Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дифференциальные адсорбционные

    В анодной области до г]= = 50 мв они обнаружили снижение проводимости, отвечающее росту сопротивления, что также можно приписать диффузии молекул водорода в электролите. Затем, начиная с г]= = 50 мв, снова имеет место падение сопротивления приблизительно до т]==110 мв, после чего оно опять растет. Можно считать, что в области г]= от 50 мв почти до 400 мв определяющей является адсорбция атомарного водорода на поверхности платины. При поляризации электрода комплексное сопротивление в этой области изменяется соответственно дифференциальной адсорбционной емкости. [c.253]


    При адсорбции на очень неоднородных поверхностях взаимодействие адсорбат—адсорбат будет маскироваться влиянием этой неоднородности и теплота адсорбции с ростом заполнения не будет увеличиваться. Неоднородность поверхности характеризуется наличием адсорбционных центров с различными энергиями адсорбции. Сначала заполняются центры с большими энергиями адсорбции по мере их заполнения теплота адсорбции падает. Это падение, как правило, настолько велико, что не может компенсироваться возрастающим, 1ю относительно слабым взаимодействием адсорбат—адсорбат. В качестве характерного примера можно привести теплоты адсорбции бензола на графитированной саже и кремнеземе. Дифференциальная теплота адсорбции бензола на саже с однородной поверхностью не зависит от степени заполнения из-за очень слабого взаимодействия между плоскими молекулами бензола (см. рис. XVI, 8, стр. 453). Поверхность силикагеля неоднородна как геометрически (пористость), так и химически (не- [c.502]

    Однако, как было показано выше, вычисление потенциальной энергии адсорбированной молекулы представляет трудную задачу и может быть количественно выполнено лишь приближенно и только в простейших случаях. Тем не менее даже качественное рассмотрение адсорбции молекул яр но-статистическими методами представляет большой интерес, так как позволяет установить, от каких свойств молекул адсорбата и образующих адсорбент частиц зависят такие важные термодинамические характеристики адсорбционных систем, как дифференциальная работа и теплота адсорбции, константа равновесия в уравнении изотермы адсорбции и т. п. [c.507]

    В зависимости от характера распределения участков но теп-лотам адсорбции и энергиям активации на неоднородных поверхностях реализуется тот или иной тип адсорбционного равновесия. Основные используемые для практических расчетов изотермы, изобары и дифференциальные теплоты адсорбции на неоднородных поверхностях систематизированы в табл. 3.2 [71]. [c.151]

    В [16] получены условия конечности скорости распространения возмущений для дифференциальных уравнений рассматриваемого типа кроме того, давно выделен класс выпуклых изотерм, для которых существует конечный фронт адсорбционного возмущения. Так, было показано, что наличие или отсутствие фронта обусловливается поведением функции с) в окрестности точки с = 0 независимо от поведения f( ) вне этой окрестности. Аналитически наличие конечного фронта адсорбционного возмущения выражается следующим неравенством  [c.37]


    Из этого уравнения следует, что диф( )еренциальное изменение энергии Гиббса при адсорбции равно изменению химического потенциала адсорбата ири переходе I моль его из стандартного состояния (жидкость, насыщенный иар) на поверхиость адсорбента. Величина, равная дифференциальному изменению энергии Гиббса ири адсорбции, взятая с обратным знаком, называется дифференциальной работой адсорбции или адсорбционным потенциалом  [c.42]

    Если адсорбция происходит на неоднородной поверхности, то, очевидно, наиболее реакциоиноспособные адсорбционные центры б дут заняты уже при малых разновесных концентрациях (давлениях). Таким образом, энергетические параметры адсорбции зависят от степени заполнения поверхности адсорбатом. Например, дифференциальная теплота адсорбции будет уменьшаться номере заполнения поверхности. [c.123]

    Лабораторный газовый хроматограф Цвет-2-65 предназначен для анализа сложных органических смесей. Для регистрации результатов анализа в этом хроматографе используется высокочувствительный пламенно-ионизационный детектор, работающий в дифференциальном режиме. Принцип работы хроматографа основан на использовании метода газо-адсорбционной и газо-жидкостной хроматографии. В нем используются набивные аналитические колонки длиной 100—300 см, внутренний диаме.р 0,4 см. Хроматограф может работать как в изотермическом режиме, так и в режиме линейного программирования температуры колонок. Испаритель обеспечивает быстрое и полное испарение жидкой смеси, так как в нем устанавливается температура, равная или выше температуры кипении наиболее высококипящего компонента пробы. Максимальная температура испарителя достигает 450°С при любой температуре термостата. [c.243]

    Статистическое распределение адсорбционных мест по энергиям адсорбции можно характеризовать и дифференциальной функцией распределения, [c.89]

    На рис. 3.4 показано, что разные методы дают согласующиеся значения поверхностной концентрации силанольных групп аон, хотя удельная поверхность образцов изменялась (эти образцы не содержали очень тонких пор). Соответственно и адсорбционные свойства единицы поверхности таких кремнеземов не зависят от величины 5 изотермы адсорбции Г (в расчете на единицу площади поверхности) и зависимости дифференциальной теплоты адсорбции [c.53]

    Благодаря большим размерам метильных групп общая поверхностная концентрация адсорбционных силовых центров на модифицированной поверхности по сравнению с концентрацией силовых центров на исходном кремнеземе сильно уменьшается. Кроме этого расстояния между адсорбирующими молекулами и остовом кремнезема возрастают. Поэтому для молек ул достаточно большого размера дифференциальная теплота адсорбции при небольших за- [c.93]

    Изменения свободной и внутренней энергии, энтропии и теплоемкости газа. Дифференциальная и изостерическая теплота адсорбции. Изменения термодинамических функций адсорбционной системы при предельно малой адсорбции. Возможности, достоинства и недостатки статических и хроматографических методов определения термодинамических характеристик адсорбции при малых заполнениях. [c.145]

    Поток газа-носителя с низкой концентрацией адсорбата пропускают через колонну с адсорбентом, помещенную в термостат при температуре измерения изотермы адсорбции, как при фронтальной хроматографии. После установления адсорбционного равновесия находящийся на выходе из колонны дифференциальный детектор регистрирует равенство концентрации адсорбата в газе-носителе на входе в колонну с адсорбентом и на выходе из нее. Это равенство концентраций сохраняется в течение длительного времени. После этого определяют количество адсорбированного в колонне вещества методом тепловой десорбции, т. е. десорбируя при нагревании колонны все адсорбированное вещество и измеряя его количество с помощью калиброванного детектора и интегратора. Затем опыт повторяют при другой концентрации адсорбата в газе-носителе (при другой температуре его насыщения паром адсорбата в криостате) и таким образом получают изотерму адсорбции в области низких заполнений поверхности. [c.157]

    Падение дифференциальных теплот адсорбции и рост энергии активации с заполнением можно объяснить возникновением сил отталкивания между адсорбированными молекулами даже на однородной поверхности. Возникновение сил отталкивания должно приводить к снижению адсорбционного потенциала по мере заполнения слоя молекулами, так как с ростом заполнения поверхности интенсивность взаимодействия между адсорбированными молекулами увеличивается. С учетом возникновения сил отталкивания теплота адсорбции Q, приходящаяся на одну молекулу при заполнении 0, равна убыли энергии системы при адсорбции одной молекулы и выражается уравнением [c.50]

    Наконец, отметим, что теория Лэнгмюра не потеряла практического значения в области расчетов сложных реальных процессов, где адсорбция сопровождается диффузией, конвекцией и другими явлениями. В записи обобщенных уравнений потока адсорбционную компоненту целесообразно во многих случаях выражать именно в простой форме (Х.6), поскольку введение более сложных выражений часто приводит к нерешаемым дифференциальным уравнениям, тогда как уравнение Лэнгмюра дает в этих случаях решения приближенные, однако достаточные для многих практических и теоретических целей. [c.141]


    Идентификацию и классификацию глин осуществляют главным образом путем анализа рентгенограмм и адсорбционных спектров, а также посредством дифференциального термического анализа. [c.133]

    Применительно к режиму слабой заторможенности основной части поверхности показана принципиальная возможность совместного учета влияния конвективной диффузии и кинетики адсорбции на формирование динамического адсорбционного слоя на основе совместного решения двух полученных уравнений, одно из которых является интегральным, другое — дифференциальным [1 ]. Обоснованы условия, при которых можно не учитывать влияние на формирование адсорбционного слоя либо кинетики адсорбции, либо объемной диффузии. В этом последнем случае получено весьма общее решение пригодное при Re 1, при любом числе Пекле и любой поверхностной активности. [c.129]

    А — дифференциальная мольная работа адсорбции а — адсорбционная способность, количество адсорбированного вещества ав — предельная величина адсорбции Яд — динамическая активность слоя адсорбента От — емкость монослоя [c.11]

    Зависимость дифференциальной теплоты адсорбции н-гек-сана Q от степени заполнения адсорбционной емкости а тем-пература опыта 20 °С)  [c.29]

    Обнаруженная М. А. Лошкаревь м адсорбционная поляризация проявляется в том, что при добавлении к раствору некоторых поверхностно-активных веществ (иапример, трибензиламина) изменяется скорость выделения металла на ртутном и на твердых катодах. Она становится, во-первых, меньше той, что наблюдалась до введения добавки, и, во-вторых, не зависящей в широкой области потенциалов от катодного потенциала. Однако после того как достигается определенный (обычно весьма отрицательный) потенциал, действие добавки прекращается. Скорость выделения начинает быстро расти, приближаясь к нормальному для этих условий зна-чеЕигю, отвечающему предельному диффузионному току. Сопоставление результатов иоляризационных измерений на ртутных катодах с электрокапиллярными кривыми и кривыми дифференциальной емкости (снятыми до и после введения добавки) показали, что потенциал, при котором прекращается дйствие добавки, совпадает с потенциалом ее десорбции (рис. 22.5). Действие добавки оказывается при этом специфическим. Одни и те же добавки или определенная их комбинация в разной степени тормозят разряд различных ионов на ртутном катоде. Явление адсорбционной поляризации используется для улучшения качества гальванических осадков при электролитическом получении сплавов. [c.462]

    Анализ процессов адсорбции с неподвижным или движущимся адсорбентом упрощается, если течение происходит настолько медленно, что во всех точках колонны достигается равновесие. Это, нообщс говоря, невозможно в дифференциальных процессах разделения, например при экстракции в системе жидкость — жидкость, абсорбции или перегонке. Когда скорость течения очень мала, наиболее эффективными оказываются адсорбционные методы, а эти методы становятся неэффективными. Интересно, что при проведении процесса в равновесных условиях рабочая линия совпадает с кривой равновесия. [c.154]

    Математическая теория адсорбции на неоднородной поверхности была развита Рогинским [12]. Неоднородная поверхность всегда может быть представлена как совокупность микроскопических участков, каждый из которых однороден, т. е. содержит адсорбционные центры, характеризуемые одной и той же теплотой адсорбции Я и, следовательно, одним и тем же адсорбционным коэффициентом Ь. В пределе распределение по теплотам адсорбции X можно считать непрерывным и следующим некоторой дифференциальной функции распределения ф (X). Величина ф (X,) dX равна доле поверхности, приходящейся на участки с теплотой адсорбции, заключенной в пределах от >i, до + dX. Так как суммирование по всем возможным значениям к дает полную величину поверхности, дифференциальная фyнкf ия распределения всегда должна быть нормирована к единице  [c.18]

    Из уравнения (XIII.141) следует, что дифференциальное изменение свободной энергии Гельмгольца в процессе адсорбции равно изменению химического потенциала адсорбата при переходе 1 моля его из исходного состояния, т. е. из жидкости (р=рз) в адсорбционный слой. Совершаемая при этом работа адсорбции опреде- лится из выражения [c.352]

    Оно отличается от уравнения (2.116) тем, что сюда входит зависящая от времени концентрация адсорбата у поверхности электрода Са(0, t), связь которой с объемной концентрацией определяется законами диффузии. Если из уравнения (2.118) выразить С (0, 1) и подставить в уравнение (2.109), то получается интегро-дифференциальное уравнение, численное рещение которого при помощи ЭВМ позволяет рассчитать 0, /-зависимость в условиях смещанной адсорбционно-диффузионной кинетики. [c.82]

Рис. 3.1. Дифференциальные функции распределения адсорбционных мест по энергиям адсорбции для однородной (/), равномерно-неод-нородной (2, 3) и экспоненциально-неоднородной (4, 5) поверхностей Рис. 3.1. <a href="/info/145276">Дифференциальные функции распределения</a> <a href="/info/4287">адсорбционных мест</a> по <a href="/info/3646">энергиям адсорбции</a> для однородной (/), равномерно-неод-нородной (2, 3) и <a href="/info/333452">экспоненциально-неоднородной</a> (4, 5) поверхностей
    Первое положение означает, что адсорбированные молекулы прочно связаны с адсорбционными центрами они как бы локализованы на центрах (локализованная адсорбция). Сам Ир.. ТТенгмюр считал, что взаимодействие молекула — центр имеет всегда химическую природу. Однако такое ограничение природы сил не обязательно. Второе положение приводит к выводу, что, по Ир.. Пенгмюру, на поверхности может образоваться только один адсорбционный слой. Поэтому адсорбцию, по Ир. Ленгмюру, называют мономолекулярно . Наконец, третье полонсение означает, что дифференциальная теплота адсорбции постоянна и что силами взаимодействия адсорбированных молекул менаду собой можно пренебречь. [c.216]

    На это указывает молекулярно-статистическая обработка адсорбционных данных и получение соответствующих атом-атомных потенциальных функций межмолекулярного взаимодействия атомов углерода углеводородов с атомами углерода графита. Однако для линейных и плоских молекул этот эффект меньше влияния соответствующего уменьш1ения числа атомов водорода в молекуле. Ниже приведены константы Генри К (при =—86,2°С) и начальные (при адсорбции Г- 0) дифференциальные теплоты адсорбции 1 на ГТС этана, этилена и ацетилена  [c.17]

    На рис. 2.4 сопоставлены зависимости Дифференциальной теплоты адсорбции ксенона 5 на поверхности непористого неспецифического адсорбента ГТС и в полостях цеолита Ь1МаХ от адсорбции. В обоих случаях теплота адсорбции увеличивается с ростом адсорбции. Это показывает, что при адсорбции катионированным цеолитом вклад межмолекулярных взаимодействий адсорбат — адсорбат в общую энергию адсорбции ксенона превышает влияние неоднородности адсорбционных центров внутри поло - й неолита. [c.33]

    Для исследования зависимости теплот адсорбции и от температуры, соответствующей вторым производным по температуре d пК 1АТ и, соответственно, дЧпс/дТ ) или (дЧпр/дТ ), нужны прямые калориметрические измерения либо самих теплот адсорбции при разных температурах, либо теплот адсорбции при одной температуре и теплоемкости адсорбционной системы. Следует отметить, что калориметрические измерения теплот адсорбции ограничены во времени из-за некоторого неизбежного теплообмена калориметра с окружающей средой даже в случае дифференциального и изотермического метода измерения. [c.159]

    Теплоты, выделяющиеся в процессе адсорбции, могут иметь различные значения в зависимости от условий проведения процесса. Величина qa, определяемая уравнением (IX. 10) и ближе всего соответствующая условиям реального адсорбционного процесса, есть дифференциальная молярна-я обратимая изостери- [c.121]

    Теплоты, выделяющиеся в процессе адсорбции, могут иметь различные значения в зависимости от условий проведения процесса. Величина qa, определяемая уравнением (VIII. 10) и ближе всего соответствующая условиям реального адсорбционного процесса, есть дифференциальная молярная обратимая изо-стерическая теплота адсорбции. Эту величину можно определить из экспериментальных изостер адсорбции, построенных в полулогарифмическом масштабе (1пр, Т) по тангенсу угла наклона касательной. [c.113]

    Адсорбционная активность минерального матерпала в значительной мере определяется величиной удельной иоверхности, химическим и минералогическим составом, а также зависит от наличия активных адсорбционных центров па поверхности, так как контакт между битумом и минеральным материалом осуществляется не ио всей площади иоверхности, а в отдельных активных точках. Особое влияние на величину адсорбции оказывает структура минеральных материалов. Изучение их дифференциальной пористости и пористости бптумоминеральпых смесей показало разнообразие в структурах пор и влияние пор различных видов на адсорбционные процессы. [c.118]

    Иначе ведут себя маслорастворимые ПАВ с несколькими разветвленными углеводородными радикалами, такие, как триоктил-N-oк ид или тетраоктиламмонийбромид. Они характеризуются большими работами адсорбции (— А[Х 7- 9 ккал моль) и ГОС 0,6, но получить черные пленки из их растворов невозможно. Вероятно, более подходящей энергетической характеристикой ПАВ для сравнения веществ с различным строением была бы интегральная работа адсорбции (изменение свободной энергии при адсорбции), учитывающая изменение межфазного натяжения и площади молекулы, приходящейся па 1 моль в адсорбционном слое. Из результатов исследований, полученных в работе [55], ясно, что одних данных о дифференциальных работах адсорбции без учета строения ПАВ недостаточно для предсказания стабилизирующей способности ПАВ. [c.166]

    Сказанное подтверждается адсорбционным пластифицированием стали (эффект Ребиндера) в различных средах относительное удлинение максимально в среде с ингибитором АГМИБ, меньше — в среде с ингибитором КПИ-1, минимально (причем одинаково) — в среде с ЫаВг и без ингибитора (табл. 2). Нали- > (чие существенного эффекта Ребиндера указывает на сильную ) и быстро формирующуюся адсорбционную связь катиона ин- ) )Гибитора АГМИБ с металлом (подтверждено также измерениями дифференциальной емкости). [c.150]


Смотреть страницы где упоминается термин Дифференциальные адсорбционные: [c.37]    [c.152]    [c.21]    [c.117]    [c.342]    [c.70]    [c.151]    [c.48]    [c.52]    [c.135]    [c.37]   
Основы аналитической химии Часть 2 (1979) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте