Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Платина в смеси кислот

    Тефлон отличается рядом выдающихся свойств. Так, по своей химической стойкости ои превосходит не только все высокомолекулярные вещества (природные, искусственные и синтетические), но и металлы, даже благородные — золото и платину. Вполне стоек против кислот, щелочей, солей, окислителей. Даже такой сильнейший окислитель, как царская водка (смесь кислот азотной и соляной), не действует на тефлон, в то же время указанный реактив растворяет золото и платину. Было испытано много сотен различных реагентов, ио выяснилось, что они не действуют на тефлон вплоть до температур кипения. Оказалось, что только фтор и щелочные металлы (расплавленные или растворенные в жидком аммиаке) агрессивны в отношении тефлона. Далее смола чрезвычайно устойчива к действию агентов, вызывающих коррозию. Вода даже прн длительном соприкосновении не оказывает никакого влияния и т. д. В связи с указанным тефлон часто называют пластмассовой платиной. [c.302]


    Азотная кислота является одной из энергичнейших кис лот, легко образует с основаниями и металлами соли и растворяет все металлы, кроме золота и платины. Смесь [c.159]

    В XIX в. проблемой получения фтора занимались многие химики, начиная с Гемфри Дэви. Успех выпал на долю французского химика Анри Муассана (1852—1907). Муассан решил, что поскольку платина относится к числу тех немногих веществ, на которые фтор не действует, то не остается ничего другого, как изготовить, несмотря на дороговизну, все оборудование из платины. Более того, чтобы понизить активность фтора, он охладил реакционную смесь до —50°С. Поместив раствор фторида калия в плавиковой кислоте в специально изготовленный платиновый сосуд, Муассан пропустил через раствор электрический ток и достиг цели. Так в 1886 г. был наконец выделен бледно-желтый газ — фтор. [c.142]

    Платиновая посуда очень устойчива к химическим воздействиям. Она имеет высокую температуру плавления (1770°) и обладает большой теплопроводностью. Платина не растворяется ни в азотной, ни в соляной, ни в серной кислотах. Смесь азотной и серной кислот, а также смесь соляной и серной кислот не действуют на нее. Она не растворяется в плавиковой кислоте, которая энергично действует на стеклянную, кварцевую и фарфоровую посуду. [c.137]

    Пример. Газовую смесь объемом 1000 м с объемной долей азота и водорода 25% и 75% соответственно под давлением 200-10 Па при температуре 500°С пропустили через колонну синтеза. Выход аммиака составил 12%. Далее весь аммиак был окислен избытком кислорода воздуха (катализатор платина). Получившаяся азотная кислота растворилась в воде, образовавшейся в результате реакции. Определите массовую долю (%) азотной кислоты в растворе и массу раствора. [c.126]

    Из аммиака в промышленности получают не только азотную кислоту и ее соли, но и другие соединения азота, которые являются ценными удобрениями. Окисление аммиака в заводских условиях осуществляется в специальных установках с применением в качестве катализатора сплава платины с 5—10% родия. Катализатор изготовляется обычно в виде тонкой сетки, сквозь которую продувается смесь аммиака с воздухом, содержащая примерно 12 об. долей в % аммиака. При этом имеет место следующая химическая реакция  [c.185]

    Золото и платина не растворяются в концентрированной азотной кислоте, но сравнительно легко растворимы в царской водке (смесь концентрированных растворов азотной и соляной кислот в объемном отнощении 1 3), особенно в нагретой. Сильное окисляющее действие царской водки обусловлено образованием хлора и нитрозилхлорида  [c.188]


    Простые вещества. В компактном состоянии рутений — серовато-белый, осмий — серебристо-белый металлы с плотнейшей гексагональной структурой, твердые, хрупкие и тугоплавкие. Химически чистый родий имеет вид светло-серого порошка. Сплавленный, он напоминает алюминий. Дисперсный порошок родия черного цвета называется родиевой чернью. При сплавлении родия с цинком и дальнейшей обработке сплава соляной кислотой получают взрывчатый родий. Причиной взрыва является каталитическое свойство родия взрывать смесь адсорбированных газов (водорода и кислорода). Коллоидальный родий, полученный диспергированием чистого металла в воде или восстановлением из растворов его солей, обладает еш,е большими каталитическими свойствами, чем родиевая чернь. Компактный иридий — серебристо-белый металл, подобно родию имеет структуру гранецентрированного куба, очс иь твердый и хрупкий. Платина и палладий — серовато-белые блестящие мягкие металлы. Платина легко прокатывается и вытягивается в проволоку, палладий поддается ковке, обладает большей вязкостью, чем платина. [c.403]

    Азотная кислота и ее соли. При описании свойств аммиака в 3 было отмечено, что он горит в кислороде с образованием воды и молекулярного азота. Однако в присутствии специального катализатора окисление аммиака кислородом может протекать с образованием воды и окиси азота. Современные промышленные способы получения азотной кислоты основаны именно па каталитическом окислении аммиака кислородом воздуха. Обычно смесь аммиака с воздухом, нагретую до 1- 700°, пропускают над катализатором (в качестве катализаторов используются сплавы на основе платины)  [c.301]

    На окисление золота и платины у азотной кислоты силы не хватает , эти металлы переводятся в раствор более сильным окислителем-(/орс/сой водкой (смесь азотной и хлороводородной кислот). [c.159]

    Смесь, содержащая 1 объем азотной и 3 объема концентрированной соляной кислоты, называется царской вод-к о й . Она является более сильным окислителем и окисляет благородные металлы — золото и платину. [c.206]

    Смесь HaSe04 с концентрированной H I — сильнейший окислитель (за счет образования атомарного хлора), растворяет золото и платину. Селеновая кислота с платиной не реагирует, но при нагревании растворяет золото  [c.335]

    Платина растворяется в царской водке (смесь кислот азотной и соляной). Образуются гексахлороплатиновая кислота, в которой окислительное число платины равно +6, окись азота и вода. Написать уравнение реакции. [c.114]

    Катализатор на основе окиси платины (катализатор Адамса) 109]. В фарфоровой чашке перемептивают 20 г нитрата натрия с раствором твтрахлорида платины в 5 мл воды, содержащим 1 з платины. Смесь осторожно при перемешивании стеклянной палочкой нагревают до удалении воды. Нагревание продолжают до расплавления массы (400—5Q[) С) и начала выделения бурых паров окислов азота. После прекращения выделения окислов азота массу охлаждают и растворяют в 50 мл воды, образовавшийся коричневый осадок промывают сначала декантацией, а затем на фильтре до исчезновения реакции на нитрат в фильтрате. Однако получить продукт, совершенно свободный от щелочей, трудно, и обычно в нем содержится около 2% щелочей, если сплавление проводилось при 41)0—500° С. При более высоких температурах сплавлении содержание щелочей повышается. Коричневую окись платины сушат над концентрированной серной кислотой или в вакууме. Это очень удобный в работе и исключительно эффективный катализатор. [c.34]

    Реакция является аутотермической однажды подогретая на платине смесь аммиака, метана и воздуха продолжает в дальнейшем превращаться с большой скоростью без внешнего подогрева. Эта реакция используется в настоящее время для промышленного производства синильной кислоты во всех развитых странах. [c.104]

    Для определения 1,0—0,01 мг платины в присутствии золота Поллард [529] использовал в качестве титрующего раствора диэтилдитиокарбамат. Этот реагент был использован для анализа серебряных корольков, предварительно растворенных в минимальном количестве азотной кислоты. Для предотвращения осаждения хлорида серебра и растворения платины и золота прибавляли концентрированную соляную кислоту. Затем добавляли хлорид олова(II) для осаждения золота и образования окрашенного соединения платины. Смесь встряхивали с бензолом и Гитровали диэтилдитиокарбаматом. Образующиеся при титровании комплексные соединения платины вместе с золотом переходили в бензольный слой. Конечную точку титрования определяли по обесцвечиванию водного слоя. При некотором видоизменении методики можно определить одновременно платину и золото. [c.114]

    Получение Р1С12 2Р(ОСбН5)з. К 0,6 г (2 моля) свежеперегнанного фенилового эфира фосфористой кислоты, растворенного в 2 мл сухого бензола, присыпано 0,24 г (1 моль) двухлористой платины. Смесь осторожно нагревалась почти до полного растворения соли. При охлаждении из бензольного раствора выпали блестящие мелкие кристаллы, которые плавились при 186—189° (с разл.). После перекристаллизации из бензола получены хорошо образованные бесцветные призмы с т. нл. 190—191° (с разл.). Выход 0,28 г. Продукт хорошо растворим в ацетоне, горячем бензоле и диоксане плохо — в эфире нерастворим в воде. [c.465]


    Получение о-аминофенилборной кислоты [5]. 5 г о-нитрофенилборной кислоты в 100 жл метанола и 250 жл дистиллированной воды помещены в сосуд для восстановления и затем добавлено 0,07 г окиси платины. Смесь встряхивалась под давлением водорода в 2—3 ат [6]. Поглотилось теоретическое количество водорода. Раствор сдекантирован с осевшего катали затора и выпарен при 30° С в вакууме в токе водорода. Сиропообразный остаток растворе в 150 мл ацетона, и раствор снова упарен. Эта операция дважды повторена с эфиром. Из вязкого сиропа, оставленного на ночь, выделились почти бесцветные кристаллы (1 г) о-ами нофенилборной кислоты после перекристаллизации из малого количества ацетона т. пл 179 180° С (баня, начиная от 20° С). [c.234]

    Нагретый предварительно до 500—700° метан пропускается в резервуар, через который проходит трубка из платины или из покрытой платиной стали небольшого диаметра через эту трубку подается водная (35—40%-ная) азотная кислота, нагреваемая здесь горячим метаном. Затем метан, увлекая пары азотной кислоты, которые выходят из трубки, образует смесь в отношении 10 1 эта смесь паров пропускается через змеевик из стекла пайрекс, который находится в расплавленной солевой бане из смеси нитрита калия и нитрата натрия и нагревается приблизительно до 460°. Затем пары попадают в конденсатор и отделитель (абшайдер), где собираются жидкие продукты — нитрометан и азотная кислота, которые могут быть слиты, а газообразные продукты, главным образом непрореагировавший метан и азот, либо выпускаются на воздух, либо могут быть возвращены в процесс. [c.288]

    Азотная кислота получается преимущественно окислением аммиака в присутствии катализатора из сплава 90% платины и 10% родия в виде 20 слоев сеток (с размером отверстий 0,175 мм), изготовленных из проволоки толщиной 0,076 мм. Эта сетка имеет металлическую поверхность 1,5 м /м . В качестве катализатора используют также гранулированную смесь окиси железа и окиси висмута. В платиновый конвертор, работающий при давлении 7 кгс/см , при суточной производительности 55 т 100%-ной HNOз загружают 2977 г сплава. После зажигания реакция протекает автотермично путем соответствующего предварительного подогрева газовой смеси поддерживается температура 882—910 °С. При этих условиях время реакции составляет примерно 0,0001 сек, тогда как при атмосферном давлении требуется от 0,01 до 0,02 сек. Кислород адсорбируется на поверхности катализатора и реагирует с аммиаком, который диффундирует к поверхности. Скоростью диффузии аммиака определяется общая скорость процесса . [c.326]

    Обладая положительными значениями стандартных электродных потенциалов, благородные металлы с водой и неокисляюиди-мн кислотами ые взаимодействуют. Азотная кислота окисляет все благородные металлы, кроме платины и золота интенсивность действия азотной кислоты зависит от степени раздробленности металлов. Так же действуют и другие окисляющие кислоты. На все благородные металлы действуют смесь азотной кислоты с ила-викопой (HF), а также смесь азотпой кислоты с соляной кисло-1 ой — царская водка, — которая окисляет все благородные металлы, кроме компактных осмия, родия и иридия. Платиновые металлы реагируют ири сплавлении со щелочами в присутствии окислителей. [c.326]

    Окисление воздухом показывает, что стойкость полиметиленовых циклов ниже, чем у ароматических, и еще понижается с увеличением молекулярного веса за счет заместителей. Продуктами окисления являются кислоты и оксикислоты. Дегидрогенизация полиметиленовых углеводородов легко протекает с платиновым или палладиевым катализаторами. Предложено также много катализаторов смешанного типа, работающих при температурах более высоких, чем в случае платины, в результате чего, кроме продуктов дегидрирования, получаются в небольшом количестве ароматические углеводороды, образовавшиеся вследствие дегидроциклизации. Смешанный платиново-железный катализатор снижает роль реакций дегидроциклизации. Дегидрирование позволяет количественно перевести шестичленные полиметиленовые углеводороды в ароматические, причем, пятичленные изомеры, а также гемзамещенные остаются незатронутыми. Платиновый катализатор имеет значение не только в аналитической химии, но применяется также в заводских процессах ароматизации средних нефтяных фракций, превращающихся при температуре около 400° в смесь легких углеводородов, содержащих большое количество ароматических.  [c.87]

    К. Пааль.и А. Скита [21], независимо друг от друга, применили для гидрирования коллоидную платину или палладий в присутствии защитных коллоидов. В качестве последних К. Пааль использовал смесь растворимых в воде высокомолекулярных лизальбиновой и протальбиновой кислот, получаемых из куриного белка. А. Скита для этой же цели применил растворы природного гуммиарабика (аравийской камеди). Защитные коллоиды препятствуют коагуляции коллоидных катализаторов даже при нагревании или кипячении с ледяной уксусной кислотой. Так как большинство органических соединений в воде не растворимо, разработаны способы приготовления органозолей платины или палладия в холестерине, ланолине. Защитными коллоидами могут также служить глютин, желатин или декстрин. [c.346]

    Каталитическая активность смеси различных катализаторов иногда значительно превосходит активность отдельных катализаторов. Например, смесь, состоящая из оксидов железа и висмута (Ре20зЧ-В120з), хорошо катализирует окисление аммиака до оксидов азота и широко применяется в производстве азотной кислоты вместо значительно более дорогого катализатора— платины. Каждый из этих оксидов, взятый в отдельности, обладает очень малым каталитическим действием. [c.159]

    Разбавленные растворы азотной кислоты бесцветны оии значительно стабильнее, так как азотная кислота находится в растворе в виде ионов. Причем степень диссоциации близка к единице, т. е. НЫОз — одна из наиболее сильных кислот. Азотная кислота реагирует со всеми металлами, кроме золота, платины и тантала в компактном состоянии. При этом образуется смесь продуктов ее восстановлення N02, N0, N20, N5, NHз, NH4NOз. В ависи-мости от условий в этой смеси преобладают те или иные соединения. [c.162]

    С, т. кип. 86° С. Смешивается с водой во всех отношениях. Азеотроп-ная смесь с водой содержит 68,4% НХОз и кипит при 121,9° С. Обычная 96—98%-ная НКОз — жидкость красно-бурого цвета. А. к. — сильный окислитель, реагирует почти со всеми металлами, образуя с ними соответствующие оксиды или соли — нитраты и выделяя оксиды азота. Устойчивы к действию А. к. золото, платина, родий, иридий и тантал. Такие металлы, как железо, хром, алюминий, пассивируются концентрированной А. к. за счет стойкости к действию А. к. оксидной пленки, образующейся на ее поверхности. Концентрированная А. к. окисляет серу до серной кислоты, фосфор — до фосфорной. Многие органические соединения под действием А. к. разрушаются и воспламеняются. Разбавленная А. к. более слабый окислитель, чем концентрированная продуктами восстановления ее сильными восстановителями могут быть гемиоксид азота, свободный азот н нитрат аммония. В лаборатории А. к. получают действием на ее соли концентрированной N3804 при нагревании. В промышленности разбавленную (45—55%) А. к. получа- [c.11]

    Итак, азотная кислота взаимодействует со всеми металлами, за исключением немногих, например Ли и Pt. Однако, если взять смесь, состоящую из одного объема концентрированной азотной кислоты и трех объемов концентрированиой соляной кислоты, то такая смесь растворяет золото, но не платину. Такую смесь называют обычно царской водкой (по-видимому, потому, что растворяет царя металлов — Аи). Действие царской водки объясняется тем, что концентрированная азотная кислота окисляет НС1 до свободного С1,, а хлор (особенно в момент выделения) является более сильным окислителем, чем даи1е концентрированная азотная кислота. [c.304]

    Смесь концентрированных азидоводородной и хлороводородной кислот переводит в раствор золото и платину подобно царской водке. Составьте уравнения соответствующих реакций, укажите окислители и восстановители. [c.93]

    Смесь концентрированн1,1х азотной и хлороводородной кислот (царская водка) окисляет даже самые благородные металлы (золото и платину) бла1 одаря образованию очень сильных окислителей — атомного хлора и хлорида нитрозила  [c.212]

    Сильные кислоты не действуют на платину, за исключением царской водки (смесь концентрированных азотной и соляной кислот в отношении 1 3 по объему), которая растворяет ее, образуя платино-хлористоводород-ную кислоту  [c.386]

    Помимо кислотной функции, для HNs характерна также о к и с л и т е л ь н.а я. Взаимодействие ее с HI сопревождается выделением Ь и образованием продуктов восстановления азотистоводородной кислоты —N2 и NH3. Смесь HN3 с крепкой НС1 при нагревании растворяет золото и платину, т. е. ведет себя аналогично царской водке. При действии HN3 на металлы происходит образование не только соответствующих азидов, но /I N2 и NH3, тогда как свободный водород не выделяется. По всем. этим реакциям азотистоводородная кислота похожа на азотную. Основной причиной такого сходства является, по-видимому, наличие в молекулах обоих соединений пятивалентного азота. [c.405]

    Очень пассив 1ые металлы типа золота и платины могут быть растворены смесью одного объема концентрированной азотной кислоты HNO3 с тремя объемами крепкой соляной кислоты НС1. Такая смесь называется царской водкой , окислителем в ней является атомарный хлор, образующийся в результате реакции и отщепляющийся от хлорида нитрозила  [c.177]

    Смесь селеновой и соляной кислоты растворяет золото и платину за счет выделения атомарндго хлора. [c.250]


Смотреть страницы где упоминается термин Платина в смеси кислот: [c.99]    [c.357]    [c.357]    [c.246]    [c.99]    [c.378]    [c.554]    [c.57]    [c.203]    [c.197]    [c.216]    [c.101]    [c.165]    [c.224]    [c.213]    [c.228]   
Методы разложения в аналитической химии (1984) -- [ c.194 , c.196 , c.391 ]




ПОИСК





Смотрите так же термины и статьи:

Кислота смеси



© 2025 chem21.info Реклама на сайте