Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сурьма простые вещества

    Свободный хлор тоже проявляет очень высокую химическую активность, хотя и меньшую, чем фтор. Он непосредственно взаимодействует со всеми простыми веществами, за исключением кислорода, азота и благородных газов. Такие неметаллы, как фосфор, мышьяк, сурьма и кремний, уже при низкой температуре реагируют с хлором при этом выделяется большое количество теплоты. Энергично протекает взаимодействие хлора с активными металлами — натрием, калием, магнием и др. [c.480]


    Больщинство известных химических элементов, находясь в виде простых веществ, представляют собой металлы. Некоторые элементы (германий, мышьяк, сурьма, алюминий) в одних условиях ведут себя как металлы, в других условиях — как неметаллы. Все металлы имеют на внешнем энергетическом уровне небольшое число валентных электронов — электронные конфигурации металлов представлены в табл. I. Повторение химических свойств металлов обусловлено периодическим повторением строения электронных конфигураций внешних электронных уровней. [c.317]

    Мышьяк Аз, сурьма ЗЬи висмут В1 как простые вещества имеют несколько модификаций. В ряду Аз—5Ь—В1 уменьшается устойчивость неметаллических модификаций и возрастает устойчивость металлических. [c.279]

    УА-группу составляют пять элементов азот Ы, фосфор Р, мышьяк Аз, с у р ь м а 8Ь и в и С М у т В1. Наличие пяти электронов на внещнем энергетическом уровне их атомов (rts np ) придает им окислительные свойства, т. е. способность проявлять в соединениях степень окисления, равную —3. Однако по мере увел чения числа энергетических уровней в атоме и особенно при проявлении экранирующего ядро предвнешнего -подуровня, начиная с мышьяка, неметаллический характер элементов заметно ослабевает. Азот — типичный неметалл фосфор — неметалл, но в одной из своих модификаций — черной, получаемой при 200°С и 1,2 ГПа (12 000 атм), — проявляет полупроводниковые свойства мышьяк и сурьма в своих более устойчивых модификациях проявляют полупроводниковые свойства и, наконец, висмут — металл, проявляющий хрупкость, что характерно для неметаллических кристаллов. Усиление металлических черт в характере элементов явно проявляется в значениях ширины запрещенной зоны (см. рис-. 28) для кристаллов простых веществ, образованных ими. Так, (Для черного фосфора А =1,5 эВ, для серого мышьяка 1,2 эВ, для серой сурьмы 0,12 эВ, а висмут является проводником электричества. [c.251]

    Элементы подгруппы азота. Строение их атомов и химическая характеристика. Простые вещества азот, фосфор, мышьяк, сурьма, висмут. Их получение. [c.250]

    Простые вещества ме- Сурьма Сурьма [c.93]

    Главная подгруппа V группы периодической системы химических элементов Д. И. Менделеева включает пять элементов азот N, фосфор Р, мышьяк Аа, сурьму 8Ь и висмут В1. Каждый из этих элементов на внешнем слое имеет 5 электронов (конфигурация С увеличением атомного номера свойства простых веществ, образованных атомами элементов этой подгруппы, закономерно изменяются увеличивается плотность, усиливается окраска, уменьшается электроотрицательность. Азот и фосфор — типичные неметаллы, висмут имеет больше металлических свойств. Мышьяк и сурьма занимают промежуточное положение. Многие их соединения обладают полупроводниковыми свойствами. Физические свойства элементов приведены в таблице 26, свойства простых веществ в таблице 27. [c.118]


    Получение простых веществ из их природных соединений есть всегда окислительно-восстановительный процесс, кроме тех случаев, когда простые вещества встречаются в самородном состоянии. В последнем случае их обычно выделяют из смесей физическими методами (разгонка сжиженного воздуха при получении N2, Оз, благородных газов, процессы флотации и т. п.). Все металлы (кроме самородных) находятся в природе в окисленном состоянии и их выделение из соединений сводится к восстановлению. Неметаллы в природных соединениях могут находиться как в окисленном, так и в восстановленном состоянии. При этом наиболее активные неметаллы (галогены, кислород) находятся в природных соединениях исключительно в восстановленном состоянии. Халькогены находятся преимущественно в восстановленном состоянии, хотя, например, в сульфатах сера окислена. Азот, фосфор, кремний, бор, сурьма, висмут в природе встречаются всегда в окисленной форме (нитраты, фосфаты, силикаты, сульфиды сурьмы и висмута и т. п.). [c.43]

    Простые вещества. Физические и химические свойства. В свободном состоянии мышьяк, сурьма и висмут представляют собой твердые кристаллические вещества с металлическим блеском серебристобелого цвета (Аз), с голубоватым отливом (5Ь) или красноватым оттенком на изломе (В1). При обычных условиях они образуют слоистые кристаллические решетки ромбоэдрического типа (а-модифи-кации). Каждый атом имеет трех ближайших соседей в пределах одного гофрированного слоя (к. ч. 3) и трех более удаленных соседей из следующего слоя. При переходе от мышьяка к висмуту различие в длинах связей внутри слоев и между слоями уменьшается и слоистый характер структуры нивелируется. Однако координационные числа всех трех элементов в а-ромбоэдрических модификациях подчиняются правилу Юм-Розери 8—IV. [c.285]

    У остальных элементов группы с ростом радиусов атомов и уменьшением энергии ионизации проявляются и металлические свойства, которые усиливаются к висмуту. Их простые вещества — слабые восстановители. А поскольку стандартные электродные потенциалы мышьяка, сурьмы и висмута имеют положительный знак (расположены за водородом), то они при обычной температуре не реагируют с водой и разбавленными кислотами (серной, соляной и др.). [c.226]

    Простые вещества. Физические и химические свойства. В свободном состоянии мышьяк, сурьма и висмут представляют собой кристаллические вещества с металлическим блеском серого цвета (Аз), с голубоватым отливом (8Ь) или красноватым оттенком на изломе (В1). При обычных условиях они образуют слоистые кристаллические решетки ромбоэдрического типа (а-модификации). [c.419]

    Все известные халькогениды сурьмы и висмута типа А2 В3 —полупроводники. Получают их из простых веществ в эвакуированных кварцевых ампулах, медленно нагревая до 200° С и выше. Сульфиды можно получать и [c.377]

    Изменение стандартных энтропий простых веществ (см. рис. 128) проявляется в периоде прямо противоположно изменению температуры плавления. В периодах стандартная энтропия вначале уменьшается, а затем возрастает. В этом находит отражение переход от мягкого щелочного металла к твердым ковалентным полимерам (алмазу, кремнию, германию, сурьме), а в конце периода — к одноатомным благородным газам. [c.259]

    Некоторые простые вещества - фосфор, натрий, сурьма - самовозгораются в атмосфере хлора. [c.259]

    Какое из простых веществ — сурьма, висмут или мышьяк — является типичным неметаллом, а какое — амфотерным элементом Чтобы ответить на вопрос, следует привести реакции этих веществ с концентрированными азотной и серной кислотами. [c.233]

    В ряду N-P-As-Sb-Bi происходит монотонное возрастание радиусов атомов и уменьшение электроотрицательности. Сумма первых трех потенциалов ионизации также уменьшается в этом ряду, что свидетельствует об увеличении стабильности степени окисления +3. Состояние со степенью окисления +5 для висмута заметно менее устойчиво, чем для сурьмы, что объясняется наличием неподеленной пары б5-электронов, проникающих под двойной экран 4/ —5d -орбиталей. Поведение висмута в различных степенях окисления характеризуется данными табл. 1.8. В указанном ряду отчетливо наблюдается усиление металлических признаков простых веществ. Неметаллические модификации висмута неизвестны. [c.8]

    Хлор весьма активен в реакциях. Многие простые вещества, например натрий, железо, медь, олово и др., предварительно нагретые, горят в хлоре, т. е. соединяются с ним, выделяя свет и теплоту. Сурьма и фосфор самовоспламеняются в атмосфере хлора. [c.19]

    Оксиды Э Оз получают прямым взаимодействием простых веществ, Sb,О3 также окислением сурьмы разбавленной HNO3, а BijOj [c.383]

    Характер изменения энтрогн и простых веществ в зависимости от атомного Еюмера элемента противоположен изменению их температур плавления (рис. 100). В периоде энтропия вначале уменьшается, а затем возрастает. Это соответствует переходу от мягкого 1Г1елочного металла к твердым ковалентным неметаллам (алмаз, кремний) и полуметаллам (германий, сурьма), а в конце периода к одноатомным благородным газам. [c.190]


    Сформулируйте закон Гесса применительно к тепловому эффекту процесса получения пентахлорида сурьмы ЗЬСЬ непосредственно из простых веществ и в две последовательные стадии— образования из простых веществ трихлорида сурьмы 5ЬС1з и последующего окисления его хлором. [c.19]

    Получают Э2О3 прямым взаимодействием простых веществ, ЗЬаОз также окислением сурьмы разбавленной ННОз, В120з — термическим разложением В (МОз)з- [c.427]

    ПОЛУПРОВОДНИКИ — вещества с электронной проводимостью, величина электропроводности которых лежит между электропроводностью металлов и изоляторов. Характерной особенностью П. является положительный температурный коэффициент электропроводности (в отличие от металлов). Электропроводность П. зависит от температуры, количества и природы примесей, влияния электрического поля, света и других внешних факторов. К П. относятся простые вещества — бор, углерод (алмаз), кремний, германий, олово (серое), селен, теллур, а также соединения — карбид кремния, соединения типа filmen (инднй — сурьма, индий — мышьяк, галлий — сурьма, алюминий — сурьма), соединения двух или трех элементов, в состав которых входит хотя бы один элемент IV—VII групп периодической системы элементов Д. И. Менделеева, некоторые органические вещества — полицены, азоаромати-ческие соединения, фталоцианин, некоторые свободные радикалы и др. К чистоте полупроводниковых материалов предъявляют повышенные требования, например, в германии контролируют примеси 40 элементов, в кремнии — 27 элементов и т. д. Тем не менее некоторые примеси придают П. определенные свойства и тип проводимости, а потому и являются необходимыми. Содержание примесей не должно превышать 10 —Ш %. П. применяются в приборах в виде монокристаллов с точно определенным содержанием примесей. Применение П. в различных отраслях техники, в радиотехнике, автоматике необычайно возросло в связи с большими преимуществами полупроводниковых приборов — они экономичны, надежны, имеют высокий КПД, малые размеры и др. [c.200]

    Мышьяк, сурьма, висмут. Содержание этих элементов в земной коре невелико, соответственно 5 10", 4 10" , 2 10" масс.%. Наиболее важными их рудами являются сульфиды, например, реальгар Аз454, висмутинит аЗз, сурьмяный блеск, или стибнит ЗЬаЗз, и др. Простые вещества Аз, 5Ь, В1 имеют металлический вид, проводят тепло и электричество, очень хрупки. Некоторые их свойства см. в табл. 20. [c.135]

    Однако резкой границы между металлами и неметаллами провести невозможно. Суидествует ряд простых веществ с промежуточными свойствами, так, например, сурьма, мышьяк и др. Сурьма обладает металлическим блеском, но хрупка и плохо проводит тепло и электричество. [c.215]

    Все оксиды можно получать прямым взаимодействием простых веществ с кислородом ЗЬгОз получают также окислением сурьмы с разбавленной НЫОз, а В120з — термическим разложением В1(КОз)з. [c.450]

    При образовании гомоатомных соединений (простых веществ) все эффекты, связанные с разностью электроотрицательностей взаимодействующих атомов, исключаются. Поэтому в простых веществах не реализуются полярные, а тем более преимущественно ионные связи. Следовательно, в простых веществах осуществляется лишь металлическая и ковалентная связь. Следует при этом учесть и возможность возникновения дополнительного ван-дер-ваальсов-ского взаимодействия. Преобладание вклада металлической связи приводит к металлическим свойствам простого вещества, а неметаллические свойства обусловлены преимущественно ковалентным взаимодействием. Для образования ковалентной связи взаимодействующие атомы должны обладать достаточным количеством валентных электронов. При дефиците валентных электронов осуществляется коллективное электронно-атомное взаимодействие, приводящее к возникновению металлической связи. На этой основе в периодической системе можно провести вертикальную границу между элементами П1А- и 1УА-групп, слева от которой располагаются элементы с дефицитом валентных электронов, а справа — с избытком. Эта вертикаль называется границей Цинтля Ее положение в периодической системе обусловлено тем, что в соответствии с современными представлениями о механизме образования ковалентной связи особой устойчивостью обладает полностью завершенная октетная электронная 5 /гр -конфигурация, свойственная благородным газам. Поэтому для реализации ковалентного взаимодействия при образовании простых веществ необходимо, чтобы каждый атом пмел не менее четырех электронов. В этом случае возможно возникгювение четырех ковалентных связей (5/) -гибридизация ), что и реализуется у элементов 1УА-группы (решетка типа алмаза у углерода, кремния, германия и а-олова с координационным числом 4). Если атом имеет 5 валентных электронов (УА-группа), то до завершения октета ему необходимо 3 электрона. Поэтому он может иметь лишь три ковалентные связи с партнерами (к. ч. 3). В этом случае кристалл образован гофрированными сетками, которые связаны между собой более слабыми силами. Получается слоистая структура, в которой расстояние между атомами, принадлежащими одному слою, намного меньше, чем между атомами различных слоев (черный фосфор, мышьяк, сурьма)  [c.29]

    Свойства элементов и простых веществ закономерно изменяются в подгруппе с ростом радиуса атомов и уменьшением энергии ионизации, как это можно видеть из табл. 27. Азот и фосфор — типичные неметаллы, т. е. кислотообразователи. Различия в строении предвнеш-него электронного уровня у атомов фосфора и мышьяка меньше сказываются на изменении свойств элементов, чем при переходе от кремния к германию в IVA-подгруппе. У мышьяка сильнее выражены неметаллические свойства. У сурьмы неметаллические и металлические свойства проявляются приблизительно в одинаковой степени. Для висмута характерно преобладание металлических (основных) свойств. [c.339]

    Отвечающие оксидам сульфиды мышьяка, сурьмы и висмута могут быть получены непосредственным взапмо-дейстЕием простых веществ с серой при нагревании или путем обме11ыого разложения в растворах, иапример [c.377]

    Оксиды Э2О3 получают прямым взаимодействием простых веществ, ЗЬгОз также окислением сурьмы разбавленной HNO3, а В120з — термическим разложением В1(МОз)2- [c.414]

    Атомы остальных элементов имеют в основном состоянии конфигурацию ns np nd° с тремя неспаренными р-электронами и вакантными d-AO. При изменении п меняется соотношение между энергиями разных АО, что приводит к разнообразию связей и структур даже в простых веществах, которые существуют в разных аллотропных модификациях молекулярные структзфы для фосфора, мышьяка, сурьмы полимерные структуры с ковалентными связями красного фосфора и серого мышьяка металлические кристаллы сурьмы и висмута. [c.284]

    Мышьяк, сурьма, висмут. Устойчивые формы этих трех эле ментов имеют структуру, аналогичную структуре черного фосфора (рис. 3.2) и представляют собой кристаллы черного цвета. Кроме того, у Аз и 5Ь имеются еще неметаллические аллотропные формы соответствующие элементарные вещества составле ны из Аз4 и 8Ь4 и имеют структуру белого фосфора. При обычной -температуре эти формы неустойчивы и быстро превращаются в стабильные модификации. Висмут подобной аллотропной модификации не имеет. Все данные, приведенные в табл. 3.9, относятся к стабильным формам. Температуры плавления и кипения с увеличением атомного номера в заметной степени понижаются, в особенности бросается в глаза низкая температура плавления висмута. Факторы, от которых зависяг температуры плавления, многообразны, и поэтому наблюдаемые явления трудно объяснить однозначно. Все рассматриваемые простые вещества диамагнитны, обладают значительной твердостью и хрупки. Их электрическое сопротивление (табл. 3.11) на несколько порядков выше, чем у меди, тем не менее проводимость — металлическая с положительным температурным коэффициентом. Причина этого заключается в умень-шении числа электронов, свободно перемещающихся в кристалле. Так, в висмуте на 10 атомов имеется лишь 1 свободный электрон, а в меди от каждого атома 1 электрон участвует в проводимости. [c.106]

    Аллотропные модификации, окрашенные в желтый цвет и имеющие строение, сходное со структурой белого фосфора, химически неактивны подобно белому фосфору, они легко окисляются. Стабильные металлические аллотропные формы, как и черный фосфор, химически устойчивы, однако при нагрева НИИ на воздухе они переходят в соответствующие оксиды. С галогенами они легко реагируют, давая тригалогениды и пентагалогениды. В соляной и фтористоводородной кислотах рассматриваемые простые вещества не растворяются, однако в азотной кислоте окисляются мышьяк дает мышьяковук> кислоту, сурьма —триоксид, а висмут переходит в раствор, давая ион В +. В водных растворах щелочей эти элементы не растворяются, а при сплавлении с пероксидом натрия легко дают соли кислот мышьяковой (арсенаты), сурьмяной (анти-монаты) и висмутовой (висмутаты) отметим для сравнения  [c.106]

    Свойства (см. также табл. 31). Простое вещество СЬ — желто-зеленый, негорючий газ с уду111ающим запахом, в 2,5 раза тяжелее воздуха. Умеренно растворим в воде (образуется хлорная вода ). Хлор очень реакционноспособен, вытесняет бром и иод из их соединений с водородом и металлами со многими элементами образует хлориды. Порошкообразные сурьма, мышьяк и раскаленное железо сгорают в газообразном хлоре, например  [c.381]

    СУРЬМА ж. 1. Sb (Stibium), химический элемент с порядковым номером 51, включающий 29 известных изотопов с массовыми числами 108-136 (атомная масса природной смеси 121,75) и имеющий типичные степени окисления —III, + III, + V. 2. Sb, простое вещество, белые с синеватым оттенком кристаллы с металлическим блеском применяется как компонент сплавов с оловом и свинцом в полиграфии и машиностроении, для изготовления полупроводниковых материалов и др. [c.424]

    С. серебра, меди и металлов подгруппы цинка, а также -переходных металлов трудно растворяются в к-тах (применяют кислоты-окислители, царскую водку , добавки перекиси водорода и комплексообразователей). На воздухе С. начинают окисляться при т-ре от 300 до 400° С. В вакууме и инертной среде стойкость С. возрастает, напр. NbS j стоек при т-ре 900° С, WSea - при т-ре 800° С. С. получают синтезом из элементов при нагревании в инертной среде или в вакууме взаимодействием паров селена с простыми веществами взаимодействием селеноводорода с металлами, их окислами или солями действием селеноводорода на водные растворы солей металлов восстановлением водородом или др. восстановителями соединений селена (селенатов, селенитов) термической диссоциацией высших селенидов взаимодействием компонентов в газовой фазе. Разработаны методы синтеза монокристаллов полупроводниковых С. С. применяют в основном в качестве полупроводниковых материалов (С. галлия, индия, таллия, олова, свинца, сурьмы, висмута и др.), для со,эдания фоторезисторов, фотоэлементов, фото-чувствительных слоев (С. металлов подгруппы цинка, таллия), термо-электр. устройств (С. сурьмы, висмута, лантаноидов), датчиков для измерения магн. нолей (С. ртути), [c.362]

    В 1789 г. французский химик Лавуазье включил сурьму в список простых веществ и дал ей название antimoine . [c.283]


Смотреть страницы где упоминается термин Сурьма простые вещества: [c.118]    [c.200]    [c.572]    [c.242]    [c.53]    [c.242]    [c.228]    [c.169]   
Неорганическая химия (1969) -- [ c.395 ]




ПОИСК





Смотрите так же термины и статьи:

Вещества простые

Вещества сурьма



© 2025 chem21.info Реклама на сайте