Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сталь конверторный процесс

    В производстве стали мартеновский процесс используется шире, чем конверторные, поскольку он позволяет получать более качественную сталь. Связано это с тем, что мартеновский процесс по сравнению с конверторным является более длительным, и это позволяет проводить анализ плавки и корректировать добавку тех или иных веществ для получения стали требуемого состава. Кроме того, мартеновским способом перерабатывают большое количество металлолома. [c.351]


    На втором этапе получения железа и его сплавов осуществляется снижение содержания углерода в чугуне, в результате чего последний превращается в сталь. Этот процесс реализуется различными способами конверторным (бессемеровским и томасовским), мартеновским, электроплавкой в дуговых печах и т. п. С химической точки зрения сущность процесса сводится к выжиганию части углерода и удалению нежелательных примесей, таких, как фосфор и сера. Одновременно может осуществляться и легирование стали различными примесями с целью придания ей специальных свойств. [c.400]

    Сталь содержит 0,3-1,9% углерода, она поддается ковке и закалке. Повышение содержания кремния в стали (до 2,5 %) приводит к повышению ее твердости и упругости. Легированные стали содержат добавки различных металлов. Добавляя в сплав хром вместе с вольфрамом и ванадием, получают инструментальную сталь, сохраняющую твердость при температуре красного каления, хром вместе с никелем позволяет получать коррозионностойкие нержавеющие стали. Основная часть производства стали связана с переработкой чугуна, из которого при этом удаляют таз ие примеси, как кремний, серу и фосфор, а также существенно понижают содержание в нем углерода. Для этой цели применяются несколько процессов. Конверторный процесс Бессемера (рис. 28.2) начинается с того, что специальный металлический сосуд (конвертор), выложенный изнутри огнеупорной обкладкой, заполняется расплавленным металлом прямо из домны. Материал огнеупорной [c.356]

    Применение кислородного дутья в конверторном процессе производства стали повышает производительность труда на 20—30%. [c.301]

    Тепловой эффект процесса зависит от содержания в чугуне кремния и марганца. При выгорании 1 % кремния, содержащегося в чугуне, выделяется такое количество тепла, которое нагревает всю массу чугуна на 200°. Окисление такого же количества марганца дает тепла в 3 раза меньше, а окисление углерода — в 10 раз меньше. Так как заливаемый в реторту чугун имеет температуру 1250—1300°, а выплавляемая сталь должна иметь температуру не ниже 1600° (с уменьшением количества углерода температура плавления стали повышается), то только для обеспечения нагрева массы металла содержание кремния в чугуне должно быть не ниже 1,8%. На практике содержание кремния в чугуне для конверторного процесса должно быть от [c.440]

    Мартеновский процесс. Интенсивное развитие производства стали конверторным способом в середине XIX в. привело к быстрому накоплению скрапа — стального лома, обрезков и других отходов металлообрабатывающей промышленности, переработка которого в крупном масштабе оказалась возможной лишь с помощью мартеновского процесса. Данный процесс получения литой стали связан с плавкой шихты, составляемой из смесей чугуна и стального лома, применяемых в различных пропорциях.. Мартеновское производство характеризуется гибкостью и универсальностью технологического процесса. Этот метод сделался основным в выработке стали (больше 80% всей ее мировой выплавки). В мартеновских печах, имеющих различные емкости от 1 до 500 т выплавляются как обычные, так и высококачественные сорта сталей. [c.185]


    Недостатком мартеновского процесса является малая производительность его. Поэтому конверторный способ переработки чугуна в сталь приобретает все большее значение. Особенно перспективным становится конверторный процесс при использовании кислородного дутья вместо воздушного. [c.243]

    Большое влияние на качество стали имеет способ выплавки В нефтяной и газовой промышленности используют главным образом мартеновскую основную сталь, обеспечивающую достаточно высокую надежность в эксплуатации при невысокой стоимости В настоящее время получают все более широкое применение прогрессивные металлургические процессы, придающие стали более высокое качество электрошлаковый переплав, кислородно-конверторный процесс и др [c.24]

    БЕССЕМЕРОВСКИЙ ПРОЦЕСС - процесс переработки чугуна в сталь в аппаратах-конверторах грушеобразной формы путем продувания воздухом или воздухом, обогащенным кислородом, через расплавленный чугун для удаления примесей — углерода, кремния, марганца, фосфора. Б. п. предложен в 1856 г. Г. Бессемером. Для улучшения качества стали советский ученый Коробов разработал метод, по которому кислород продувают через горловину конвертора, в результате чего сталь избавляется от пузырьков кислорода и азота и качество конверторной стали приближается к качеству мартеновской. [c.43]

    С другой стороны, нельзя забывать и о достоинствах конверторных способов поскольку в результате окисления примесей выделяется много тепла, отпадает необходимость в дополнительном обогреве, процесс протекает быстро. Не случайно в последние годы удельный вес конверторных способов в производстве стали возрастает. [c.351]

    Новейшим направлением в производстве стали является прямое восстановление железной руды водородом, природным или генераторным газом, минуя доменные процессы. При этом получают губчатое железо, состав которого в отличие от доменного чугуна очень близок к стали. Мартеновский способ в настоящее время также устарел. Гораздо более прогрессивными являются конверторный и электроплавильный. Происходит бурное развитие технологии непрерывной разливки стали благодаря ее исключительно высокой эффективности. Основными направлениями экономического и социального развития до 2000 г. предусмотрено увеличить выплавку конверторной стали и электростали в 1,3—1,4 раза, разливку стали непрерывным способом не менее чем в 2 раза и выпуск металлических порошков более чем в 3 раза. [c.182]

    Получение стали из чугуна в настоящее время осуществляется тремя методами 1) конверторная сталь, включая и конверторы с обогащенным и кислородным дутьем 2) мартеновская сталь, получаемая в печах Сименс — Мартена с регенерацией теплоты отходящих газов 3) электросталь, получаемая в электродуговых, индукционных и высокочастотных печах. Этот металлургический процесс обычно применяется для получения высоколегированных сталей с особыми свойствами, Сун ность сталеплавильного процесса сводится к окислению примесей в чугуне и снижению содержания угле- [c.364]

    В связи с повышенными требованиями промышленности предусмотрены мероприятия по улучшению качества металла путем вакуумного, электрошлакового, плазменного и электронно-лучевого переплава металла. В процессе выплавки конверторной стали широко применяют продувку инертными газами, обработку стали синтетическими и]лаками для повышения качества выплавляемых сталей. [c.364]

    Свыше 60% всего промышленного кислорода используется в металлургии. При выплавке чугуна и стали (в доменном, кислородно-конверторном и мартеновском производствах) для интенсификации процессов окисления применяется кислородное дутье или дутье обогащенным кислородом воздухом. Кислород в смеси с ацетиленом используют также для сварки и резки металлов. Широкое применение кислород находит практически во всех отраслях химической промышленности. Кислород используют в лечебных целях в медицине (кислородные подушки, кислородные коктейли и др.). [c.359]

    Железо получают пирометаллургическими методами в виде сплавов с углеродом (доменный, конверторный и мартеновский процессы). В настоящее время чистое железо производят в сравнительно малых масштабах путем электролиза водных растворов (обычно рафинированием стали), разложения в вакууме карбонила железа, прямого восстановления из оксидов, выделенных заранее в чистом виде. [c.414]

    Мартеновский способ. Этот способ передела чугуна в сталь был предложен Мартеном в 1864 г. Мартеновский способ дает возможность передела чугуна различного состава. В мартеновских печах можно переплавлять скрап, т. е. железный лом, обрезки, стружки и прочие отходы металла. Потери металла незначительны. Если процесс ведется с добавлением руды, то стали получается по весу больше, чем загружаемого чугуна. В настоящее время около 85% стали выплавляется в мартеновских печах. Однако мартеновский способ менее выгоден, чем конверторный строительство мартенов обходится дороже, чем конверторов, поэтому мартеновский способ развивается медленнее, чем конверторный. [c.399]


    Так, при контроле быстропротекающих процессов, например при конверторной выплавке стали, главным требованием является короткое время между отбором пробы и получением результата. В таких случаях вполне оправдано оснащение контрольного пункта дорогостоящими приборами, затрата времени на предварительную подготовку прибора, полное переключение исполнителя только на одну операцию. Наоборот, при анализе сырья, выдаваемого с определенного рудника, или для анализа горных пород при промышленном бурении часто целесообразно применять простые классические методы весового и объемного анализа. Они длительны, т. е. результат получается не скоро после начала работы. Однако они нередко экономичнее по среднему количеству затраченного труда, так как один исполнитель может вести одновременно много проб. Кроме того, классические методы часто дают лучшие результаты при анализе нестандартных проб. [c.29]

    Сейчас в промышленность внедряются скоростные процессы, и, чтобы обеспечить контроль по ходу технологического цикла, необходимо располагать соответствующими экспрессными аналитическими методами. Например, в современном сталеплавильном производстве широко используют конверторную плавку, которая продолжается 15—30 мин. Классические методы анализа стали по ходу плавки здесь, конечно, непригодны. Нужны способы, позволяющие оценить содержание главных интересующих технолога элементов за считанные секунды или минуты. На горнодобывающих и обогатительных предприятиях важно хотя бы грубо оценивать содержание полезного металла в руде не понизилось ли оно настолько, что руда пошла некондиционная. Это надо делать мгновенно, непосредственно в движущихся вагонетках или на транспортере. Экспрессные анализы нужны службе охраны природы о наличии вредных примесей в воде или воздухе необходимо знать как можно скорее. Без скоростных методов анализа не обойтись и многим областям науки. [c.23]

    Конверторный метод, предложенный Бессемером, заключается в том, что через расплавленный чугун, находящийся в конверторе, продувают сильную струю кислорода. Выжигается углерод, содержащийся в чугуне, и окисляются примеси. Длительность процесса 10—20 мин. Этим способом получают мягкую сталь, а при практически полном удалении углерода — железо. Для получения стали процесс закапчивают раньше. [c.399]

    Конверторный способ значительно дешевле и производительнее и он шире используется. Однако по мартеновскому процессу можно получать сталь более высокого качества. [c.556]

    Недостатком мартеновского процесса является малая производительность его. Поэтому конверторный способ переработки чугуна в сталь приобретает все большее значение. [c.269]

    Черно Дмитрий Константинович (1839— 1921), Русский металлург. Разработал (1868) наилучшие условия отлиаки, ковки и термической обработки стали. С тех пор стальные орудия вытеснили 6ронэо1ые. Предсказал преимущество применения кислородного дутья в конверторном процессе. [c.117]

    В кислородно-конверторном процессе выплавкр стали применение кислорода особенно эффективно. Этот меток, заключается в том, что жидкий чугун продувается техническЬ чистым кислородом в конверторе. Кислород периодически подаемся в конвертор через горловину и, воздёйствуя на жидкий металк,, окисляет углерод и примеси в металле. По сравнению с мартеновским кислородно-конверторный способ производства стали характеризуется более высокой производительностью, меньшими капитальными затратами и эксплуатационными расходами. В результате себестоимость 1 т стали снижается. Оборудование кислородно-конверторного цеха проще, чем мартеновского, что сокращает сроки строительства сталеплавильных цехов. Кислородно-конвер-торным способом выплавляют широкий ассортимент марок сталей, по качеству превышающих мартеновские. На ряде крупных металлургических заводов СССР построены мощные конверторные цехи нового типа и крупные кислородные станции для них. Емкость конверторов, работающих на кислороде, достигает 250—350 т жидкой стали. Данный способ впервые был разработан в СССР. [c.20]

    Конверторные процессы получения стали. Получение стали конверторным способом (возникло во 2-й половине XIX в.) усилило рост производства литой стали. Процесс проводится в коН верторах емкостью от 0,5 до 60 т путем окисления жидкого чугуна кислородом сжатого воздуха — атмосферного или обогащен-ного кислородом, а также паро-кислородной смесью. В зависимости от того, кислая или основная внутренняя футеровка, конвертора, различают бессемеровский и томасовский процессы. [c.182]

    Чернов Дмитрий Константинович (1839—1921 гг.), основоположник современного металловедения и основатель крупной школы русских металлургов и металловедов. Его открытия (критические температуры, названные точками Чернова, 1868 год, теория кристаллизации слитка, 1879 год, совершенствование конверторного процесса— подогрев малокремнистого чугуна, считавшегося непригодным, в вагранке перед продувкой, 1872 год, применение спектроскопа для определения конца процесса продувки, применение обогащенного кислородом воздуха для продувки жидкого чугуна, 1876 год) получили признание во всем мире. Чернов был избран почетным председателем Русского металлургического общества, почетным вице-президентом английского Института железа и стали, почетным членом американского Института горных инженеров и ряда других иностранных научных учреждений. [c.11]

    Значительно ускоряет производство и улучшает качество получаемого металла применение кислорода дутье воздуха, обогащенного кислородом, в доменные печи, и пропускание в металл чистого кислорода на определенных этапах конверторного и мартеновского процессов (это умёньшает содержание азота, вредно влияющего на свойства стали). Внедрение кислорода в черную металлургию было осуществлено в СССР по инициативе акад. И. П. Бардина. [c.556]

    IRSID СО manufa turing pro ess процесс выделения и кондиционирования СО, содержащейся в абгазе кислородно-конверторного производства стали Французский институт исследований по чёрной металлургии [СЕ, 25/4, 112, 1966] [c.687]

    МАРТЕНОВСКИЙ ПРОЦЕСС — способ переработки чугуна в сталь, предложенный французским инженеро у П. Мартеном в 1864 г. По этому способу сталь выплавляют из твердого или расплавленного чугуна, добавляя лом, в подовой пламенной печи, обогреваемой газами, которые сгорают над металлом. Преимущество М. п. перед бессемеровским (конверторным) в том, что можно использовать твердый чугун и металлолом, а также добавлять легирующие металлы, легко регулируется процесс варки стали, образуется сталь высшего качества, с меньшими затратами металла (выгорание железа при продувке воздуха через металл в конверторах). Недостатком является длительность процесса. [c.154]

    ТОМАСОВСКИЙ ПРОЦЕСС — конверторный метод производства стали из чугуна с повышенным содержанием фосфора (не менее 2%), окисление которого обеспечивает температуру, необходимую для проведения процесса. Конверторы должны иметь основную футеровку (из оксида магния и извести) для связывания пепт-оксида фосфора в шлак. Метод разработан английским металлургом Дж. Томасом в 1878 г. Шлак (см. Томасшлак) примен яют в качестве фосфорного удобрения без дополнительной химической переработки. [c.252]

    ЧуГуны произвольного состава в отличив от кон вё()торйых способов могут быть переработаны мартеновским методом. Процесс Мартена заключается в окислении примесей (51, Мп, С, 5, Р) кислородом воздуха, который пропускают над раскаленным металлом и кислородом, содержащимся в окислах железа последние присутствуют в мартеновской печи в виде металлолома, требующего переплавки, и в. виде некоторого количества железной руды, предварительно загружаемой в печь. Для разогрева мартеновской печи, имеющей открытый под, сжигают предварительно разогретые нефть или горючий газ. При сгорании топлива образуется факел температурой 1700—1900°. Металл и руда плавятся, и в расплав вводят специальные добавки, необходимые для получения сталей заданного состава. В мартеновском способе, так же как и в конверторном, кислородное дутье сильно интенсифицирует процесс. [c.351]

    В черной металлургии дальнейшее развитие производства стали будет происходить за счет внедрения кислородно-конверторного и злектросталеплавильного методов. В цветной металлургии предстоит совершенствовать технологию переработки руд и концентратов повысить комплексность и полноту использования минерального сырья ускорить внедрение автотенных, гидрометаллургических, микробиоло ических и других эффективных технологических процессов. Сильно возрастет производство алюминия, меди, никеля, кобальта, цинка, свинца, титана, магния, драгоценных металлов, вольфрама, молибдена, ниобия и других лег[фу1сших металлов. [c.353]

    Для современного металлургического производства характерно широкое внедрение новых разнообразных процессов, таких как ваку-умирование, применение плазмы, термомеханическая обработка и др. Все большее значение приобретают кислородно-конверторная выплавка стали, бескоксовая металлургия, производство прецизионных электротехнических и магнитных сплавов и т. п. Быстро возрастающие требования к качеству металла могут быть удовлетворены только на основе применения новой технологии. При таком характере развития металлургии, естественно, увеличивается роль теории и, следовательно, должна расширяться физико-химическая подготовка инженеров-металлургов. [c.6]

    Мартеновский процесс — переработка чугунов разного состава в сталь. Предложен французским металлургом П. Мартеном в 1864 г. В отличие от конверторного метода плавку ведут в печи. Для плавки используют предварительно нагретые газы. М. п, имеет премущество перед конверторным в том, что во время получения стали можно удалять ненужные элементы, проводить анализ металла и добавлять те или иные компоненты для выплавки специальных сталей. [c.80]

    В ЦЗЛ крупных заводов черной металлургии организованы специальные квантометрические лаборатории, которые включают и оптические, и рентгеновские приборы. Это позволяет уменьшить число сотрудников в химических лабораториях. Например, на Ена-киевском металлургическом заводе после внедрения двух квантометров штат химических лабораторий был сокращен со 110 до 73 человек. На более крупных заводах возможно более значительное сокращение штата. Как показывает опыт применения новых квантометрических методов анализа, изменение аналитических методов ведет к изменениям в самом основном технологическом процессе выплавки металла. Ускорение анализа при применении вакуумных квантометров даже в конверторном цехе повышает производительность на 2—3%. Повышение точности анализа позволяет работать на нижних пределах легирования марок сталей и сплавов, что дает большую экономию легирующих материалов. Как показывает опыт работы вакуумных квантометров на заводах МЧМ СССР, применение двух квантометров дает годовой здоно- [c.145]

    Значительные затраты теплоты на подогрев и плавление шихты, на протекание эндотермических реакций требует применения на многих плавильных агрегатах использования высококалорийного топлива. Спецификой высокотемпературных процессов в сталеварении является также необходимость использования кислорода. Как уже отмечалось, спецификой нашей страны является сохранение определенного парка мартеновских печей, которые еще обеспечивают около 20 % производства стали. Использование высококалорийных топлив, кислорода осуществляется почти на всех действующих и проектируемых сталеплавильных агрегатах (мартеновские, двухванные печи, дуговые электропечи, САНДы, рафинировочные агрегаты), а также на вспомогательных производствах (сушка ковшей, подофев лома, обжиг огнеупорных материалов и др.). В мартеновском, конверторном, элекфосталеплавильном производстве при продувке металла кислородом организуется своеобразный обращенный топливный факел факел кислорода горит в окружении технологического топлива — оксида углерода. Получили распросфанение и пофужные (например, газокислородные) факелы. Отметим, что в медеплавильных печах при автогенных процессах образуется своеобразный, так называемый, сульфидный технологический факел [11.24,11.85]. Как уже отмечалось (см. кн. 1, га. 6, а также п. 11.8.2), применительно к металлургии понятие факел имеет достаточно широкое, не только топливное, но и технологическое приложение. Совершенствование методов сжигания, улучшение теплоотдачи от факелов является важным фактором энергосбережения. [c.492]

    При электроплавке часто легирование ванадием, как и многими другими легирующими элементами, проводится через введение ферросплава (в данном случае РеУ). При традиционном способе выплавки легированных ванадием сталей [ 11.77] используется следующая схема (рис. 11.50, а) доменная печь - конвертор с получением конверторного ванадиевого шлака (КВШ) - химическая переработка ванадиевого шлака с получением 60-70 % оксида ванадия У О - ферросплавное производство с использованием электропечи и получением железованадиевого сплава РеУ (содержание ванадия 33-38 %) - выплавка стали в электропечи с использованием феррованадия. Однако этот процесс очень энергоемкий, т.к. он включает такие энергоемкие процессы, как доменный и химической переработки ванадиевого шлака, кроме того, потери ванадия в данной, очень длинной цепочке составляют 68-70 %. При этом впервые получили достаточно достоверные значения энергоемкости классического способа получения РеУ она весьма значительна и составила 157315 кг у.т./т. (табл. 11.10, 11.11) [ 11.82]. При этом высокое значение ТТЧ КВШ (16374 кг у.т./т) получается из-за низкого выхода его после передела ванадиевого чугуна в дуплекс-цехе (77 кг/т полупродукта), поэтому столь значительные величины ТТЧ в последующих переделах, где используется КВШ и продукты его переработки. [c.542]


Библиография для Сталь конверторный процесс: [c.576]   
Смотреть страницы где упоминается термин Сталь конверторный процесс: [c.357]    [c.438]    [c.443]    [c.348]    [c.446]    [c.596]    [c.612]    [c.290]    [c.422]   
Курс технологии минеральных веществ Издание 2 (1950) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Конверторный газ

Сталь конверторная



© 2025 chem21.info Реклама на сайте