Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Адсорбция с взаимодействием на неоднородной поверхности

    Для определения количества поглощенного при очистке воды загрязняющего вещества, характеризующего адсорбционные свойства сорбента, используют изотермы сорбции, описываемые уравнениями Ленгмюра или Фрейндлиха. Уравнение Ленгмюра описывает системы с однородными поверхностями и незначительными силами взаимодействия между адсорбированными молекулами, а уравнение Фрейндлиха описывает адсорбцию на неоднородной поверхности. Приведем уравнение Ленгмюра для случая сорбции из слабоконцентрированного раствора сточных вод  [c.151]


    Изотерму адсорбции на энергетически неоднородной поверхности без учета взаимодействия частиц адсорбата получить достаточно просто, если заранее известны свойства различных центров адсорбции. Пусть для данной системы (адсорбент + адсорбат)/2 центров из общего числа N характеризуются теплотой адсорбции /г,- центров — теплотой адсорбции Я,-. Другими словами, пусть известна функция распределения адсорбционных центров по теплотам адсорбции. Тогда для каждой группы одинаковых центров можно использовать уравнение Ленгмюра, а общее заполнение 9 определить как среднюю величину [c.168]

    Статистический подход к описанию адсорбции на неоднородных поверхностях сводится к сохранению предпосылок и теории идеального адсорбированного слоя для группы мест или участков поверхности. Под идеальным адсорбированным слоем будем понимать систему адсорбент — адсорбированное вещество, удовлетворяющую следующим условиям, впервые постулированным И. Лэнгмюром 1) число адсорбционных мест конечно и не меняется в ходе адсорбции 2) места энергетически однородны 3) взаимодействие между адсорбированными частицами отсутствует. [c.88]

    При анализе процессов адсорбции на неоднородных поверхностях исключается возможность взаимодействия между адсорбированными молекулами. При таком ограничении все изменения, происходящие при адсорбции, сводятся к блокировке определенной части поверхности без изменения свойств остальной поверхности, оставшейся свободной. [c.48]

    Анализируя обе рассмотренные модели адсорбции, необходимо заметить, что для каждой изотермы а р) можно привести определенную функцию распределения теплоты адсорбции, однако они не могут быть обоснованы теорией твердого тела. Недостаточно ясен также физический смысл функции Д (а). Поэтому особенно важно найти точные экспериментальные методы исследования взаимодействия молекул в хемосорбционном слое и состояния поверхности адсорбентов. Существенное значение в связи с этим имеют изотопные методы, позволяющие отличить энергетическую неоднородность поверхности и взаимодействие хемосорбированных молекул. [c.278]

    Из приведенного выше следует, что но отношению к адсорбции степень неоднородности поверхности надо рассматривать в зависимости от того, какая молекула адсорбируется, в каком интервале заполнений поверхности и при какой температуре. В связи с этим при изучении вопроса о степени однородности поверхности твердых тел важное значение имеет характер взаимодействия адсорбат — адсорбент, определяемый структурой как поверхности, так н молекулы. Взаимодействие это может быть молекулярным (молекулярная пли физическая адсорбция), когда адсорбированная молекула не теряет своей химической индивидуальности, и химическим (хемосорбция), когда между молекулой и поверхностью возникает химическая связь, в результате которой индивидуальность молекулы теряется. [c.21]


    Состояние поверхности лучше всего теперь рассматривать на основе распределения энергий локальных минимумов, причем каждый из таких минимумов, подобно изображенным на рис. 13, рассматривается как место адсорбции молекулы. Обозначим для удобства С/(го) через и. Если число минимумов с значением и между и и u- -du есть f u)du, /(и) называется функцией распределения [42]. Время от времени предлагаются различные виды этих функций. В принципе вид /( ) можно было бы определить экспериментально путем измерения теплоты адсорбции при различных величинах адсорбции. Практически это осложняется тем, что молекулы внутри адсорбированного слоя взаимодействуют друг с другом с силой, зависящей от среднего расстояния между ними. Таким образом, на зависимость теплоты адсорбции от величины адсорбции влияют неоднородность поверхности и взаимодействие адсорбированных молекул друг с другом. В результате точно выразить функцию распределения /(ы) для данного [c.32]

    На этом трудности не кончаются. Применение описанного анализа энергетического распределения центров адсорбции для моделей с латеральным взаимодействием предполагает неоднородность взаимодействия между молекулами адсорбата на отдельных участках. Вообще говоря, это предположение не является достаточно обоснованным. Фактически полное статистическое описание неоднородности должно учитывать энергетическое распределение центров, смежных с центром, характеризуемым данной энергией. При такой ситуации для нахождения слишком большого числа переменных одних адсорбционных данных становится, по-видимому, недостаточно.. В этом отношении может оказаться полезным сопоставление изотерм адсорбции газов, например азота и бутана [128], молекулы которых заметно различаются по размеру. Формальная статистико-механическая теория адсорбции на неоднородных поверхностях разработана Стилом [1130]. [c.490]

    Эти константы имеют ясный термодинамический смысл. Это либо константы равновесия реакции двумерной ассоциации с образованием на поверхности кратных комплексов [5], либо это константы взаимодействия в уравнении состояния двумерного слоя, нанример константы а.2 и Ьд двумерного уравнения состояния Ван-дер-Ваальса [6—9]. При адсорбции на неоднородной поверхности эти константы отражают как взаимодействие адсорбат—адсорбат, так и неравноценность различных мест на поверхности [10—12]. Для всех этих констант, как и для константы Генри, может быть найдена зависимость от температуры. В этом случае можно получить уравнение вида / (а, р, Т) = О, которое позволяет найти зависимость величины адсорбции а не только от р, но и от Г [13—15]. Первая производная / р, Т) этой функции по температуре при постоянной а дает зависимость Q от занолнения, а вторая производная fa р, Т) — зависимость теплоемкости от занолнения. Таким образом, применение приближенных уравнений адсорбционного равновесия дает возможность рассчитать основные термодинамические характеристики адсорбции в широкой области заполнений первого слоя, а в благоприятных случаях — и при переходе к полимолекулярной адсорбции. В дальнейшем вычисления основных адсорбционных характеристик с помощью функции / (а, р, Г) = О и ее производных проводятся в нулевом прибли кении, т. е. при допущении независимости Q от Т. [c.367]

    При повышении температуры прокаливания термической сажи приблизительно до 3000° С резко изменяется характер зависимости дифференциальной теплоты адсорбции пара н.гексана от заполнения. При адсорбции на неоднородной поверхности неграфитированных саж теплота адсорбции падает, а в случае графитированных саж область неоднородности резко сужается и теплота адсорбции с ростом заполнения первого слоя растет [14, 30]. Этот рост вызывается добавлением к энергии взаимодействия с адсорбентом (адсорбат — адсорбент) энергии взаимного притяжения между адсорбированными молекулами (адсорбат — адсорбат). В случае неоднородных поверхностей эти притяжения маскируются [c.20]

    Развитие теории адсорбции шло, в основном, по двум направлениям. В тех случаях, когда геометрическая и химическая структура поверхности оставалась неопределенной или была заведомо весьма неоднородной, теория ограничивалась установлением эмпирических зависимостей между наблюдаемыми на опыте величинами, как это делается в потенциальной теории адсорбции [2, 3] и в некоторых статистических теориях адсорбции на неоднородных поверхностях [4]. В этом направлении достигнуты некоторые важные в практическом отношении результаты, но выводы этих теорий неоднозначны [3], а их истолкование на молекулярном уровне остается затруднительным или невозможным. В тех же случаях, когда путем соответствующего направленного синтеза и модифицирования удавалось получить весьма однородные адсорбенты с воспроизводимым химическим строением поверхности, оказалось возможным развить теорию адсорбции на основе общей молекулярно-статистической обработки той или иной модели системы адсорбат—адсорбент и приближенного учета потенциала молекулярного взаимодействия (см. обзоры [5-12]). [c.13]


    Рассмотрим первый случай. Для локализованной адсорбции на неоднородной поверхности большая статистическая сумма берется при пренебрежении взаимодействием ч жщ адсорбированными молекулами в виде [c.44]

    Наблюдаемые отклонения от изотермы Лангмюра можно объяснить как неоднородностью поверхности, так и взаимодействием молекул, вызывающим уменьшение теплоты адсорбции с увеличением степени заполнения поверхности адсорбента. [c.278]

    При адсорбции на очень неоднородных поверхностях взаимодействие адсорбат—адсорбат будет маскироваться влиянием этой неоднородности и теплота адсорбции с ростом заполнения не будет увеличиваться. Неоднородность поверхности характеризуется наличием адсорбционных центров с различными энергиями адсорбции. Сначала заполняются центры с большими энергиями адсорбции по мере их заполнения теплота адсорбции падает. Это падение, как правило, настолько велико, что не может компенсироваться возрастающим, 1ю относительно слабым взаимодействием адсорбат—адсорбат. В качестве характерного примера можно привести теплоты адсорбции бензола на графитированной саже и кремнеземе. Дифференциальная теплота адсорбции бензола на саже с однородной поверхностью не зависит от степени заполнения из-за очень слабого взаимодействия между плоскими молекулами бензола (см. рис. XVI, 8, стр. 453). Поверхность силикагеля неоднородна как геометрически (пористость), так и химически (не- [c.502]

    Кинетика реакций на неоднородной поверхности. При невыполнении одного из постулатов Лангмюра (см. раздел 1.2) вид изотермы адсорбции меняется. Подставляя в формулы (11.88)—(П.90) уравнение любой изотермы адсорбции, отличной от лангмюровской, получаем видоизмененные кинетические зависимости, характеризующие процесс на неоднородной поверхности или при взаимодействии молекул в адсорбированном слое. Если адсорбционное равновесие не достигается, соответствующие неравновесные зависимости получают, заменяя уравнения изотерм адсорбции зависимостями степеней заполнения поверхности от концентраций реагентов в объеме, определенными из условия баланса потоков адсорбции, собственно реакции и десорбции. [c.85]

    Кривые для суммарных смол, выделенных из остаточного рафината, имеют больший тангенс угла наклона, чем для суммарных смол из депарафинированного масла и петролатума. Следовательно, при наличии в растворе полярных молекул ПАВ (присадок и смол) следует учитывать увеличение адсорбционной активности вследствие дополнительных электростатических сил взаимодействия ПАВ между собой и с поверхностью кристалла (адсорбента). При охлаждении такой системы с момента образования зародышей твердой фазы начинается процесс адсорбции смол и присадки на поверхности кристаллов. Наиболее вероятен в данном случае усложненный механизм построения адсорбционного слоя поверхностно-активных веществ на неоднородной поверхности твердой фазы. Насыщенный адсорбционный слой ПАВ для неоднородной в энергетическом отношении поверхности кристаллов, какой следует считать большинство реально существующих поверхностей твердых сорбентов в природе, может быть различной толщины на разных участках поверхности. При добавлении малых количеств присадки происходит адсорбция их молекул на наиболее активных участках гидрофобной поверхности кристаллов твердых углеводородов, при этом дифильные молекулы ПАВ ориентируются полярной частью в раствор, а углеводородным радикалом — на поверхности частиц твердых углеводородов. Это приводит к совместной кристаллизации молекул присадки и твердых углеводородов, которая способствует образованию крупных агрегированных структур, что, в свою очередь, увеличивает скорость фильтрования суспензии остаточного рафината. С увеличением содержания ПАВ в растворе одновременно с адсорбцией молекул на менее активных участках поверхности кристаллов происходит образование второго слоя молекул с обратной их ориентацией, т. е. полярной частью на поверхность твердой фазы. При этом присадка и смолы адсорбируются по всей поверхности кристаллов, не внося существенных изменений в их форму, но препятствуя росту кристаллов, а это снижает скорость фильтрования суспензии. [c.173]

    И. Лэнгмюр в своей теории учитывал только энергетически неоднородную поверхность, считая, что поверхностные частицы с ненасыщенными валентностями создают элементарные участки с более высокими потенциалами. Однако такие молекулы не занимают особого положения с точки зрения геометрии и структуры поверхности. Теория Лэнгмюра сводится к трем постулатам 1) поверхность состоит из ограниченного числа идентичных участков, 2) нет взаимодействия между адсорбированными молекулами и 3) образование хемосорбированного монослоя. Такие условные ограничения значительно лимитируют понимание сути гетерогенного катализа . Хорошо известно, что чем более неоднородна поверхность, тем интенсивнее и с тем большим термическим эффектом протекают адсорбция и хемосорбция, неразрывно связанные с гетерогенным катализом. [c.107]

    Таким образом, собственную неоднородность от наведенной неоднородности или отталкивательного взаимодействия на основе только вида изотермы адсорбции довольно трудно отличить. В литературе рассмотрен ряд качественных критериев, позволяю-ш,их отдавать предпочтение неоднородности поверхности или [c.96]

    Адсорбция газов на твердых адсорбентах не только наиболее практически важный, но и наиболее сложный для теоретического описания вид сорбционных явлений. В первую очередь это связано со сложностью структуры поверхности твердых тел, с неоднородностью их геометрического строения, химического состояния, наличием примесей и т. д., а следовательно, с существенной энергетической неоднородностью поверхности. Известную сложность представляет также учет взаимодействий молекул адсорбата с совокупностью молекул адсорбента, изменение состояния адсорбата и адсорбента при адсорбции. Теплота адсорбции является важной характеристикой адсорбционного процесса. Она является мерой интенсивности адсорбционных сил — сил взаимодействия молекул адсорбата с поверхностью адсорбента и между собой. [c.210]

    Интенсивность действия каталитического яда тем выше, чем больше энергия его химического взаимодействия с активным компонентом катализатора, чем труднее его химическая регенерация или десорбция яда. Обычно дезактивирующая способность каталитического яда растет с увеличением его атомной или молекулярной массы. Так, отравляемость гидрирующих катализаторов никель — оксид хрома соединениями серы, селена и теллура растет от S к Те. С другой стороны, отравление металлических (Pt, Ni) катализаторов органическими соединениями серы (меркаптаны, сульфиды) растет с увеличением длины цеии органического радикала фиксированная на активном участке поверхности атомом серы молекула яда вращающимся вокруг него по поверхности алифатическим радикалом экранирует и ближайшие участки поверхности, препятствуя адсорбции на них компонентов реакции. Частичное отравление энергетически неоднородной поверхности может в случае сложных реакций влиять на течение лишь отдельных стадий, чем можно регулировать селективность каталитического действия и повышать выход целевого промежуточного продукта торможением последних (или параллельных) стадий процесса. Практически важным случаем является дезактивация катализаторов побочными продуктами реакции, отлагающимися на поверхности, например закоксовывание катализаторов нефтехимических про- [c.305]

    Обработка палыгорскита известью, произведенная по первому способу, приводит к уменьшению тепловых эффектов, выделяющихся при смачивании образцов водой. Все образцы откачивали равное время при одинаковых условиях (табл. 7). Уменьшение теплот смачивания палыгорскита, обработанного известью, происходит за счет действия двух факторов — уменьшения доступной для адсорбции поверхности минерала (агрегация в пачки, частичное смыкание цеолитных каналов) и изменения природы поверхности минерала в результате взаимодействия с известью. Известно, что поверхность палыгорскита характеризуется энергетической гетерогенностью [321, 353, 354]. Неоднородность поверхности связана с наличием активных центров различной природы — октаэдрические катионы на боковых стенках каналов, обменные катионы, атомы кислорода на внутренней поверхности каналов и на внешней поверхнос-сти игольчатых частичек минерала, гидроксильные группы, специфика геометрии самой поверхности палыгорскита. Наиболее вероятно, что многие из этих адсорбционных центров, особенно кислотного характера, вначале поверхностного взаимодействия с гидроокисью кальция блокируются. При этом новообразования обладают меньшей энергетической активностью. Такой вывод кажется вполне закономерным, если учесть падение интенсивности эндоэффектов на термограммах палыгорскита обработанного известью. Эндоэффекты 120, 150, 280° и широкий максимум 470—500° появляются на кривых ДТА палыгорскита за счет удаления, соответственно, молекул воды, свободно размещенных в цеолитных каналах молекул воды, адсорбированной на поверхности кристаллов по наружным разорванным связям связанных с октаэдрическими катионами на боковых стенках каналов и постепенного исчезновения структурных гидроксилов [359]. Таким образом, снижение интенсивности перечисленных эндоэффектов, наряду с уменьшением теплот смачивания, свидетельствует о преимущественном взаимодействии Са(0Н)2, прежде всего, по энергетически наиболее выгодным центрам внешней и внутренней поверхности минерала. Очень интересно, что, несмотря на снижение энергетической активности поверхности палыгорскита, в результате частичного блокирования первичных центров неоднородности поверхности, общее количество связанной воды не уменьшается и выделение ее идет за счет дегидратации гидратных новообразований. Этот вывод можно сделать на основании сравнения потерь при прокаливании обработанных и не обработанных известью образцов и сопоставления нх с характером кривых ДТА. Как видно из табл. 7, потери веса в интервале 80—400° С у обработанных известью образцов не уменьшаются, а интенсивность присущих палыгорскиту эндоэффектов понижается. Общая протяженность [c.134]

    Согласно рассмотренной концепции неоднородной поверхности, теплота адсорбции должна падать с заполнением, так как молекулы сначала адсорбируются на местах с большей теплотой адсорбции. Это падение, однако, может иметь место и на однородной поверхности из-за взаимодействия адсорбированных молекул. [c.301]

    Коэффициент активности у отражает влияющие на характер изме-. нения Г с ростом с межмолекулярные взаимодействия адсорбат — адсорбат (действующие как вдоль поверхности адсорбента, так и перпендикулярно ей), а также влияние неоднородности поверхности. Постоянная же при данной температуре величина = при Г°7°=1, т. е. при некоторой определенной величине адсорбции Г°. При Г- О 7 1, так как при этом межмолекулярные взаимодействия адсорбат — адсорбат исчезают и остаются только межмолекулярные взаимодействия адсорбат — адсорбент. [c.133]

    Статические методы измерения адсорбционных равновесий (изотерм или изостер адсорбции) обладают тем существенным преимуществом, что, используя их, можно очищать поверхность адсорбента в вакууме и как угодно долго дожидаться установления адсорбционного равновесия. Однако эти методы встречают и существенные затруднения. Во-первых, их трудно применить для изучения весьма важной области очень малых (нулевых) заполнений поверхности, когда межмолекулярным взаимодействием адсорбат — адсорбат можно пренебречь. Поэтому для определения такой термодинамической характеристики межмолекулярного взаимодействия адсорбат— адсорбент, как константа Генри, приходится экстраполировать к нулевому заполнению изотермы адсорбции, измеренные при более высоких заполнениях поверхности адсорбента. Эта экстраполяция связана с рядом затруднений. При сравнительно низких температурах, при которых обычно проводятся статические измерения изотерм адсорбции, сильнее сказывается влияние неоднородности поверхности твердого тела. Во-вторых, обычными статическими методами при невысоких температурах можно изучать адсорбцию лишь небольшого количества достаточно летучих. и простых по структуре молекул веществ с небольшой молекулярной массой. В-третьих, применение статических методов, особенно при работе с труднолетучими веществами, требует высокой чистоты этих веществ, так как летучие примеси могут привести к ошиб- [c.156]

    Допущение о независимости адсорбции в каждом отдельном центре на поверхности, равно как и допущение, что на каждом центре адсорбируется всего одна молекула, являются приближенными. Поэтому и уравнение Ленгмюра следует рассматривать как приближенное. В более строгих подходах необходимо учитывать взаимодействие между адсорбированными частицами, а также неоднородность поверхности, т. е. различие адсорбционных центров по теплоте адсорбции. [c.316]

    Опыт показал, что при увеличении степени заполнения поверхности теплота адсорбции не остается постоянной, как это следует по теории Лэнгмюра, а уменьшается. Последовательный отказ от допущений теории Лэнгмюра, учет неоднородности поверхности адсорбента, взаимодействия адсорбированных молекул и возможности полимолекулярной адсорбции (более, чем в один мономолекулярный слой) привели к замене уравнения Лэнгмюра рядом уточненных уравнений. При адсорбции паров на пористой поверхности адсорбента следует учитывать дополнительные особенности этого явления, как, например, конденсацию паров, которая может происходить в капиллярных порах при меньших давлениях пара, чем на плоской поверхности. [c.274]

    Изотерма адсорбции Лэнгмюра относится к идеальному адсорбционному слою. Изотермы такого типа встречаются часто, но для реальных систем столь же вероятны отклонения от изотермы Лэнгмюра. Эти отклонения связаны с введенными при выводе изотермы допущениями об однородности поверхности и об отсутствии взаимодействия между адсорбированными молекулами. Для катализаторов или сорбентов адсорбция осуществляется или на неоднородных поверхностях, или при взаимодействии между адсорбированными молекулами. [c.42]

    Изменение дифференциальных теплот и энергий активации адсорбции с ростом заполнения поверхности не могут быть объяснены из представлений об однородной поверхности. Поэтому изменение дифференциальных теплот адсорбции следует трактовать исходя или из неоднородности поверхности, или из наличия взаимодействия между адсорбированными молекулами на однородной [c.46]

    Изотерма адсорбции Лэнгмюра (2.7) описывает адсорбцию ингибиторов иа однородной поверхности с одинаковыми значениями энергии адсорбции, изотерма Фрейндлиха (2.6) — на неоднородной поверхности с экспоненциальным распределением адсорбционных центров по энергиям адсорбции, изотерма Темкина (2,8) — на неоднородной поверхности с равномерным распределением адсорбционных центров по энергиям адсорбции. Уравнение Фрумкина (2,8) описывает адсорбцию на однородной поверхности с учетом взаимодействия адсорбирован- ных частиц в адсорбционном слое. [c.24]

    Более прямой путь выбора между неоднородностью и отталкиванием связан с существенными физическими различиями в состоянии адсорбированных молекул. Для этого необходимо рассмотреть различия между адсорбцией в двух предельных состояниях широко неоднородной поверхности без взаимодействия и взаимодействия иа полностью однородной поверхности. Это может служить основой для разбора более трудного и общего случая наложения эффектов обоих типов, т. е. взаимодействия в слое на неоднородной поверхности. На рис. 9 приведена схема адсорбции на поверхности, неоднородной по теплотам адсорбции и энергиям активации адсорбции. Номерами отмечена последовательность заполнения поверхности сорбтивом в порядке термодинамической (а) и кинетической (б) выгодности. В представленном предельном случае энергетический рельеф поверхности не меняется, но происходит [c.53]

    При выводе изотермы адсорбции Ленгмюра неявно делаются следующие допущения 1) адсорбируемый газ в газовой фазе ведет себя как идеальный 2) адсорбция ограничивается мономолекулярным слоем 3) поверхность однородна, т. е. все адсорбционные центры имеют одинаковое сродство к молекулам газа 4) молекулы адсорбата не взаимодействуют друг с другом 5) адсорбированные молекулы газа локализованы, т. е. не передвигаются по поверхности. Первое предположение справедливо при низких давлениях. Второе почти всегда перестает соответствовать реальности при увеличении давления газа. Как показано на рис. 8.6, когда давление газа приближается к давлению насыщенного пара, пар начинает неограниченно конденсироваться на всех поверхностях, если краевой угол 0 равен нулю. Третье допущение неудовлетворительно, потому что реальные поверхности неоднородны разные грани кристалла обладают разным сродством к молекулам газа, а ребра, трещины и дефекты кристалла образуют дополнительные адсорбционные центры. Неоднородность приводит к уменьшению энергии адсорбции по мере заполнения поверхности. Неправильность четвертого допущения была показана экспериментально, когда обнаружилось, что в некоторых случаях теплота адсорбции может увеличиваться с увеличением поверхностной концентрации адсорбированных молекул. Этот эффект, противоположный тому, к которому должна приводить неоднородность поверхности, обусловлен взаимным притяжением адсорбированных молекул. Пятое допущение неправильно, так как имеется ряд доказательств того, что поверхностные пленки могут быть подвижными. [c.251]

    Расчет величин дифференциальных мольных изменений внутренней энергии А(У при разных величинах адсорбции показал, что для воды значения АЬ увеличиваются по мере заполнения поверхности и приближаются к значению теплоты конденсации. Это объясняется сильным взаимодействием молекул воды между собой. Для н-бутанола, диэтилового эфира и н-пентана значения AI7 в исследованном авторами [14] интервале поверхностных концентраций выше соответствуюш,их теилот конденсации. С увеличением, заполнения наблюдается вначале незначительный рост,, а затем уменьшение А I7, что свидетельствует о некоторой неоднородности поверхности и о сильном дисперсионном взаимодействии молекул рассмотренных веш,еств с поверхностью хромосорба 102. [c.102]

    Модифицирование неоднородной поверхности адсорбента нанесением небольшого количества органического вещества, адсорбирующегося в первую очередь на наиболее неоднородных местах поверхности, или плотного монослоя, покрывающего всю поверхность адсорбента-носителя, снижает потенциал адсорбционных сил особенно на наиболее неоднородных участках поверхности адсорбента-носителя и делает поэтому модифицированную таким образом поверхность более однородной. И хотя модифицирующие слои часто физически неоднородны, они могут вести себя как практически однородные по отношению к адсорбции достаточно крупных молекул 18, 43]. Модифицирование поверхности твердого тела плотными монослоями молекул или макромолекул, содержащих соответствующие функциональные группы, приводит к увеличению адсорбции молекул, способных к специфическому межмолекулярному взаимодействию с этими группами [18, 36, 43]. [c.21]

    При приготовлении твердых адсорбентов полностью устранить геометрическую и химическую неоднородность поверхности не удается. Однако при синтезе и обработке адсорбента эту неоднородность можно сильно снизить и в благоприятных случаях сделать настолько незначительной, что ее влиянием на адсорбцию при не очень низких температурах можно пренебречь, особенно по отношению к молекулам, неспособным к специфическим взаимодействиям (т. е. к молекулам группы А). В настоящее время многие адсорбенты всех трех типов могут быть получены и обработаны в таких условиях, которые гарантируют достаточно низкую неоднородность поверхности (в случае кристаллов — поверхности их граней). Это позволяет успешно использовать такие адсорбенты для практических целей разделения смесей в газовой и жидкостной адсорбционной хроматографии и для получения термодинамических характеристик адсорбции индивидуальных веществ в виде воспроизводимых констант. [c.24]

    Недостатком ранних работ по адсорбции на неоднородных поверхностях было отсутствие обоснованных независимо от адсорбционных измерений физических моделей этих поверхностей и невозможность сопоставления с соответствующими однородными поверхностями. Обзор более ранних работ по адсорбции на неоднородных поверхностях с учетом взаимодействия адсорбат — адсорбат дан Хонигом [53, 54]. Здесь мы рассмотрим метод учета неоднородности реальной поверхности для получения термодинамических характеристик адсорбции на однородной поверхности той же природы, предложенный Россом и Оливье [И, 55], как пример одной из первых попыток [c.166]

    Снятие предположения IV, лежащего (наряду с прочими) в основе теории Лангмюра, является, как мы видели, характерным для электронной теории хемосорбции. Это не означает, конечно, что электронная теория не признает обычной неоднородности поверхности (которая является экспериментальным фактом) или обычного силового взаимодействия между адсорбированными молекулами. Это свидетельствует лишь о том, что последовательное рассмотрение хемосорбированных частиц и решетки адсорбента как единой квантовомеханической системы приводит к представлению о некой особого рода неоднородности или к представлению о некоем особого рода несиловом взаимодействии , которые проявляются как в случае однородной (в обычном смысле этого слова) поверхности, так и при отсутствии обычного силового взаимодействия между адсорбированными частицами. Важным следствием этого является то, что в теории адсорбции на неоднородных поверхностях отдельные однородные участки поверхности, по которым производится суммирование (см. (83)), оказываются, вообще говоря (за исключением отдельных частных случаев), неланг-мюровскими. [c.173]

    Теория замедленной рекомбинации была обобщерга в работах Гориучи с сотр. (1936—1938), И. И. Кобозева с сотр. (1937—1946), М. И. Темкина (1941) и др. Из этих работ следует, что учет неоднородности поверхности и сил взаимодействия между адсорбированными атомами приводит к пояЕлению в предлогарифмнческом коэффициенте уравнения (19.31) множителя 1/ 3. Фактор р можно рассматривать как величину, характеризующую природу адсорбции водородных атомов и отражающую тип изотермы адсорбции. [c.410]

    Адсорбции изотерма (159, 160)—зависимость адсорбции от давления адсорбата в газовой фазе (или от концентрации в объеме) при постоянной температуре. Для однородной поверхности адсорбента и в отсутствие взаимодействия молекул адсорбата между собой описывается уравнением Ленгмюра (160—163). Для энергетически неоднородной поверхности (168) описывается уравнением Фрейндлиха (166) или уравнением логарифмической изотермы адсорбции (166, 169). При наличии межмолекулярного взаимодействия описывается соотношениями (167, 170, 171). Начальные участки многих изотерм адсорбции описываются линейным уравнением Генри (166). Изотермы полимолекулярной адсорбции приближенно описываются уравненинем БЭТ (175). [c.307]

    На неоднородных поверхностях теплота адсорбции уменьшается с увеличением заполнения, поскольку сначала заполняются места с большими значениями Q. Однако такое же падение может наблюдаться и на однородной поверхиостп из-за взаимодействия между сосед-пнмп адсорбированнымн молекулами. [c.221]

    Исследования показали [24], что при адсорбщш Ог на углях концентрация ПМЦ уменьшается. По данным этой работы, при адсорбции одной молекулы Ог может исчезать несколько десятков парамагнитных центров. Взаимодействие НаЗ с коксом происходит, вероятно, после его диссоциации иа элементарную серу и водород. Предварительный распад НгЗ может идти через стадию хемосорбции на поверхности кокса, так как двух- и трехатомные газы на поверхности углеродистых веществ легко диссоциируют на компоненты. Наличие ненасыщенных связей на поверхности кристаллитов будет несомненно препятствовать движению за пределы частип кокса осколков молекул — продуктов распада термически нестойких органических соединений серы. При этом сера будет сосредоточиваться иа наиболее активных центрах поверхности кокса. Исходя из неоднородности структуры углеродистых материалов, наблюдаемой до температур 2000—2600 С, удалось [139] теоретически обосновать и экспериментально подтвердить зависимость энергии активации адсорбции и десорбции различных газов на неоднородных поверхностях от степени нх заполнения газами. По аналогии с этим, а также в соответствии с представлениями, изложенными в работе [180], в процессе хемосорбцин серы на активной поверхности кокса с увеличением степени ее заполнения энергия активации процесса сульфуризации должна повышаться. В стадии десорбций — при разрушении сероуглеродных комплексов — наоборот, энергия активации должна быть низкой на начальной стадии и увеличиваться к концу обессеривания. [c.210]

    Теория БЭТ дает простое и последовательное описание процессов физической адсорбции и объясняет пять типов изотерм рис. 9. Вместе с тем в последние годы все сильнее прбявляется несовершенство теоретической базы метода БЭТ, поскольку всякая теория, игнорирующая взаимодействие между частицами в одном слое (латеральное взаимодействие) и неоднородность поверхности, считается ограниченной. Самым слабым местом теории БЭТ является основное положение, согласно которому теплоты адсорбции во втором и последующих, слоях равны теплоте сжижения пара. Более приемлемым считается допущение, что третий и последующие слои адсорбата подобны жидкости [21]. [c.30]


Смотреть страницы где упоминается термин Адсорбция с взаимодействием на неоднородной поверхности: [c.204]    [c.204]    [c.68]    [c.166]    [c.312]    [c.52]   
Смотреть главы в:

Катализ вопросы теории и методы исследования -> Адсорбция с взаимодействием на неоднородной поверхности




ПОИСК





Смотрите так же термины и статьи:

Адсорбция на неоднородной поверхност



© 2025 chem21.info Реклама на сайте