -- [ c.532 , c.533 ]




ПОИСК





Смотрите так же термины и статьи:

Старение

Старение круговорот белка



© 2025 chem21.info Реклама на сайте