Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Липиды структура

    На поверхности воздух — вода фосфолипидные молекулы образуют мономолекулярную пленку, обращенную головками к воде и хвостами в воздух. При увеличении концентрации липидов часть молекул уходит в глубь воды, где при достижении определенной критической концентрации мицеллообразования образуются различные жидкокристаллические структуры — кубическая, гексагональная или ламеллярная [423]. Общий принцип построения этих структур заключается в том, что полярные головки стремятся контактировать с водой, а углеводородные хвосты— друг с другом. Реализация той или иной мезофазы зависит от концентрации липида в системе, температуре, pH и ионной силы раствора. [c.148]


    Значение мицеллярных растворов ПАВ для биологических систем и практики определяется главным образом способностью мицелл солюбилизировать различные вещества. Кроме того, в настоящее время мицеллы рассматривают как модели биологических мембран благодаря сходству некоторых свойств структуры мембран и мицелл. Мицеллы солей желчных кислот играют важную роль в транспорте и адсорбции липидов, являются солюбилизаторами холестерина, обеспечивают вывод лекарств из организма. Примеры практического применения мицелл ПАВ многообразны. Мицеллярные системы обладают сильным моющим действием. При сухой химической чистке происходит солюбилизация обратными мицеллами полярных загрязнений с тканей прямыми мицеллами солюбилизируются жирные углеводородные загрязнения, на чем основано моющее действие ПАВ. [c.445]

    Говоря о нековалентных взаимодействиях, прежде всего нужно отметать ту большую роль, которую они играют в образовании макроскопического вещества из молекул, атомов и ионов. Именно в результате нековалентных взаимодействий скопления атомов или молекул могут существовать в конденсированном состоянии, в виде жидкостей или твердых тел. Важную роль играют эти взаимодействия в случае полимеров. В частности, за счет нековалентных взаимодействий различные комплексы белков объединяются либо друг с другом, либо с нуклеиновыми кислотами при формировании рибосом, хроматина, вирусов, либо липидами при образовании липопротеидных мембран. Таким образом, нековалентные взаимодействия лежат в основе образования важнейших биологических структур, и роль их для биологии особенно велика. [c.101]

    СИНТЕЗ СУПРАМОЛЕКУЛЯРНЫХ СТРУКТУР НА ОСНОВЕ ПОРФИРИНОВ, ЛИПИДОВ и УГЛЕВОДОВ с ЦЕЛЬЮ ИЗУЧЕНИЯ ЖИЗНЕННЫХ ПРОЦЕССОВ, ПРОТЕКАЮЩИХ В КЛЕТКЕ. РАЗРАБОТКА ФОТОСЕНСИБИЛИЗАТОРОВ ВТОРОГО ПОКОЛЕНИЯ ДЛЯ ФОТОДИНАМИЧЕСКОЙ ТЕРАПИИ РАКА [c.16]

    До сих пор мы рассматривали нефтяные нентациклические углеводороды ряда гопана. Безусловно, эта структура является главной для тритерпанов любых нефтей. В геохимическом аспекте весьма симптоматично, что именно гопаны, скелет которых создается простейшей прокариотической клеткой бактерий или сине-зеленых водорослей, занимают такое ведуш ее положение в нефтях [48, 54]. Следует предположить, что углеводороды ряда гопана представляют собой результат деятельности древних микроорганизмов и среди прочих соединений входили в состав липидов их клеточных мембран, т. е. образование гопанов происходило на стадии раннего диагенеза органического вещества осадков. [c.138]


    В дальнейшем выяснилось [105-107], что активация ПОЛ в субклеточных структурах происходит и при росте гипоксии и гипероксии, авитаминозах, гипертермии, патогенезе атеросклероза и других нарушениях нормальной жизнедеятельности. Пероксидные продукты ПОЛ обнаружили и в качестве метаболитов процессов нормальной жизнедеятельности. Пероксиды были идентифицированы в липидах различных органов, тканей животных, растений и микроорганизмов [9, 108—111]. [c.31]

    Существенно, что, варьируя ионный состав электролита, мол<-но менять толщину приповерхностного слоя. Например, ионы Са + способны вытеснять воду из области полярных головок и тем самым сжимать приповерхностный слой [430]. Обычно толщиной этого слоя пренебрегают и считают, что все поверхностные источники электрических полей строго локализованы на границе раздела бислой/липид, а сама эта граница считается геометрической плоскостью. Такое допущение позволяет проводить теоретический анализ электрических явлений на основе классической теории Гуи — Чепмена [431], в рамках которой структура двойного электрического слоя (ДЭС) определяется лишь поверхностными зарядами. При этом оказывается, что поверхностные электрические диполи, если они присутствуют в системе, не влияют на эту структуру. Существует целый ряд проблем, для которых предположение о локализации источников электрических полей строго на границе раздела является слишком грубым. Оказалось, что трехмерность распределения поверхностных электрических зарядов заметно влияет на элект- [c.150]

    Способность тех или иных ПАВ (липидов) стабилизировать черные пленки определяется их структурой и зависит от гидро-фильно-липофильного соотношения данного ПАВ на границе раздела масло—вода. Вопросы подбора ПАВ для образования устойчивых черных пленок рассмотрены в разделе IV. 13. [c.62]

    Разнообразие гликолипидов обусловлено варьированием их липидного и углеводного фрагмента. Они могут быть производными глицеридов, диольных липидов, сфинголипидов, а их углеводную часть составляют моносахариды, олигосахариды и полисахариды различной структуры — в последнем случае вариантов, конечно же, очень много, что и обеспечивает их иммунную способность. [c.128]

    И затем фиксировать, то окажется, что около 30% образовавшихся радиоактивных соединений являются липидами. Структура хлоропластов в значительной своей части состоит из липидов, и быстрый синтез линидов необходим для роста и деления хлоропластов. [c.548]

    Поскольку для многих индивидуальных липидов систематические названия не даны, часто используют родовые (характерные для данного типа) названия, мало связанные со структурой. Упомянем здесь фосфатидиновые кислоты, плазменовые кислоты, сфинголипиды и церамиды для написания их структуры и названия их производных следует обратиться к соответствующим руководствам и правилам. [c.182]

    Однако известно уже несколько тысяч веществ, которые в жидком состоянии обладают, как и твердые кристаллы, анизотропными свойствами. Такие вещества называют жидкими кристаллами. Своеобразие структуры жидких кристаллов проявляется в том, что образующие их частицы могут свободно перемещаться друг относительно друга, при этом их ориентация сохраняется. Частицы или располагаются таким образом, что их оси ориентированы нитеобразно в одном направлении, или размещены в параллельных слоях, внутри которых движение частиц разупорядоченно. Первый тип жидких кристаллов называют нематическим или нитеобразным, второй — смектическим (смегма — мыло). Жидкокристаллическое состояние, реализуется, например при растворении в воде ацетата холестерина, олеатов калия и аммония, различных липидов, а также других веществ, как правило, органической природы, молекулы которых имеют нитеобразную структуру. Анизотропность жидких кристаллов влияет на их электрические, оптические и магнитные свойства. [c.75]

    Липиды, входящие в состав вещества мембран, содержат фосфор. Это так называемые фосфолипиды, структура молекул которых как будто специально приспособлена для создания макрогете-рогенных структур и поверхностей раздела. Дело в том, что многие биологически важные вещества состоят из молекул, в которых можно обнаружить как гидрофильную часть, т. е. группы атомов (как, например, ОН, СООН, NH2), и гидрофобную, состоящую из углеводородных цепей, или циклов. Последние также окружены молекулами воды, но сближение и объединение углеводородных частей, связанные с частичным разрушением упорядоченной водной оболочки, дают в итоге убыль соответствующего термодинамического потенциала, поэтому между углеводородными частями различных молекул в водной среде обнаруживаются силы притяжения ( гидрофобные силы ). Строение фосфолипидов можно представить себе, если в молекуле глицерина заместить два гидроксильных атома водорода на остатки жирных кислот, а третий [c.387]

    Природные соединения делятся на несколько групп, обычно в соответствии с их структурой. К наиболее важным и необходимым для жизни природным продуктам относятся белки, нуклеиновые кислоты, сахариды и липиды. Каждая из этих групп соединений имеет характерные структурные особенности. Другие группы природных веществ имеют какие-либо другие общие свойства. Так, природные красители поглощают свет и сами являются окрашенными, витамины должны присутствовать в пище (обычно в малых количествах), чтобы предупредить заболевание организма, антибиотики представляют собой вещества, образующиеся в микроорганизмах и обладающие химиотерапевтическими свойствами. В микроорганизмах могут вырабатываться и чрезвычайно ядовитые для человека и животных соединения. В качестве примера приведем афлатокси-ны, продукты плесени Aspergillus flavus, которые относятся к наиболее ядовитым соединениям и, кроме того, оказывают сильное канцерогенное действие. Некоторые природные соединения объединяются по способу получения. Так, например, стероиды и терпеноиды образуются из изопреновых фрагментов (откуда возникло их общее название — изопреноиды), алкалоиды — из аминокислот. [c.179]


    Жирные кислоты (неразветвленные алифатические карбоновые кислоты с длинной цепью) в свободном состоянии встречаются только в следовых количествах, однако они являются одной из групп простых молекул, образующих многие липиды. Ацилированные фрагменты молекул, чаще всего содержащиеся в основных липидных группах, являются производными неразветвленных алифатических кислот с четным числом углеродных атомов, обычно Си—С22, но наиболее распространены кислоты С16 и С18. Найдены производные полностью насыщенных и моно-и полиненасыщенных кислот, однако производные карбоновых кислот с группой С С встречаются так же редко, как и с разветвленными цепями или с еще более сложными структурами. Среди ненасыщенных кислот более распространены соединения с г ис( 2)-стереохимической конфигурацией по сравнению с т ранс( )-стереоизомерами, и чаще встречаются несопряженные полиненасыщенные изомеры. Довольно обычны полинена-сыщенные ацильные производные, содержащие группу СН = СН—СНг. Некоторые из наиболее распространенных жирных кислот, входящих в состав липидных соединений, перечислены в табл. 20.1. [c.330]

    Как было сказано выше, фосфолипиды, гликолипиды и сфинго-липиды широко распространены в мембранах живых систем и почти полностью отсутствуют в жирах депо. Несмотря на то что точная функция фосфолипидов и других соединений в мембранах все еще до конца не установлена, в целом хорошо понятно, почему эта группа органических веществ находится в тесной связи с данным типом клеточных структур. Все липиды, описанные выше, начиная с фосфолипидов, имеют характерное [c.336]

    Синтетические катионные липиды и липосомы, полученные на их основе, в настоящее время признаны перспективными системами доставки функциональных генов. Положительный заряд на поверхности частиц обеспечивает слияние с отрицательно заряженными клеточными мембранами. Катионные липосомы нейгрализуют отрицательный заряд цепи ДНК, делают более компактной ее пространственную структуру и способствуют эффективной конденсации. [c.159]

    Накопление Г в клетках бактерий характеризует их стрессовое состояние, вызванное ухудшением условий роста, и инициирует перестройку метаболизма бактерий, необходимую для адаптации клеток к дефициту аминокислот и др источников питания При зтом подавляется синтез рнбосомных и тРНК, транскрипция генов, кодирующих структуру рибосомных белков и белковых факторов трансляции, транспорт углеводов, синтез липидов и дыхание Одновременно усиливается транскрипция оперонов, ответственных за биосинтез аминокислот, и ускоряется распад клеточных белков [c.618]

    Авторами доклада с сотрудниками ведутся многолетние фундаментальные исследования в области выделения, химического и биотехнологического синтеза, установления взаимоотношений структура-свойство-функция и перспектив практического использования природных биологически активных липидов и их синтетических аналогов, а также соединений некоторых других типов с целью создания новых эффективных лекарственных и диагностических препаратов ( руководитель работ - чл.-корр. РАМН, проф. Швец В.И.). [c.10]

    Определить понятие липид" не так просто — в зависимости от того предмета, где этот материал рассматривается, это понятие может быть разным. Чаще всего под этим классом природных веществ рассматривают все природные соединения, нерастворимые в воде и растворимые в органических растворителях. Конечно, признак слишком обширный под это определение попадают природные соединения различной структуры и различной биологической функциональности. Иногда их подразделяют на омыляемые липиды — те, которые при щелочном гидролизе дают жирные кислоты и на неомыляе-мые липиды — те, которые не подвергаются гидролизу. Но это мало облегчает задачу, так как вторая группа по-прежнему остается слишком неопределенной. В настоящем издании мы будем придерживаться определения липидов как жирных кислот и их производных, рационального как с химических, так и с биологических позиций. [c.103]

    Послойное утончение мыльных пленок с образованием ряда метастабильных пленок (стратификация) было обнаружено еще в работах Йохонно [153] и Перрена [197]. На ряд аналогий между свойствами свободных пленок и жидкокристаллических фаз было указано в работах [198, 199], а между объемными и поверхностными структурами липидов в исследованиях шведских физико-химиков [200]. Недавно были проведены более детальные сопоставления свойств черных пленок и соответствующих объемных слоистых структур [195, 196]. Оказалось, что толщина черных пленок и межслойные расстояния в жидкокристаллической фазе приблизительно одинаковы и изменяются аналогично изменению концентрации электролита. Вместе с тем обнаруживаются и существенные различия. Например, концентрация электролита, при которых наблюдаются фазовые переходы в пленках и в объемной фазе, не совпадают. Имеются различия и в свойствах многослойных водных пленок и обычных вторичных черных пленок [195]. [c.155]

    А.Ф. Добрянский предполагал, что все нафтены образуются в результате реакций гидродециклизации исходных полициклических молекул,которые в свою очередь были унаследованы в готовом виде от нефтематеринского вещества в основном растительного происхождения. Он отрицал схему Энглера, по которой все циклические структуры образовались путем циклизации ненасыщенных кислот на том основании, что сложно представить массовую гибель огромного количества рыб, необходимого для образования нафтенов нефти. Но ненасыщенные кислоты - это не только рыбий жир. Это прежде всего липиды зоо- и фитопланктона, некромасса бактерий. Круг возможных предшественников циклических структур, вероятно, не следует сводить только к непредельным кислотам. Они просто наиболее изучены. Последними работами по современным осадкам показано, что кроме кислот в них присутствуют непредельные УВ, спирты, кетоны, содержащие в своем составе до 40 атомов С, а иногда и более [43]. Циклизация этих структур может дать всю гамму нафтеновых и ароматических УВ, обнаруженных в нефтях. Этот механизм достаточно детально описан в работах Б.А. Смирнова на примере современных осадков. На основе этого механизма можно объяснить присутствие в нефтях алкилбензолов и алкилциклогексанов с длинными алкильными цепями. В живой природе (если следовать схеме А.Ф. Добрянского) нет подобных структурных аналогов. [c.56]

    Глюкозо-6-фосфатаза — интегральный белок микросомальных мембран, Активный центр фермента обращен внутрь везикул, поэтому для полного выявления его активности и изучения кинетических свойств необходима обработка мембранного препарата поверхностноактивными веществами — детергентами. Детергенты представляют собой специальную группу липидов, относящихся к классу растворимых амфифиль-ных соединений, т. е. соединений, имеющих в своей структуре как гидрофильные, так и гидрофобные участки. В зависимости от пространственной структуры, соотношения гидрофильной и гидрофобной зон, наличия заряженных групп детергенты обладают различным характером действия на биологические мембраны от мягкого, вызывающего лишь дезориентацию структурных компонентов мембран, до значительно выраженной их солюбилизации и растворения мембран. [c.370]

    В издании рассмотрены все основные классы природных соединений, для которых приведены кпассификации, особенности молекулярной структуры, таблицы типичных представителей, схемы характерных химических реакций, значимые медико-биологические свойства, пути биосинтеза, природные источники При создании книги использована оригинальная литература по 2000 год вкпючительно Содержание книги отражено в 13 главах Введение, Простейшие бифункциональные природные соединения. Углеводы, Аминокислоты, пептиды и белки. Липиды жирные кислоты и их производные, Изопреноиды-1, Изопреноиды-И, от сесквитерпенов до политерпенов. Фенольные соединения. Алкалоиды и порфирины. Витамины и коферменты, Антибиотики, Разные группы природных соединений, Металло-знзимы, Предметный указатель [c.2]

    Под третичной структурой Ь понимают расположение его полипептидной цепи в пространстве. Существ, влияние на формирование третичной структуры оказывают размер, форма и полярность аминокислотных остатков. В молекулах глобулярных Б. большая часть гидрофобных остатков скрыта внутри глобулы, а полярные группировки располагаются на ее пов-сти в гидратированном состоянии. Однако ситуация не всегда настолько проста. Связывание белка с др. молекулами, иапр. фермента с его субстратом или коферментом, почти всегда осуществляется с помощью небольшого гидрофобного участка на пов-сти глобулы. Область контакта мембранных Ь с липидами формируется преим. гидрофобными остатками. Третичная структура многих Ь составляется из иеск. компактных глобул, наз. доменами (рис. 3). Между собой домены обычно бывают связаны тонкими перемычками -вытянутыми полипеп-тидньи и цепями. Пептидные связи, расположенные в этих цепях, расщепляются в первую очередь при обработке Б. [c.249]

    ГЛИКОЛИГШДЫ (от греч. glyk s-сладкий и липиды), соед., построенные из липидного и углеводного фрагментов, соединенных ковалентной связью. Г. пгароко распространены в природе (они обнаружены в животных, растениях и микроорганизмах) и охватывают разнородные по структуре соединения. [c.581]

    Флуоресцентные Л з содержат группировку, обусловливающую флуоресценцию соед (II) Параметры спектров таких Л з (интенсивность испускания, поляризация и др ) позволяют получать данные о подвижности и упорядоченности отдельных молекул и надмолекулярных структур (напр, участков биол мембран), о взаимод молекул и св-вах окружения (напр, полярности) Л 3 в изучаемой системе Флуоресцентньге Л з также применяют для изучения распределения и метаболизма липидов в клетках и тканях [c.597]

    Распределение молекул в плоскости Л б может быть неоднородным и зависит от состава липидов, фазового состояния, а также присутствия мембраноактивных в-в Такое распределение, приводящее к образованию липидных доменов (кластеров) разного состава, происходит, если липиды различаются по структуре полярных головок, углеводородные цепи отличаются по длине более чем на две метиленовые группы и имеют разную степень ненасыщенное ги Распределение липидов между сторонами бислоя также м б неодинаковым и зависит от его кривизны, [c.597]

    Л. б. не разрушают мембраны, не проникают через липидный бислой и осуществляют обмен в мягких условиях, близких к физиологическим. Благодаря этим св-вам они нашли широкое применение при исследовании структуры и ф-ций биол. мембран. Их используют для избирательного введения меченых липидов в наружный и внутренний монослой мембраны, для направленной модификации в ней липидного состава, для изучения трансмембранной миграции липидных молекул и их распределения в мембранах, для выяснения механизмов функционирования мембранных ферментов. [c.598]


Смотреть страницы где упоминается термин Липиды структура: [c.339]    [c.140]    [c.58]    [c.43]    [c.622]    [c.65]    [c.7]    [c.108]    [c.109]    [c.182]    [c.303]    [c.475]    [c.628]    [c.628]    [c.665]    [c.125]    [c.598]   
Стратегия биохимической адаптации (1977) -- [ c.350 ]

Биологические мембраны Структурная организация, функции, модификация физико-химическими агентами (2000) -- [ c.13 , c.14 ]




ПОИСК





Смотрите так же термины и статьи:

Липиды



© 2025 chem21.info Реклама на сайте