Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Активный центр адсорбционный

    Различная интенсивность адсорбционных процессов на различных участках поверхности данного адсорбента объясняется неоднородностью поверхности. Каталитическая активность материала обычно связана с адсорбцией реагирующих веществ на активных для данного процесса участках его поверхности, поэтому решающее значение имеет наличие именно этих активных участков (активных центров). Поэтому имеет значение не только адсорбция молекул исходных веществ, но и десорбция образующихся молекул п одуктов реакции. Существенно развитие поверхности, однако даже при значительной поверхности материал не будет активным катализатором, если структура и состояние ее таковы, что на ней нет необходимых активных центров. Вследствие этого для активности катализатора имеет значение не только химический его состав, но, не в меньшей степени, и способ изготовления, от которого зависят состав, структура и состояние поверхности катализатора. Так, специально приготовляемая активная окись алюминия служит хорошим катализатором реакции получения этилена путем дегидратации этилового спирта. Но для получения такой активной окиси алюминия необходимо тщательно соблюдать определенные условия, без чего она при том же химическом составе может не обладать активностью или быть мало активной. [c.495]


    Для адсорбционных катализаторов нет необходимости задаваться той или другой структурой активных центров, т. е. она фактически реализуется в миграционных ячейках носителя. Поэтому для информационной характеристики катализатора необходимо [c.104]

    В общ,ую процедуру принятия решений при оптимизации пористой структуры катализатора, рассмотренную в разд. 3.1, входит в качестве обязательного этапа составление математической модели гетерогенно-каталитического процесса на зерне катализатора и идентификация ее параметров. Эта модель должна отражать как геометрические характеристики структуры зерна, так и важнейшие особенности собственно физико-химических процессов, протекаюш,их в нем. Для наглядности представления последних удобно мысленно выделить фиксированную группу молекул исходных веществ, которая участвует в ряде последовательных физико-химических стадий суммарного контактного процесса на зерне катализатора 1) перенос исходных веществ из реакционной смеси к внешней поверхности частиц катализатора 2) перенос исходных веществ от внешней поверхности частиц катализатора к их внутренней поверхности 3) адсорбция исходных веществ на активных центрах катализатора 4) реакция между адсорбированными исходными веществами и перегруппировка адсорбционного слоя 5) десорбция продуктов реакции 6) перенос продуктов реакции от внутренней поверхности частиц катализатора к их внешней поверхности 7) перенос продуктов реакции от внешней поверхности катализатора в объем реакционной смеси. [c.149]

    В исследовании процессов адсорбционных и каталитических взаимодействий цеолитов большую роль играет изучение природы активных центров. Для этой цели в настоящее время применяется комплекс современных физических методов, в частности спектральных. Однако, несмотря па большое число исследований в этой области [1—10], до сих пор нет однозначного представления о природе активных центров адсорбционных и каталитических взаимодействий цеолитов. [c.124]

    В меньшей мере доступны для молекул воды минеральные компоненты в форме комплексных гетерополярных производных гуминовых веществ. Последние образуются при совместном проявлении ионной или ковалентной и координационной связей между поливалентными ионами-комплексообразователями и молекулами гуминовых кислот. В данном случае ионная связь реализует обменное состояние, а координационная — дополнительную связь поливалентного катиона с функциональными группами типа —ОН, —СО, —Н. В случае адсорбционных образований гуминовых соединений торфа с нерастворимыми минеральными частицами функциональные группы органической составляющей частично взаимосвязаны с активными центрами минералов, и в целом эти соединения менее гидрофильны, чем отдельные их составляющие. [c.64]


    Молекула газа + Активный центр Адсорбционный комплекс [c.42]

    Адсорбция тиофена из раствора его в бензоле. При исследовании жидкофазного разделения на большом наборе синтетических цеолитов различных структурных форм установлено, что только декатионированные цеолиты типа X, Y, L и М хорошо поглощают тиофен из его раствора в бензоле и при определенных концентрациях способны полностью очистить раствор от тиофена. Спектры ЭПР цеолитов с адсорбированным на них тиофеном показали, что хемосорбция протекает с образованием двух ион-радикалов, отличающихся стабильностью и связанных с двумя, по-видимому, различными активными центрами адсорбционных полостей [190]. [c.80]

    Изучение этих же катализаторов в реакции гидрирования малеиновой кислоты показало, что, несмотря на удаление с поверхности растворимой платины, активность катализаторов в этой реакции не меняется. Нам удалось по падению активности и количеству ушедшей с поверхности платины определить число активных центров адсорбционных платиновых катализаторов для реакции разложения перекиси водорода и подтвердить сделанный ранее вывод о том, что процессы разложения перекиси водорода и гидрирования малеиновой кислоты протекают на разных активных центрах. [c.293]

    Однако даже высококачественный силикагель при нагреве свыше 200 °С постепенно утрачивает свои адсорбционные свойства из-за снижения степени покрытия поверхности активными центрами ОН-группы. [c.89]

    Квантовохимические исследования каталитических реакций в настоящее время не выходят за рамки простейших кластерных моделей, при этом активный центр моделируется одним-двумя атомами катализатора [16]. Применение подобных моделей особенно перспективно в случаях, когда объектом исследования является механизм каталитических реакций, однако неполноценное представительство в этих моделях самого катализатора как твердого тела снижает эффективность решения задач прогнозирования. В рамках данного подхода удается дифференцировать катализаторы весьма примитивным способом. По существу, катализатор характеризуется природой атома, выступающего в качестве адсорбционного центра. Качественные закономерности, выявление которых является предметом подобных исследований, иногда нужно установить, не проводя никаких расчетов. Таким образом, чрезмерное упрощение модели обесценивает квантовохимический прогноз, а ее усложнение и попытки адекватно передать твердотельные характеристики катализатора связаны с резким возрастанием вычислительных трудностей, и, следовательно, невозможностью изучать представляющие практический интерес сложные объекты. [c.62]

    При рассмотрении адсорбционного действия углей нужно иметь в виду, что, кроме рассмотренных выше активных поверхностей неполярного характера, имеются также и активные центры, которые работают ио принципу полярных адсорбентов. Но эти центры составляют, по М. М. Дубинину, всего 2% от общей активной поверхности угля, и поэтому их действие оказывается обычно незаметным [74]. Но при очень высокой кратности обработки нефтяного продукта углем деятельность этих центров может стать существенной и сказаться на результатах адсорбционного разделения. Для активированных же углей, имеющих высокое содержание активных минеральных компонентов, например для костяных углей, полярная адсорбционная активность может стать преобладающей и подавить их депарафинирующее действие. Поэтому костяные и другие активированные угли для целей адсорбционной депарафинизации не подходят. Из активированных углей, вырабатываемых в настоящее время промышленностью, для адсорбционной депарафинизации можно применять угли трок БАУ, К АД, АГ-2, АР-3 и др. Из этих марок наиболее подходящим для процесса адсорбционной депарафинизации является уголь марки АР-3. [c.162]

    ЛО п атомов в активном центре, число 2 областей миграции и абсолютную производительность активного центра для данного процесса. Этим способом было изучено большое число различных процессов, протекающих на адсорбционных катализаторах. Данные для некоторых из них приведены в таблице. [c.359]

    Адсорбционный при двух активных центрах [c.112]

    Анализ соотношений между информацией активных центров Я и полной энтропией информации системы (см. табл. 2.3) позволяет сделать важные выводы. Величины энтропии информации данного центра адсорбционных и кристаллических катализаторов близки (ср. строки 2 и 5), но доля полезной информации (строки [c.105]

    Согласно Мэкстеду [106], который приписывает адсорбционной блокировке активных центров механизм отравления катализатора, у яда имеется свободная электронная пара, при помощи которой он и присоединяется к поверхности катализатора. Мэкстед показал, что отравленный катализатор можно регенерировать путем окисления некоторыми перкислотами (перванадиевая, пероловянная, пермолибденовая) в присутствии перекиси водорода. При этом яд превращается в нетоксическое соединение с экранированной структурой , которая уже не обладает необходимой для присоединения к катализатору свободной электронной парой. [c.268]


    Покажем характерные особенности предлагаемого подхода к решению поставленных задач на примере построения процедуры оценки макрокинетических констант модели зерна, осуществляемую на основе адсорбционных измерений. Будем полагать, что вследствие высокой скорости протекания многих адсорбционных процессов влиянием внешней диффузии нельзя пренебречь. Поэтому предполагаем перенос массы при адсорбции индикатора на испытываемом образце катализатора, происходящем в три последовательные стадии 1) из объема газа к внешней новерхности катализатора 2) внутри пор катализатора 3) из объема поры к внутренней активной поверхности (обратимая адсорбция на активных центрах). [c.163]

    Все перечисленные явления приводят к тому, что в реальном кристалле число дефектов значительно превышает аналогичную величину для гипотетического идеального кристалла. Разнообразные нарушения поверхности резко увеличивают адсорбционноактивную поверхность, а следовательно, и число адсорбционных и каталитических центров. Поскольку в реальном кристалле на зушения решетки могут быть самыми различными, активные центры могут обладать разным адсорбционным нотенциа-лом, т. е. возникает энергетическая неоднородность поверхности. Псэтому естественно, что в теориях гетерогенного катализа, как правило, в той или другой степени учитывается реальное ст )оение активной поверхности. Рассмотрим три модели. [c.341]

    При граничном трении в результате адсорбции поверхностноактивных компонентов масел активными центрами твердой поверхности на металле образуется граничная пленка, которая разделяет трущиеся поверхности и препятствует непосредственному их, контакту. Такие адсорбционные пленки способны защищать металлические поверхности от трения и износа только при сравнительно невысоких температурах и нагрузках при повышении этих параметров пленки десорбируются, вследствие чего теряется смазочная способность масла. Поэтому для снижения трения и защиты поверхностей от износа при высоких удельных нагрузках и высоких местных температурах на трущихся поверхностях следует создавать прочные граничные пленки путем применения различных химически активных соединений — присадок. Если поверхностно-активные компоненты масел лишь адсорбируются на металле, то присадки, вводимые в масла, в основном химически взаимодействуют с трущимися поверхностями, образуя более прочные граничные пленки. [c.101]

    В монографии обобщены результаты исследований в области синтеза, изучения свойств модифицированных форм цеолитов и цеолитсодержащих адсорбентов (катализаторов). Приведены данные исследования адсорбции молекул различных веществ на катион-, изоморфнозамещенных цеолитах и цеолитсодержащих материа/ ах. Рассмотрено влияние природы активных центров адсорбционных полосте на спектральные, адсорбционные и каталитические свойства алюмосили-катных пористых кристаллов. Особое внимание уделено роли компенсирующих катионов в процессах адсорбции, катализа и изменения избирательных свойств молекулярных сит. Приведены краткие сведения о возможных областях применения цеолитов в технике и лабораторной практике. [c.2]

    В силу особенностей структуры и состава цеолиты по адсорбционным свойствам отличаются от других известных адсорбентов Их используют в качестве модельных образцов для изучения адсорбции молекул различных веществ. Величина адсорбции на цеолитах, в особенности молекул, имеющих я-связи и свободные электронные пары (кислород, азот), в значительной степени определяется специ-фически.м взаимодействием звеньев структуры молекул этих адсорбатов с компенсирующими катионами, и поэтому кроме величины радиуса катиона и его положения в анионном каркасе большое значение для адсорбции имеют заряд и деформируемость катиона. Помимо взаимодействия с положительным зарядом катионов молекулы адсорбата испытывают сильное дисперсионное воздействие со стороны других атомов, образующих стенки каналов. Одним из наиболее важных вопросов адсорбционного взаимодействия на цеолитах является выяснение природы активных центров адсорбционных полостей и участия их в процессах адсорбции. Для выявления роли катионов, компенсирующих заряд алюмосиликатного каркаса, в адсорбции изучено поглощение молекул различных веществ ка-тионзамещенными формами цеолитов. [c.63]

    Данные о действии ядов на гетерогенные катализаторы по-казывают, что каталитическая активность,.4зазличных участков поверхности катализаторов, как правило, неоднородна. Рассмотрим, например, данные Пиза об отравляющем действии окиси углерода на медь, катализирующую гидрирование этилена. Адсорбционному насыщению поверхности 100 г меди соответствует адсорбция 10 см окиси углерода (т. е. ]/т= 0 см ), но уже адсорбция 0,05 см СО подавляет на 90% первоначальную каталитическую активность меди. Следовательно, 10 см СО соответствуют полному числу адсорбционных центров (или всей поверхности), а 0,05 см СО соответствуют 90% каталитически активных центров (или 90% каталитически активной части поверхности). Всей совокупности каталитически активных центров 100-0,05 [c.334]

    Изменение адсорбционных свойств цеолитов в результате замены натрия на другие катионы может быть результатом сужения или расширения окон полостей цеолита, увеличения или уменьшения объема внутрикри-сталлического пространства за счет изменения объема, занимаемого самими катионами, изменения энергии связи молекул адсорбируемого вещества с активными центрами адсорбционных полостей и плотности адсорбируемого вещества во внутри-кристаллическом пространстве цеолита. Изменение адсорбционной емкости по парам воды у образцов oNaA, NiNaA, uNaA, n ол  [c.65]

    Характер адсорбции и ориентации зависит от взаимодействия адсорбционных центров поверхности с активными центрами молекул. Наиболее полно изучена экспериментально адсорбционная ориентация полярно-цепных молекул с одним активным центром расположенным в конце цепи молекулы. К их числу относятся насыщенные нормальные основные карбоновые кислоты, одноатомные спирты и другие аналогичные или однозамещенные углеводо роды. Молекулы этих веществ имеют вертикальную ориентацию при адсорбции. Бездипольные молекулы углеводородов ориентируются горизонтально относительно твердой поверхности. Такая ориентация характеризуется наиболее слабым взаимодействием молекул или его отсутствием. [c.66]

    В табл. XIII, 1 приведены некоторые данные, полученные при изучении состава активных центров адсорбционных катализаторов методом теории активных ансамблей. В качестве катализаторов применялись платина, палладий, никель, железо, а также ряд других, например ионных, катализаторов. Катализаторы наносились на силикагель, алюмогель, активированный уголь применялась также окись магния, окись бария, окись кадмия, металлический кадмий и никель (на платине) и ряд других. Изученные каталитические процессы можно разделить на следующие окисление, восстановление кислородсодержащих групп, гидрирование ненасыщенных связей, разложение перекиси водорода, синтез аммиака. Во всех случаях была получена зависимость активности от концентрации катализатора на носителе, отвечающая теоретической и позволяющая определить состав активного центра. [c.340]

    Обычно же отравление катализатора непреднамеренное общим недостатком катализаторов гидрогенизации является то, что они становятся менее активными даже при хранении боз использования. Ухудшение свойств катализатора нри использовании ого может быть обусловлено образованием сульфидов, закупоркой пор катализатора углеродистыми отложениями и множеством других причин. Как правило, группы У-в (Н, Р, Аз, ЗЬ, В1) и У1-в (О, 3, Зе, Те) являются ядами гидрогепизирую-щих метал/ ов группы VIII (Ее, N1, Со и металлы платиновой группы) [106]. Вообще считают, что отравление катализатора есть результат адсорбционной блокировки активных центров его, имеются, однако, и другие объяснения отравления. Одна из новейших теорий утверждает, что гидрогенизационные катализаторы действуют благодаря промотиро-ванию растворенным водородом [7, 8, 46, 154], а яды (депромоторы) являются особенно жадными акцепторами водорода. [c.268]

    Теория кииетики гетерогенных процессов основана на применении уравнения адсорбции Лэнгмюра, которое выведено в предположении, что поверх-ностз однородна и между адсорбированными молекулами нет взаимодействия. Первое из этих предположений равносильно тому, что на всех адсорбционных центрах поверхности теплота адсорбции Q имеет одно и то же постоянное значение. Для каталитически однородных поверхностей дополнительно должно соблюдаться постоянство энергии активации для всех активных центров катализатора. Если эти условия не соблюдаются и теплота адсорбции изменяется для различных центров в широких пределах от <3мия. до <)макс. (или энергия активации от мия. до Яманс.), поверхность называется неоднородной, и, очевидно, для описания протекающих на ней процессов необходимо ввести определенные поправки в выражения, выведенные для однородных поверхностей. [c.347]

    В отличие от поверхности жидкостей, не все точки поверхносте й вердых тел равноценны в отношении их адсорбционной способ-ости. При малых концентрациях газов адсорбция происходит мо-омолекулярно по наиболее активным участкам адсорбента — его активным центрам , представляющим собой отдельные атомы или руины атомов поверхности, силовое поле которых наименее на-ыщено. При адсорбции газов, находящихся при температурах (инее их критической температуры, мономолекулярная адсорбция увеличением давления может переходить в полнмолекулярную. [c.323]

    Каталитически активный центр представляет собой совокупность определенного числа адсорбционных центров, расположенных в геометрическом соответствии с расположением атомов в катализируемой молекуле. Неиремешюй предпосылкой гетерогенного катали а [c.397]

    В результате проведенного выше анализа данных по плотности прочно связанной воды можно сделать вывод, что высокая энергия взаимодействия ее молекул с активными центрами гидрофильной поверхности и, как следствие, друг с другом еще не предопределяет повышенной по сравнению с объемной плотности связанной воды. Поверхность навязывает адсорбционным слоям структуру, зависящую от топографии и природы активных центров, т. е. в определенном смысле оказывает разу-порядочивающее действие на связываемую воду. Конечно, подвижность адсорбированных на гидрофильных поверхностях молекул воды, как это следует из анализа изменений энтропии при адсорбции [85] и данных ЯМР (см., например, [86]), намного ниже, чем в жидкой воде. Но приспособление адсорбционного водного слоя к топографии активных центров приводит к нарушению в нем целостности сетки межмолекулярных водородных связей в ИК-спектрах сорбированной воды полосы валентных колебаний слабо нагруженных ОН-групп воды существенно выше, чем в жидкой воде [66]. [c.35]

    Наличие внутренней и внешней частей граничного слоя может быть объяснено резкими различиями в структурах адсорбционно (внутренней части граничного слоя) и осмотически связанной воды. Первая подчинена геометрии подложки и гид-ратационным характеристикам ее активных центров. Вторая, если учесть, что в диффузную часть двойного электрического слоя глинистых частиц переходит менее 2% обменных катионов [124], может быть в первом приближении описана структурой очень разбавленного раствора электролита. Переход от слоя адсорбционно связанной к слою осмотически связанной воды осуществляется через промежуточный (внешняя часть граничного слоя) переходный слой конечной толщины [125]. [c.42]

    Таким образом, чисто структурные соображения диктуют необходимость существования внешней части граничного слоя, являющегося как бы связующим элементом между резко различающимися структурами адсорбционно и осмотически связанной воды. Стремление к сочетанию с обеими указанными категориями связанной воды естественно приводит к относительно разупорядоченной структуре внешней части граничного слоя число молекул воды с разорванными Н-связями в ней выше, чем в объемной жидкости. Поскольку действие активных центров поверхности на молекулы воды внешней части граничного слоя ослаблено, то ее плотность должна быть ниже, чем у объемной воды, что и подтверждается уже обсуждавшимися данными [104]. Анализируя структуру воды вблизи твердой заряженной поверхности, Ю. В. Гуриков [126] также пришел к трехслойной модели связанной воды за слоем прочно связанных с поверхностью молекул воды располагается слой с нарушенной структурой, затем следует невозмущенный раствор. [c.42]

    Возникает проблема приготовления столь мелкокристаллических (фактически докристаллических) катализаторов, чтобы они позволяли извлекать максимум информации о природе, составе и строении активных центров в то же время не обладали излишне большой энтропией информации. Наиболее перспективными с этой точки зрения являются адсорбционные нанесенные катализаторы с очень малыми заполнениями поверхности атомами активного веш,ества (степени заполнения а = 0,001—0,01). Рассмотрение свойств таких катализаторов лежит в основе теории активных ансамблей Кобозева [89]. [c.104]

    Итак автоколебания в гетерогенно-каталитической системе могут возникнуть, если система открыта, система нелинейна и в системе существует обратная связь. В открытой гетерогенно-каталитической системе выделяются следующие стадии транспорта и химического превращения реагирующих веществ подача в реактор массо- и теплоперенос к активной поверхности катализатора адсорбция исходных веществ на активных центрах катализатора реакция между адсорбированными исходными веществами и перегруппировка адсорбционного слоя десорбция продуктов реакции массоперенос продуктов реакции от активной поверхности катализатора вывод из реактора продуктов реакции. [c.316]

    Интенсивность спектра ЭПР для -метилнафталина, адсорбированного на кристаллах карбамида, в 1,5 раза ниже, чем у тетралина и аценафтена. Вероятно, в данном случае большое влияние на силу адсорбционного взаимодействия оказывают не два бензольных кольца, а метильная группа в с/ -положении, а также различная пространственная ориентация-молекул рассматриваемых веществ на поверхности кристаллов. Во всех случаях концентрация парамагнитных центров исследованных углеводородов на кристаллах комплекса в 1,5-2 раза ниже, чем на чистых кристаллах карбамида. Это можно объяснить уменьшением количества активных центре адсорбции на поверхности кристаллов комплекса вследствие изменения тетрагональной кристаллической решетки карбамида на гексагональную и наличия на активной поверхности кристаллов "хвостов" молекул, заполнящих каналн решетки. [c.51]

    В случае расположения активного центра в середине цепн молекулы наблюдаются особые формы адсорбционного адаптирования молекул. Обе ветви цепи могут быть расположены под разными углами относительно нормали к поверхности, проходящей через активный центр молекулы. В конденсированных молекулярных рядах ветви углеродной цепи, очевидно, должны размещаться параллельно друг к другу, занимая вертикальное или наклонное положение. [c.66]

    Адсорбционные процессы относятся к наиболее сложно описываемым и моделируемым объектам химической технологии в силу того, что требуют в значительной мере более детального подхода к формированию модели в связи с. многообразием кинетических факторов, сопровождающих диффузию сорбата в макро-, мезо- и микропорах сорбента и необходимостью учета как специфических характеристик самого сорбента (например, состав и свойства активных центров, условия регенерации), так и особенностей взаимодействия в конкретной системе адсорбент - адсорбат и на стадии адсорбции, и на стадии регенерации. В связи с этим представляет интерес феноменологическая модель адсорбционного процесса в виде длины зоны массопередачи Lo. Зона массопередачи участок длины (высоты) слоя сорбента, в котором и протекает собственно сорбционный процесс с интегральным учетом всех его реалий, перемещающийся по длине слоя от начала к концу процесса в неподвижном слое сорбента и равный необходи юй высоте слоя в процессах в движущемся или псевдо-ожиженном слоях сорбента. [c.30]


Смотреть страницы где упоминается термин Активный центр адсорбционный: [c.361]    [c.45]    [c.51]    [c.277]    [c.228]    [c.333]    [c.334]    [c.334]    [c.335]    [c.352]    [c.330]    [c.103]    [c.105]    [c.106]   
Руководство по физической химии (1988) -- [ c.352 ]




ПОИСК





Смотрите так же термины и статьи:

Адсорбционная активность

Адсорбционное экранирование примесных активных центров на поверхности силикагеля

Адсорбционные центры

Активность Активные центры

Активный центр

Кобозев. Адсорбционные катализаторы и теория активных центров

Тэйлор адсорбционная теория катализа активированная адсорбция активные центры

Тэйлор адсорбционная теория катализа активированная адсорбция активные центры разложение Н в воде энергия активации



© 2024 chem21.info Реклама на сайте