Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полиарилаты кислот

    Полиэфиры дифенилолпропана и ароматических двухосновных кислот. Полиарилаты. Полиэфиры различных дикарбоновых кислот и двухатомных фенолов носят название полиарилатов. В качестве двухатомного фенола в синтезе полиарилатов может быть использован дифенилолпропан . Коршак, Виноградова и др. получили большое число полиарилатов взаимодействием дихлорангидридов дикарбоновых кислот с двухатомными фенолами, в частности с дифенилолпропаном  [c.47]


    Получены, кроме того, полиарилаты на основе перфторированного по метильным группам дифенилолпропана и следующих дикарбоновых кислот  [c.48]

    ПОЛИАРИЛАТЫ — гетероцепные сложные полиэфиры, получаемые взаимодействием двухатомных фенолов (или их производных) с дикарбоновыми кислотами (или их производными). Из П. изготовляют диэлектрики, пенопласты, пленки и другие изделия, обладающие высокой теплостойкостью. [c.195]

    Рассматриваемая техника поликондеисации успешно применяется для синтеза полимеров из многих дифенолов, и, по-видимому, она вообще применима для синтеза полиарилатов из тех дифенолов, натриевые соли которых растворимы в воде. Особенно она рекомендуется для получения полиэфиров из хлорангидридов ароматических кислот, поскольку они трудно гидролизуются сильнощелочными растворами солей дифенолов. [c.149]

    В предыдущих синтезах (№ 63—65) описано получе-е полиэфиров (полиарилатов) из дихлорангидридов карбоновых кислот и дифенолов. Полиарилаты на ос-ве алифатических дикарбоновых кислот могут быть кже получены реакцией ацидолиза сложных эфиров фенолов свободной кислотой [85]. [c.155]

    Интересен вопрос равновесности процесса при высокотемпературном методе синтеза полиарилатов поликонденсацией хлорангидридов дикарбоновых кислот с бисфенолами. [c.11]

    Полиарилаты ароматических дикарбоновых кислот и бисфенолов при нагревании под действием катализаторов или при УФ-облучении претерпевают перегруппировку Фриса [4, 114, 115], приводящую к превращению сложноэфирных связей в оксогруппы и с образованием у ароматических ядер в орто-положении к оксо- [c.25]

    Остановимся также на смешанных блок-полиарилатах, синтезируемых высокотемпературной поликонденсацией в растворе хлорангидридов дикарбоновых кислот, бисфенолов и различных низкомолекулярных полимеров с концевыми гидроксильными группами [4, 338-343]. В качестве таких блочных компонентов были использованы  [c.79]

    Было установлено, что на микроструктуру конформационно-регулярных полиарилатов влияют строение исходных соединений (бисфенолы, дихлорангидриды дикарбоновых кислот и третичные амины) и условия проведения акцепторно-каталитической полиэтерификации [373-384]. [c.86]

    В частности, было установлено, что физико-механические свойства полиарилата изофталевой кислоты и фенолфталеина заметно изменяются в зависимости от растворителя, в котором проводили процесс [390]. [c.93]

    Химическое строение полиарилатов фенолфталеина и ароматических дикарбоновых кислот определяет высокую жесткость их макромолекул. Поэтому при синтезе таких полиарилатов в дитолилметане, который не является растворителем образующегося полимера, свободная энергия образования свернутых макромолекул должна быть меньше свободной энергии образования развернутых. Это-то и приводит к отбору в процессе синтеза глобулярных форм макромолекул, что и обуславливает у полиарилата фенолфталеина, синтезированного в дитолилметане, глобулярный тип надмолекулярной структуры. При синтезе же полиарилата фенолфталеина в "хороших" растворителях, например в а-хлорнафталине или нитробензоле, преимущественно синтезируются развернутые (вытянутые) макромолекулы. В результате этого возникают фибриллярные надмолекулярные структуры. Полимеры же с такой надмолекулярной структурой, естественно, обладают лучшим комплексом физико-механических свойств, как это можно видеть из табл. 4.14 на примере полиарилатов изофталевой кислоты и фенолфталеина, синтезированных в разных средах. [c.93]


    Сведения об использовании фенолфталеина для получения полиэфиров, алкидных, эпоксидных, фенолформальдегидных и других полимеров начали появляться в патентах и публикациях начиная с 40-х годов [3, 5]. Характерным для них было то, что фенолфталеин применялся просто как один из диолов без учета его специфического влияния на свойства полимеров. Началом систематических целенаправленных работ по кардовым полимерам следует считать синтез высокомолекулярных полиарилатов фенолфталеина и различных дикарбоновых кислот, осуществленный в 1961 г., когда, по существу впервые, было обращено внимание на специфический вклад кардовой фталидной группировки в формирование комплекса свойств полимеров [6, 7]. [c.106]

    Сведения о синтезе и исследовании кардовых полиарилатов содержатся в ряде работ [2-4, 6-89]. Наиболее целесообразным методом их получения является поликонденсация дихлораигидридов дикарбоновых кислот с двухатомными фенолами, имеющих в своем составе кардовые группировки, которая может быть осуществлена с учетом строения исходных мономеров высокотемпературной поликонденсацией в растворе как акцепторно-каталитическая поликонденсация или межфазным путем [8, 10-12, 14, 15, 49, 50, 55-58]. [c.106]

    Начиная с 1963 г. появился ряд сообщений о синтезе и свойствах ненасыщенных полиарилатов, содержащих при ароматических ядрах аллильные группы Такие полиарилаты были получены поликонденсацией дихлорангидридов дикарбоновых кислот с диал-лильным производным дифенилолпропана — 2,2-бис-(4 -окси-3 -ал-лилфенил)-пропаном — или со смесью этого диаллильного производного с фенолфталеином, дифенилолпропаном и другими двухатомными фенолами. Строение этих полиарилатов можно представить формулой  [c.48]

    Ненасыщенные полиарилаты могут быть получены также поликонденсацией дифенилолпропана с дихлорангидридами ненасыщенных дикарбоновых кислот (например, фумаровой) или совместной лоликонденсацией дихлорангидрида дикарбоновой кислоты с дифенилолпропаном и о-аллилфенолом . Такие ненасыщенные полиарилаты способны отверждаться сами по себе при нагревании или за счет сшивания с помощью винильных мономеров . [c.49]

    Полиарилаты представляют собой сложные ге-тероцепные полиэфиры двухатомных фенолов и ди-карбоновых кислот. [c.78]

    В промышленности полиарилаты (например, полиарилат марки ИТД) получают поликонденсацией дихлорангидридов ароматических дикарбоно-вых кислот (чаще изофталевой, терефталевой или их смеси) и дифенолятов натрия двухатомных фенолов (дифенилолпропана) по реакции  [c.78]

    Однако, поскольку поликонденсация дихлораигидридов дикарбоновых кислот с бисфенолами осуществляется при повышенных температурах, процесс в целом оказывается более сложным. Для выяснения возможности протекания в нем других деструктивных обменных реакций было исследовано действие на поли-9,9-бис-(4-гидроксифенил)флуорентерефталат при 220 °С в дитолилметане 9,9-бис(4-гидро-ксифенил)флуорена, и-ксилиленгликоля, дихлораигидридов терефталевой, изофталевой и адипиновой кислот как в инертной среде (в токе аргона), так и в токе хлористого водорода. Изучалось также обменное взаимодействие полиарилатов различной молекулярной массы [55-57]. [c.12]

    В табл. 2.4 в качестве примера приведены данные по деструкции полиарилата фенолфлуореном, хлорангидридом терефталевой кислоты и более низкомолекулярным полиарилатом того же строения. Полученные результаты показывают, что, несмотря на сравнительно высокую хемостойкость полиарилатов в условиях, соответствующих их синтезу, они подвержены алкоголизу, фенолизу, обмену за счет хлорангидридной функции [55, 57]. Интересно, что во всех случаях наблюдается увеличение начальных скоростей деструкции полиарилата в присутствии хлористого водорода по сравнению со скоростями деструкции, проводимой в инертной атмосфере. Поскольку полиарилат, как было отмечено выше, не деструктируется хлористым водородом - низкомолекулярным продуктом поликонденсации, такое ускорение может быть отнесено на счет его каталитического действия. Изучение фракционного состава поли-9,9-бис(4-гидроксифенил)флу-орентерефталата и его изменения в процессе протекания отмеченных выше различных деструктивных и обменных реакций показало, что во всех случаях проявляется тенденция к сужению молекулярно-массового распределения (ММР). Это позволяет считать, что оно обусловлено как переходом системы в новое равновесное состояние с меньшей молекулярной массой, так и большей склонностью больших молекул к деструкции [57]. [c.12]

    С 60-х годов был выполнен ряд исследований по кинетике и механизму поликонденсации хлорангидридов дикарбоновых кислот с бисфенолами в растворе при нагревании, приводящей к образованию интересных с практических позиций теплостойких полимеров, названных полиарилатами [4, 14, 26, 56, 67, 69а, 143-151]. Однако результаты этих исследований неоднозначны. Наиболее детально изучено взаимодействие дихлорангидрида терефталевой кислоты с 9,9-бис(4-гидроксифе-нил)флуореном и 4,4 -(гексагидро-7-метилениндан-5-илиден)дифенолом [144, 148], осуществляемое в условиях, типичных для синтеза полиарилатов высокотемпературной поликонденсацией (150-200°С, среда дитолилметан, динил или нитробензол). Оказалось, что по начальным скоростям реакция имеет полуторный порядок первый - по бисфенолу и половинный - по хлорангидриду. Анализ кинетических данных и результатов измерения электропроводности системы показал, что взаимодействие протекает по ионному механизму. [c.36]


    Вторая группа - это реакции, протекающие довольно медленно и требующие повышенных температур. К их числу относятся различные случаи как равновесной так и неравновесной поликонденсации, например образование полиинов дегидро-поликонденсацией, полиариленсульфоноксидов, полиарилатов из хлорангидридов дикарбоновых кислот и бисфенолов при нагревании в среде высококипящих растворителей, ряда полимеров, синтезируемых полициклизацией (полибенз-имидазолы, полиаминотриазолы и другие) [3, 4]. [c.46]

    ДлЯ сопоставления скоростей процессов поликонденсации, относящихся к разным кинетическим группам, представлено изменение во времени приведенной вязкости полиарилатов, синтезируемых акцепторно-каталитической полиэтери-фикацией [200] (рис. 4.2) и высокотемпературной [145] (рис. 4.3). Если в первом случае при 50 °С рост молекулярной массы (а также и выхода) прекращается к 5-й минуте, то при синтезе полиарилата в отсутствие третичного амина при 220 °С на это требуются часы. С большой скоростью протекает такая неравновесная поликонденсация, как низкотемпературное полиамидирование [201-203]. Например, поликонденсация хлорангидрида изофталевой кислоты с анилинфталеином в ДМАА при - 30 °С заканчивается за несколько минут [201]. [c.46]

Рис. 4.2. Изменение приведенной вязкости раствора полиарилата в ТХЭ в процессе акцепторнокаталитической полиэтерификации дихлорангидрида терефталевой кислоты с фенолфталеином в присутствии ТЭА (в ДХЭ ) Рис. 4.2. <a href="/info/321030">Изменение приведенной</a> <a href="/info/5997">вязкости раствора</a> полиарилата в ТХЭ в процессе акцепторнокаталитической полиэтерификации <a href="/info/127952">дихлорангидрида терефталевой кислоты</a> с фенолфталеином в присутствии ТЭА (в ДХЭ )
Рис. 4.3. Изменение приведенной вязкости раствора полиарилата в трикрезоле (/) и выхода полимера (2) в процессе полиэтерификации дихлорангидрида изофталевой кислоты с 4,4 -дигидроксидифеиил-2,2-пропаном (в днииле при 220 °С) Рис. 4.3. <a href="/info/321030">Изменение приведенной</a> <a href="/info/5997">вязкости раствора</a> полиарилата в трикрезоле (/) и <a href="/info/707637">выхода полимера</a> (2) в <a href="/info/543969">процессе полиэтерификации</a> <a href="/info/554679">дихлорангидрида изофталевой кислоты</a> с 4,4 -дигидроксидифеиил-2,2-пропаном (в днииле при 220 °С)
Рис. 4.6. Зависимость константы скорости этерификации о-хлорфенола с п-хлорбензо-илхлоридом (7) и приведенной вязкости полиарилата из бис-(4-гидрокси-3-хлорфенил)-2,2-про-лана и дихлорангидрида терефталевой кислоты в ТХЭ (2) от температуры реакции (в толуоле, ТЭА) Рис. 4.6. <a href="/info/366508">Зависимость константы скорости</a> этерификации о-хлорфенола с п-хлорбензо-илхлоридом (7) и <a href="/info/717861">приведенной вязкости</a> полиарилата из бис-(4-гидрокси-3-хлорфенил)-2,2-про-лана и <a href="/info/127952">дихлорангидрида терефталевой кислоты</a> в ТХЭ (2) от <a href="/info/6340">температуры реакции</a> (в толуоле, ТЭА)
    Нижний температурный предел протекания обменного взаимодействия полиамидов с полиэфирами в значительной степени определяется строением исходных полимеров, наличием или отсутствием в системе катализатора. Так, взаимодействие полигексаметиленсебацинамида с полиэтиленсебацинатом при 260 °С за 8 ч вообще не происходит, а при 280 °С протекает медленно [312], в то время как полигексаметиленсебацинамид реагирует с полиарилатом 4,4 -дигидроксидифенил-2,2-пропана и себациновой кислоты достаточно быстро при температуре выше 240 °С, а при 260 °С процесс образования статистического гюлиамидоарилата заканчивается за 8 ч, а при 280 °С - за 2 ч. [c.78]

    Характерным примером конформационной специфичности акцепторно-каталитической полиэтерификации является синтез конформационно-регулярных полиарилатов 3,3 -дихлор-4,4 -дигидроксидифенил-2,2-пропана на основе хлорангидридов различных дикарбоновых кислот [379] в присутствии различных третичных аминов [378, 379, 384]. Было установлено, что в зависимости от природы третичного амина (в первую очередь в зависимости от его основности) и, следовательно, в зависимости от механизма реакции - нуклеофильного или общего основного катализа [158-160] - происходит формирование макромолекул, содержащих поворотный изомер того или иного типа. [c.86]

    Правда, в ряде случаев неравновесной поликонденсацни влияние соотношения исходных веществ проявляется своеобразно в силу специфики определенных процессов (например, межфазных), когда могут влиять различные кинетические и диффузионные факторы [4, 8]. Для большинства же процессов поликонденсацни полимеры максимальной молекулярной массы получаются, когда исходные вещества берутся в реакцию в эквимольном соотношении. Например, это имеет место при синтезе полиарилатов как высокотемпературной, так и акцепторно-каталитической и межфазной поликонденсацией при получении полиамидов акцепторнокаталитической поликонденсацией, при поликонденсацни дихлораигидридов и дигидразидов дикарбоновых кислот в гексаметилфосфортриамиде (ГМФТА), при взаимодействии ДХЭ с дихлорбензолом и многих других случаях [3,4]. [c.88]

    Интересные результаты были получены при изучении влияния температуры на молекулярную массу полиарилатов, получаемых акцепторно-каталитической полиэтерификацией в гомогенной системе [161, 219]. Оказалось, что если в качестве исходных мономеров использовать высокореакционноспособные соединения и проводить процесс в присутствии сильного основания (например, поликонденсация дихлорангидрида терефталевой кислоты с дихлордианом в присутствии ТЭА в среде ДХЭ), то зависимость молекулярной массы полимера от температуры реакции имеет вид кривой с двумя максимумами, что, по-видимому, обусловлено поли-экстремальной зависимостью констант скорости роста полимерной цепи от температуры процесса. Переход к малоактивным исходным соединениям и малоосновным третичным аминам нивелирует эту зависимость. [c.90]

Таблица 4.14. Свойства полиарилатов фенолфталеина и иэофталевой кислоты, полученных в разных средах Таблица 4.14. <a href="/info/369778">Свойства полиарилатов</a> фенолфталеина и иэофталевой кислоты, полученных в разных средах
    Многие кардовые полиарилаты были успешно синтезированы высокотемпературной поликонденсацией в растворе дитолилметана, а-хлорнафталина, совола (хлорированный дифенил), нитробензола и других обычно в интервале 100-200 °С при концентрации исходных веществ 0,6-5 моль/л в течение 10 ч [6, 7, 22, 23, 44, 59, 60]. Полимеры получают с выходами, близкими к количественным, с высокими молекулярными массами, например, в случае полиарилатов фенолфталеина и ароматических дикарбоновых кислот это молекулярные массы -60000-КХЮОО. [c.106]

    На примере высокотемпературной поликоиденсации 9,9-бис(4-гидроксифе-нил)флуорена) (фенолфлуорен) и бисфенолов норборнаиового типа с дихлорангидридами тере- и изофталевой кислот в среде дитолилметана исследована кинетика процесса в интервале 150-2(Ю °С и сделано заключение, что эти реакции протекают по ионному механизму через ацил-ион [54, 61, 62]. Изучение влияния природы реакционной среды на результаты поликонденсации фенолфталеина и его производных с дихлорангидридами ароматических дикарбоновых кислот выявило интересную особенность. Оказалось, что реакционная среда существенно влияет на формирование надмолекулярной структуры и комплекс свойств аморфных стеклообразных полимеров этого типа [59, 60]. Растворяющая способность среды направляет образование жестких макромолекул в сторону либо свернутых, либо развернутых конформаций, что имеет своим следствием образование глобулярных или фибриллярных форм надмолекулярных структур. Так, при синтезе полиарилата фенолфталеина и изофталевой кислоты в дитолилметане полимер в процессе [c.106]

    При межфазной поликонденсации анилида фенолфталеина с хлорангидридом терефталевой кислоты (органическая среда - бензол), когда образование полимера происходит на границе двух жидких фаз, и он нерастворим ни в одной из них, получается полиарилат с ярко выраженной глобулярной структурой, в то время как полиарилат, синтезированный высокотемпературной поликонденсацией в гомогенной среде (в а-хлорнафталине), имеет фибриллярный тип надмолекулярной структуры. И если первый полимер имеет температуру размягчения 280-285 °С, прочность на разрыв 960 кгс/см , относительное удлинение при разрыве 13% и удельную [c.107]

    При синтезе кристаллизующихся кардовых полиарилатов [19, 20, 52], например полиарилата 9,9-бис(4-гидроксифенил)антрона-10 (фенолантрон) и терефталевой кислоты, условия проведения процесса (температура реакции, скорость нагревания и охлаждения реакционной массы, концентрация и др.) влияют не только на молекулярную массу получаемого полимера, но и на его структуру. В наиболее кристаллической форме этот полиарилат получается при проведении поликонденсации при 220 °С (в соволе, а-хлорнафталине, нитробензоле). Проведение процесса выше 220 °С приводит к полиарилатам с меньшей степенью упорядоченности. В аморфной форме полиарилат образуется в соволе при 330 °С (с быстрым нагревом и охлаждением реакционной массы). Концентрация исходных мономеров при этом должна быть -0,6 моль/л при увеличении концентрации уже не удается получить аморфный полимер. [c.108]

    Был вьшолнен цикл исследований по изучению закономерностей образования полиарилатов фенолфталеина акцепторно-каталитической поликонденсацией [8, 63-68]. Прежде всего следует отметить, что синтез полиарилатов этим методом протекает быстрее и в более мягких условиях, чем в случае высокотемпературной поликонденсации в растворе. В частности, при поликонденсации фенолфталеина с дихлорангидридом терефталевой кислоты в присутствии ТЭА в ДХЭ при 50 °С через 5 мин образуется полимер с выходом, близким к количественному, и с приведенной вязкостью 11, = -0,9 дл/г (в ТХЭ) [65]. [c.108]

    Для поликоиденсации фенолфталеина с дихлорангидридом терефталевой кислоты в присутствии ТЭА было выявлено влияние на акцепторно-каталитическую поликонденсацию природы реакционной среды [66, 67]. Установлено, что отсутствие полной растворимости исходных соединений в реакционной среде является существенным препятствием для получения высокомолекулярного полимера. На величину молекулярной массы образующегося полимера значительное влияние оказывают такие свойства реакционной среды, как ее полярность, способность растворять исходные реагенты и полимер. Найдены оптимальные величины полярности реакционной среды и ее способности вызывать набухаемость полимера, при которых создаются благоприятные условия для синтеза высокомолекулярных полиарилатов в гетерогенных условиях. При исследовании зависимости молекулярной массы образующегося полимера от состава бинарной реакционной смеси (смесь ацетона с бензолом) оказалось, что полиарилат с наиболее высокой молекулярной массой получается при содержании в реакционной среде 30-40 об.% ацетона. В этой среде удалось синтезировать полиарилат с очень высокой молекулярной массой - 250000, Г р = 10 дл/г (в ТХЭ) [67]. Вообще же оптимальными условиями синтеза полиарилатов акцепторно-каталитической полиэтерификацией в гетерогенных условиях являются хорошая растворимость исходных соединений в реакционной среде, значительная набухаемость полимера в малополярной среде или высокая полярность среды, когда набухаемость полимера в растворителе незначительна [58, 66-70]. [c.108]


Смотреть страницы где упоминается термин Полиарилаты кислот: [c.489]    [c.489]    [c.47]    [c.49]    [c.331]    [c.331]    [c.331]    [c.43]    [c.79]    [c.81]    [c.82]    [c.109]    [c.109]   
Структура и свойства теплостойких полимеров (1981) -- [ c.97 ]




ПОИСК





Смотрите так же термины и статьи:

Полиарилаты



© 2025 chem21.info Реклама на сайте