Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

также Липидные бислои

    Предложенная теория позволяет объяснить некоторые необычные свойства структурных сил, в частности, их. уменьшение при переходе липидного бислоя из жидкой фазы в твердую [419], несмотря на то, что при этом возрастает поверхностная плотность диполей. В процессе такого фазового перехода вода вытесняется из области полярных головок, что означает снижение степени гидратации, описываемой параметром L, и, следовательно, фактора 7, входящего в Ро [см. (9.42) ]. Аналогичным образом можно объяснить также снижение гидратационных сил у тех фосфолипидов, у которых площадь на одну молекулу So меньше [458]. [c.166]


    Толщина липидного бислоя определяется прежде всего длиной углеводородных цепей и обычно варьирует в пределах 4—5 нм. Она зависит также от наличия двойных саязей и боковых заместителей в цепи, т. е. в конечном счете от плотности упаковки липидных молекул в бислое. Присутствие в углеводородных цепях, двойных связей в у С конфигурации, боковых метильных групп и других [c.565]

    Липидные бислои могут быть приготовлены в различных конфигурациях бимолекулярные липидные (также называемые черные липидные) мембраны (БЛМ) и липосомы. [c.330]

    Структурная организация мембран до сих пор до конца не выяснена и схематически описывается рядом гипотетических моделей, одна из которых — жидкостно-мозаичная модель показана на рис. 15.1. Эта модель демонстрирует также структуру липидного бислоя хвост к хвосту , показанную отдельно на рис. 15.2. [c.442]

    Проблема формирования в клетках организмов замкнутых везикул, состояш их из липидного бислоя, заслуживает особого внимания. По-видимому этот процесс в клетках, также как и в модельных системах, носит характер спонтанной самоорганизации. Он очевидно не связан непосредственно с транспортом липидов из [c.17]

    Сенсибилизированное фотоокисление липидов вызывает увеличение вязкости липидной фазы мембран, а также их структурные изменения, что приводит к резкому снижению барьерных свойств липидных бислоев. [c.455]

    Возникает вопрос с чем связано такое разнообразие фосфолипидов в плазматических мембранах эукариот Возможно, липидный бислой является двумерным растворителем для белков в составе мембраны, подобно тому как вода служит трехмерным растворителем в водном растворе. Можно предположить также, что некоторые мембранные белки функционируют только в присутствии специфических фосфолипидных полярных групп, напоминая в этом отнощении многие ферменты, для активирования которых в водном растворе необходим какой-либо определенный ион. Это предположение подтверждается данными о том, что в искусственных липидных бислоях для оптимальной активности функционирующих мембранных белков требуются определенные специфические фосфолипиды. [c.356]

    Комплексы, атакующие мембраны, после негативного контрастирования имеют на электронных микрофотографиях характерный вид они образуют водные поры, пронизывающие мембрану (рис. 18-44). По этой причине, а также благодаря нарушению структуры близлежащего липидного бислоя мембрана становится легко проницаемой. Поскольку малые молекулы могут проходить сквозь мембрану около комплексов и через них. а макромолекулы остаются в клетке, нарушается нормальный клеточный механизм контроля водного баланса (см. схему 6-1. т. 1). Поэтому клетка путем осмоса поглощает воду и в результате набухает и лопается. Этот процесс настолько эффективен, что очень небольшое число комплексов, атакующих мембраны (возможно, даже один), может убить эритроцит. Комплексы могут разрушать даже вирус, имеющий оболочку, для которого не характерна большая разность осмотического давления по обе стороны мембраны и который поэтому не подвержен осмотическому лизису вероятно, это происходит из-за дезорганизации мембраны вируса. [c.258]


    Сравнительно недавно появилась молекулярная модель структурной организации липидного бислоя биомембран, обладающая, подобно сотам, гексагональной упаковкой фосфолипидов и периодичностью структуры [42], которая также базируется на общепринятой ориентации фосфолипидов. [c.148]

    Его величина также уменьшается с ростом а и ф. Из формулы следует, что зависимость критической поры от мембранного потенциала становится заметной лишь при значительном превышении электрической составляющей над величиной поверхностного натяжения. Расчеты показывают, что для липидного бислоя в жидкокристаллическом состоянии величина мембранного потенциала не может быть меньше 0,23 В. [c.53]

    Основной вывод состоит в том, что стабильность липидного бислоя и клеточной мембраны, лишенной белкового каркаса, определяется липидными порами. Эти поры образуются в местах дефектов жидкокристаллической структуры липидного бислоя. Липидные поры возникают в результате тепловых флуктуаций поверхности бислоя, а также могут рождаться при мембранном стрессе, сопровождающем фазовый переход мембранных липидов, при электрическом пробое и осмотической лизисе. Судьба мембраны в этих случаях будет зависеть вероятностным образом от того, будет ли липидная пора превышать некоторый критический размер или нет. В первом случае мембрана порвется, во втором случае ее структура сохранится. При сохранении стабильности мембран поры залечиваются, пробегая при этом все промежуточные значения радиусов. Минимальные радиусы липидных пор могут стать сравнимыми с размерами избирательных белковых каналов, регулирующих в норме ионную проницаемость клеточных мембран. На последних этапах затекания липидные поры мо- [c.65]

    УФ-излучение в интервале длин волн 240—390 нм эффективно поглощается такими структурными компонентами эритроцитарной мембраны, как полиненасыщенные жирные кислоты фосфолипидов, а также ароматические и серосодержащие остатки интегральных белков. Необходимо отметить, что мембранные эффекты УФ-облучения в значительной степени вызываются пероксидным окислением липидов и лишь частично обусловлены фотохимическими превращениями белков. Следовательно, поглощение УФ-излучения в интервале длин волн 240—390 нм указанными выше хромофорами эритроцитарных мембран индуцирует такие структурные перестройки липидного бислоя и интегральных белков, которые, в свою очередь, затрагивают конформационное состояние АХЭ и приводят к увеличению ее функциональной активности. [c.150]

    Фосфолипаза В катализирует отщепление гидрофильного спирта от фосфоглицеридов и сфингомиелинов. В результате отщепления полярных головок от молекул фосфолипидов могут нарушаться электростатические взаимодействия фермента с молекулами окружающих его фосфолипидов, в частности, кислого липида — фосфатидилсерина, являющегося, по-видимому, аннулярным липидом для ацетилхолинэстеразы. Фосфатидилсерин, а также фосфатидилэтаноламин локализованы преимущественно во внутренней половине липидного бислоя. Можно предположить, что гидролиз фосфолипидов и фосфатидилсерина не вызывает конформационных изменений молекул фермента, затрагивающих его активный центр, поэтому активность АХЭ при обработке мембран фосфолипазой практически не изменяется. Необходимо отметить, что обработка мембран фосфолипазой индуцирует изменения упаковки и подвижности фосфолипидов, вязкости и асимметрии липидной фазы, белок-липидных взаимодействий. Воздействие УФ-излучения на модифицированные мембраны приводит к нарушениям в функционировании мембраносвязанной АХЭ, отличающимся по направленности от таковых при облучении интактных мембран. Эти нарушения являются результатом изменения конформационного состояния продуктов гидролиза фосфолипидов в мембране при воздействии УФ-света. [c.162]

    Липиды в мембранах эритроцитов находятся почти исключительно в форме бислоя. По данным ЯМР, в эритроцитах человека таких липидов не менее 97 %. Вязкость липидного бислоя мембран эритроцитов выше, чем для других мембран. Это обусловлено высоким содержанием в них холестерина. В табл. 2—4 Приложения дана подробная количественная характеристика состава липидов и фосфолипидов мембран эритроцитов млекопитающих, а также жирнокислотного состава фосфолипидов в эритроцитах человека и быка. [c.231]

    Флуоресцентные зонды и метки являются удобным инструментом для исследования биологических мембран и мембранных ферментов. Испо 1ьзование зондов разной природы, способных связываться с белками или встраиваться в различные области липидного бислоя, а также меток, ковалентно реагирующих с функциональными группами белков или липидов, позволяет получить ценную информацию о состоянии и подвижности белка в мембране, состоянии липидного матрикса, характере белок-белковых и белок-липидных взаимодействий. [c.365]

    По химическим и физико-химическим свойствам воски близки к жирам, отличаясь от последних большей инертностью, особенной устойчивостью к гидролизу — они могут быть гид-ролизованы с трудом и только в щелочной среде. Для них также нехарактерно окисление по типу прогорка-ния". Гидрофобность восков также более ярко выражена по сравнению с глицеридами, фосфолипидами и другими жироподобными соединениями — они вообще не образуют поверхностно-активных пленок и макроструктур, подобных липидным бислоям. [c.131]


    Молекулярная организация мембран. Структурная основа М. 6-липидный бислой. В продольной плоскости м.б. представляет собой СЛ0ЖН5ГЮ мозаику из разнообразных липидов и белков, причем их распределение по пов-сти М. б. неоднородно. В нек-рых М. б. имеются обширные участки липидного бислоя, практически свободные от белков (напр., в эритроцитах белки занимают только 35% площади пов-сти всей М.б., в микросомах-23%). При высоком содержании белка в М. б. липиды не образ5тот сплошной бислой, а располагаются в виде отдельных вкраплений между белковыми молекулами. Сам липидный бислой в мембране может иметь доменную структуру в результате, напр., сосуществования несмешиваемых липидных фаз, находящихся в двух разл. физ. состояниях - гелевом и жидкокристаллическом. Часть липидов в М. 6. может находиться также в составе т. наз. небислойных фаз (мицеллярная фаза, гексагон. фаза и др.). Ассоциации липидов в М.б. способствует также их взаимод. с многозарядными катионами (Са " , Mg и др.), периферич. белками, нек-рыми мембраноактивными в-вами (напр., гормонами). [c.30]

    Белки могут специфично взаимэдействэвать с другими макромолекулами, например с нуклеиновыми кислотами и полисахаридами. К макромолекулам относят также липиды, поскольку они образуют в водных растворах крупные агрегаты. В нуклеопротеидах, гликопротеидах или липопротеидах белок может составлять менее 50%, и суммарные свойства комплексов часто определяются небелковы.ми фрагментами. Более того, и образование, и стабильность структуры белков могут зависеть от их партнеров по комплексам. Эго наиболее очевидно для тех мембранных белков, которые соединяют различные углеводородные фрагменты липидного бислоя. [c.266]

    Плазменные липопротеины (ЛП)—это сложные комплексные соединения, имеющие характерное строение внутри липопротеиновой частицы находится жировая капля (ядро), содержащая неполярные липиды (триглицериды, эстерифицированный холестерин) жировая капля окружена оболочкой, в состав которой входят фосфолипиды, белок и свободный холестерин. Толщина наружной оболочки липопротеиновой частицы (ЛП-частица) составляет 2,1—2,2 нм, что соответствует половине толщины липидного бислоя клеточных мембран. Это позволило сделать заключение, что в плазменных липопротеинах наружная оболочка в отличие от клеточных мембран содержит липидный монослой. Фосфолипиды, а также неэсте-рифицированный холестерин (НЭХС) расположены в наружной оболочке таким образом, что полярные группы фиксированы наружу, а гидрофобные жирно-кислотные хвосты —внутрь частицы, причем какая-то часть этих хвостов даже погружена в липидное ядро. По всей вероятности, наружная оболочка липопротеинов представляет собой не гомогенный слой, а мозаичную поверхность с выступающими участками белка. Существует много различных схем строения ЛП-частицы. Предполагают, что входящие в ее состав белки занимают только часть наружной оболочки. Допускается, что часть белковой молекулы погружена в ЛП-частицу глубже, чем толщина ее наружной оболочки (рис. 17.4). Итак, плазменные ЛП представляют собой сложные надмолекулярные комплексы, в которых химические связи между компонентами комплекса носят нековалентный характер. Поэтому применительно к ним вместо слова молекула употребляют выражение частица . [c.574]

    Хотя жидкомозаичная модель сейчас общепризнана, следует помнить, что она все же представляет собой упрощенное и схематичное отражение столь сложной и разносторонней системы, как биологическая мембрана. Одним из основных постулатов этой модели является предположение о свободном движении молекул белков и липидов в двумерной фазе липидного бислоя. Однако вскоре выяснилось, что не все белки и липиды способны к свободному перемещению, в некоторых случаях их подвижность сильно ограничена. Во многих мембранах интегральные белки находятся в фиксированных положениях за счет высокой концентрации белка, вследствие его агрегации, образования липидных доменов, а также в результате взаимодействия белков с цитоскелетом, образуемым внутренними структурами клетки. [c.585]

    Таким образом, в настоящее время модель Синджера — Николсона нуждается в значительных уточнениях. Особенность современного этапа исследований по молекулярной организации биологических мембран состоит в том, что настала пора переходить от общих всеобъемлющих схем к построению детальных топографических карт конкретных мембранных систем, оценивая степень подвижности отдельных компонентов в мембране, их взаимное расположение, а также специфичность взаимодействия друг с другом. Воспользовавшись образным сравнением липидного бислоя с морем , а белков — с айсбергами , можно сказать чтобы уверенно плавать в липидном море , ие опасаясь крушений и столкновения с айсбергами, необходимо иметь на руках надежную лоцию и верный прогноз погоды. Именно в этом направлении развиваются сегодня работы по молекулярной организации биологических мембран во многих лабораториях мира. [c.586]

    Фосфолипидные бислои можно получить также на маленьких отверстиях перегородок, разделяющих два водных раствора. Липидные бислои и липосомы служат предметом интенсивных исследований, так как оказалось, что по своим свойствам они очень сходны с природными мембранами. Например, и полярные липидные бислои, и природные мембраны обладают высоким электрическим сопротивлением, вследствие чего и те и д]ругйе непроницаемы для катионов или анионов, но легко пропускают молекулы воды. [c.341]

    Важнейшая роль в эволюции клеточных мембран, по-видимому, принадлежит классу амфипатических молекул, которые обладают простым физико-химическим свойством одна их часть гидрофобна (нерастворима в воде), а другая - гидрофильна (растворима в воде). Когда такие молекулы попадают в воду, они располагаются гак, что их гидрофобные части приходят в гесный контакт друг с другом, а гидрофильные части - в контакт с водой. Амфипатические молекулы способны спонтанно агрегировать, образуя двухслойные структуры в виде маленьких замкнутых пузырьков, изолирующих водное содержимое от внешней среды (рис. 1-10). Этот феномен может быть продемонстрирован в пробирке путем простого смешивания фосфолипидов и воды при подходящих условиях действительно образуются маленькие пузырьки. Все ныне существующие клетки окружены плазматической мембраной, состоящей из амфипатических молекул, главным образом фосфолипидов, такой структуры в клеточных мембранах в состав липидного бислоя входят также амфипатические белки. В электронном микроскопе такие мембраны имеют вид листков толщиной около 5 нм с выраженной трехмерной структурой (следствие плотной укладки фосфолипидных молекул хвост к хвосту). [c.19]

    Слипание бислоее и объединение бислоее представляют собой последовательные этапы слияния мембран. Это фундаментальные клеточно-мембранные процессы, происходящие не только при экзоцитозе и эндоцитозе, но также и при делении или слиянии клеток (рис. 6-86). Ни в одном из этих случаев механизм слияния мембран пока не понят, однако несколько интересных выводов можно сделать из анализа слияния некоторых вирусов, обладающих мембранной оболочкой, с клетками при инфекции. Клеточные мембраны никогда не сливаются самопроизвольно. Для гого чтобы мембраны слились, необходимо, чтобы молекулы воды были вытеснены взаимодействующими липидными бислоями, которые бы сблизились до расстояния 1,5 нм между собой. Процесс этот энергети- [c.423]

Рис. 14-2. Схема эпителиальной клетки из тонкой кишки показано, как плотные контакты разграничивают области плазматической мембраны, в которых могут находиться различные транспортные белки. Такое разграничение обеспечивает перенос питательных веществ из просвета кишки через эпителиальный слой в кровь. В представленном здесь примере глюкоза активно транспортируется в клетку глюкозпими насосами апикальной поверхности, а затем выходит из клетки путем облегченной диффузии при участии белков - пассивных переносчиков глюкозы, находящихся в базолатеральной области мембраны Плотные соединения, по-видимому, ограничивают перемещение белков определенными участками плазматической мембраны, действуя как диффузионные барьеры внутри ее липидного бислоя эти соединения блокируют также диффузию липидных молекул в наружном (но не во внутренном) листке липидного бислоя. Рис. 14-2. Схема <a href="/info/105949">эпителиальной клетки</a> из тонкой кишки показано, как <a href="/info/100512">плотные контакты</a> разграничивают области <a href="/info/101065">плазматической мембраны</a>, в которых могут находиться <a href="/info/1821159">различные транспортные</a> белки. Такое разграничение обеспечивает перенос <a href="/info/103029">питательных веществ</a> из просвета кишки <a href="/info/1890400">через эпителиальный</a> слой в кровь. В представленном здесь примере глюкоза активно транспортируется в клетку глюкозпими насосами <a href="/info/1389839">апикальной поверхности</a>, а затем выходит из <a href="/info/1345802">клетки путем</a> облегченной диффузии при <a href="/info/143979">участии белков</a> - <a href="/info/1390047">пассивных переносчиков</a> глюкозы, находящихся в базолатеральной <a href="/info/1632401">области мембраны</a> <a href="/info/722713">Плотные соединения</a>, по-видимому, ограничивают <a href="/info/1339145">перемещение белков</a> определенными участками <a href="/info/101065">плазматической мембраны</a>, действуя как <a href="/info/71885">диффузионные барьеры</a> внутри ее <a href="/info/179541">липидного бислоя</a> эти соединения блокируют <a href="/info/135599">также диффузию</a> <a href="/info/1386865">липидных молекул</a> в наружном (но не во внутренном) листке липидного бислоя.
    Два типа гликопротеидных шипов, которые обладают активностями НА и КА, вставлены в липидный бислой вирусной мембраны. Распределение шипов не отражает значительно большего количества этих белков в вирионе. На внутренней поверхности липидного бислоя расположен мембранный белок (М1), представляющий собой главный структурный белок вирусной мембраны. Внутри оболочки содержится 8 сегментов генома однонитчатой РНК в форме спиральных рибонуклепротеидов. Сегменты 1 и 2 нарисованы так, чтобы показать, что белок НР ассоциирован с РНК, образуя рибонуклеопротеидный комплекс, который вместе о меньшими количествами белков РВ1, РВ2 и РА обладает РНК-зависимой активностью РНК-полимеразы. Показаны также кодируемые назначения 8 сегментов РНК. Сегменты 7 и 8 РНК кодируют более чем по одному белку, однако М2, N81 и N82 обнаружены только в инфицированных клетках и не являются структурными компонентами вируса. Диаграмма дана не в масштабе. [c.33]

    В 1979 г, было показано, что белки плазматической мембраны способны к вращательной диффузии - поворотам вокруг оси, перпендикулярной плоскости бислоя, и самопроизвосльному передвижению вдоль плоскости самой мембраны, что получило название "латеральной диффузии". Однако белки не могут совершать так называемые флип-флопы, т.е. перевертываться и перескакивать с одной стороны бислоя на другую. Латеральная диффузия позволяет мембранным белкам совершать перемещения по мембране и взаимодействовать между собой, а также обеспечивает распространение мембранных компонентов из мест их синтеза в другие области клеток. Текучая структура липидного бислоя дает возможность мембранам сливаться, не утрачивая способности к регуляции их проницаемости и реализации специфических функций. [c.56]

    Изучение физико-химических свойств мембран удобно проводить на моделях монослоев, которые получаются при нанесении липидов на поверхность воды. Повышение давления и уплотнение монослоя приводят к тому, что подвижность углеводородных цепочек уменьшается, их взаимодействие друг с другом растет, а полярные головки фиксируются на поверхности раздела фаз. В пределе происходит такое уплотнение монослоя, где плошадь поперечного сечения молекулы липида не зависит от длины углеводородной цепи. Монослой представляет собой лишь половину липидного бислоя мембраны, и более удобной моделью служат различные искусственные бислойные липидные мембраны (БЛМ). Плоские ламеллярные структуры, могут сливаться, образуя замкнутые везикулярные частицы (липосомы), в которых липидные бислои отделяют внутреннюю водную фазу от наружного раствора. В везикулярные частицы можно встраивать белковые молекулы и другие компоненты биологических мембран для изучения механизмов их функционирования в биомембранах. Плоские БЛМ используются для изучения барьерных функций, электромеханических характеристик, а также межмолекулярных взаимодействий в мембранах. Электростатические взаимодействия осуществляются между заряженными группами либо в пределах одного полуслоя (латеральные), либо между разными слоями (трансмембранные). Дисперсионные вандерваальсовы взаимодействия между поверхностями мембран обнаруживаются на расстояниях до 1000 А. Это значительно превышает расстояния, где проявляется [c.131]

    Зависимости (3.65)—(3.67) предполагают, что скорость диффузии существенно меньше, чем скорость растворения и выделения газа поверхностями пленки и что адсорбционные слои ПАВ не оказывают влняння на перенос 1аза. Однако извес I о, что мономолекулярные пленки нз некоторых нерастворимых ПАВ (например, цетилового спирта) заметно уменьшают скорость испарения водной подложки [46]. При больших поверхностных давлениях скорость испарения может уменьшаться в 5—10 раз. Существенное влияние структуры липидных бислоев на проницаемость газов, а также воды и электролитов обнаружено при изучении свойств везикул (лнпосом) и плоских черных углеводородных пленок в водной среде [319]. Сведения о влиянии адсорбционных слоев ПАВ на скорость адсорбции и десорбции газа в пенных системах менее определенны [153]. [c.142]

    Наша модель по той роли, которая придается ван-дер-ваальсовым взаимодействиям липид-белок, а также периодичности строения, приближается к модели Бенсона [19]. Однако модель Бенсона нарушает один из важных принципов, установленных для мембраны — непрерывности липидного бислоя, в то время как в нашей модели он полностью реализуется. Кроме того, возникновение периодичности в нашей модели является непосредственным следствием симметрии олигомерных белков, формирующих структурно-функциональный блок, в то время как в работе [19], олигомерная природа входящих в повторяющуюся структуру белков не вскрывается. Существенно также, что модель [19] не позволяет объяснить, в чем состоит молекулярная функция фосфолипидов при переносе электронов, в то время как в нашей модели бифункциональные группировки фосфолипидов участвуют в формировании зон ССИВС, обеспечивающих перенос энергии в мембранах. [c.161]

    В ТО-е гг. первым исследованием упаковки липидов вблизи мембранного белка в небольпаих временных интервалах (< 10 с) было определение подвижности спин-меченной жирной кислоты в реконструированной системе цитохромоксидаза — эндогенные митохондриальные фосфолипиды методом ЭПР. В дальнейшем подобные эксперименты проводились с использованием цито-хромоксидазы и цитохрома и липидных бислоев, содержаш их грамицидин А, а также мембраны микросом печени крысы, эритроцитов, вирусов Синдбис и везикулярного стоматита. Было показано, что значительная часть липидов в этих мембранах иммобилизована за счет белок-липидных взаимодействий. Количество иммобилизованных липидов при температурах 20—40 °С составляет примерно 0,2 мг на 1 мг белка (47 молекул фосфолипидов на белковый комплекс) цитохромоксидазы, что соответствует приблизительно одному слою липидов вокруг белковой глобулы. Примерно такое же количество (45—90) молекул иммобилизуется за счет взаимодействия с Са -АТФазой саркоплазматического ре-тикулума. Понижение температуры может приводить к возрастанию количества иммобилизованных липидов в 2—3 раза. [c.59]


Смотреть страницы где упоминается термин также Липидные бислои: [c.604]    [c.565]    [c.577]    [c.579]    [c.584]    [c.585]    [c.623]    [c.351]    [c.324]    [c.333]    [c.361]    [c.379]    [c.55]    [c.52]    [c.182]    [c.207]    [c.402]   
Молекулярная биология клетки Том5 (1987) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Бислои липидные



© 2025 chem21.info Реклама на сайте