Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Остаток конденсированный

    На рис. 20,32 представлена схема технологической установки. Процесс ведут при температуре 260—370 °С и давлении до 3-10 > Па (1—3 кгс/см ) в двух попеременно работающих адсорберах. Исходную нефтяную фракцию испаряют и пропускают через слой цеолитов СаА, содержащих в адсорбированной фа.зе аммиак. Рафинат конденсируют и отделяют от аммиака. Во второй стадии через цеолит в качестве десорбента пропускают аммиак, нагретый до температуры в адсорбированной зоне. Выходящий поток содержит нормальные парафины, аммиак и примеси. Первую порцию адсорбента отбирают и примешивают к сырью, а остаток конденсируют и отделяют от аммиака. [c.460]


    Две трети ацетона подвергались пиролизу с образованием кетена, остаток конденсировался в системе из 6 сосудов, наполненных стеклянной ватой и охлаждаемых смесью льда с солью. Около 23% от общего выхода кетена было найдено растворенным в этом конденсате. Выход действительного кетена , не поглощенного ацетоном, в этих сосудах несколько меньше 11%. Этот выход был вычислен по прореагировавшему ацетону. [c.233]

    Накопленные в Х /П1 столетии знания показали химикам, что судить о природе веществ, исходя только из их горючести или негорючести, нельзя. Вещества неживой природы могли выдерживать жесткую обработку, а вещества живой или некогда живой материи такой обработки не выдерживали. Вода кипела и снова конденсировалась в воду железо или соль расплавлялись, но, остывая, возвращались в исходное состояние. В то же время оливковое масло или сахар при нагревании (даже в условиях, исключающих возможность горения) превращались в дым и гарь. То, что оставалось, не имело уже ничего общего с оливковым маслом или сахаром, и превратить этот остаток в оливковое масло или сахар больше не удавалось. Словом, вещества этих двух групп вели себя принципиально различным образом. [c.69]

    Конденсация моносахаридов не ограничивается образованием дисахаридов. В живых организмах молекулы глюкозы могут конденсироваться тысячами, образуя гигантские молекулы. Входящие в их состав остатки глюкозы могут быть вытянуты в одну линию или же образовывать разветвленные цепи разной длины. Глюкоза входит в состав таких молекул, но только не в виде полных молекул, а в виде остатков, при соединении от каждых двух молекул глюкозы отщепляется по молекуле воды. Термин остаток применяют и к другим молекулам, соединяющимся путем конденсации в гигантские молекулы (их иногда называют макромолекулами). Такие гигантские молекулы имеет, например, крахмал. Он относится к полисахаридам ( много сахаров ). Конденсируясь с образованием крахмала, молекулы глюкозы теряют прежние свойства крахмал не растворяется в воде и несладок, он совершенно безвкусен. [c.145]

    Схема подобной одноколонной установки с непрерывно действующим отстойником конденсата ее верхних паров приведена на рис. VI.14. Однородное жидкое сырье Ь при температуре начала кипения вводится в секцию питания. С низа колонны в практически чистом виде отводится компонент, играющий в рассматриваемом интервале концентраций роль высококипящего. Пары с верхней тарелки поступают в парциальный конденсатор и, частично конденсируясь, образуют стекающее обратно в колонну жидкое орошение Остаток паров Е состава проходит во [c.297]

    Схема подобной одноколонной ректификационной установки с непрерывным отстойником показана на фиг. 32. Однородная в жидкой фазе начальная смесь поступает в питательную секцию колонны. С низа колонны в практически чистом виде отводится компонент, играющий для рассматриваемого интервала концентраций роль высококипящего. С верхней тарелки колонны пары поступают в парциальный конденсатор, где, частично конденсируясь, образуют стекающее обратно в колонну орошение. Остаток паров проходит во второй конденсатор-холодиль-ник, где конденсируется полностью и охлаждается до температуры расслоения в отстойнике, отвечающей требуемому составу извлекаемого компонента. В отстойнике производится разделе- [c.84]


    В виде боковых погонов колонны 20 отбираются флегмы в отпарные колонны 21 и 22,ъ низ которых подается водяной пар. Фракция 180—240 °С с низа колонны 21 прокачивается насосом 26 через теплообменник 27 и аппарат воздушного охлаждения 28 и выводится с установки в резервуар. Верхнее и нижнее циркуляционные орошения осуществляются соответственно насосом 13 через теплообменник 9 и холодильник 10, насосом 14 через аппараты И и 12 и возвращаются на лежащие выше тарелки колонны 20. Остаток — фракция выше 350 °С (мазут) — забирается насосом 15 с низа колонны 20 и направляется в змеевики печи 61. В низ стабилизационной колонны 29 сообщается тепло за счет циркуляции остатка насосом 35 через змеевик печи 34. Верх колонны 29 покидают газы, конденсирующиеся и охлаждающиеся в аппаратах 30 и 31. Они поступают в сборник 32, откуда часть газов уходит в линию сухого газа. [c.19]

    Газы и пары по выходе из верхней части испарителя 7 направляются в низ колонны 11, с верха которой, уходят бензиновая фракция и газ. Пары конденсируются, и смесь охлаждается в холодильнике-конденсаторе 6. Далее газожидкостная смесь разделяется в газосепараторе 5 на газ и бензиновую фракцию. Газ поступает на ГФУ, а балансовое количество бензина — на стабилизацию. Насосом 8 бензин-орошение подается на верхнюю тарелку колонны И. В колонне 12 в результате снижения давления из крекинг-остатка выделяются газойлевые фракции несконденсированные пары из колонны 12 направляются в холодильник-конденсатор 13, и конденсат собирается в приемнике 14. Отсюда часть конденсата насосом 15 возвращается в колонну 12 в качестве орошения, а балансовое его количество выводится с установки. Крекинг-остаток подается насосом 16 в вакуумную колонну 17. Целевой продукт — термогазойль — выводится как промежуточный продукт с 17-й тарелки вакуумной колонны 17. [c.27]

    Сырье — гудрон или крекинг-остаток (или их смесь) — подается насосом 1 двумя параллельными потоками в трубы подовых и потолочных экранов печей 2 и 5, где оно нагревается до 350—380 °С. Затем сырье поступает в нижнюю часть колонны 9 на верхнюю каскадную тарелКу. Сюда же под нижнюю тарелку поступают горячие газы и пары продуктов коксования, образующиеся в двух параллельно работающих камерах 5 (или 5 ). В колонне сырье встречается с восходящим потоком газов и паров и в результате контакта тяжелые фракции паров конденсируются и смешиваются с сырьем. Таким образом, в нижней части колонны образуется смесь сырья с рециркулятом, обычно называемая вторичным сырьем. Если в сырье содержались легкие фракции, то они в результате контакта с высокотемпературными парами испаряются и уходят в верхнюю часть колонны 9. [c.29]

    Раствор депарафинированного масла (фильтрат) подается насосом 1 через теплообменники 4, 5 и паровой подогреватель 8 в колонну 10. Здесь пары растворителя отделяются от жидкости и уходят из колонны далее пары растворителя конденсируются в межтрубном пространстве теплообменника 4 и в аппарате воздушного охлаждения 3. По выходе из водяного холодильника 2 конденсат поступает в приемник сухого растворителя (на схеме не показан). Отводимая с низа колонны 10 жидкость насосом 11 подается через трубное пространство парового подогревателя 12 в колонну 9, в которой поддерживается давление 0,20—0,35 МПа. Пары растворителя, выходяш,ие из колонны 9, охлаждаются и конденсируются в теплообменнике 5 и аппарате 7. Конденсат, пройдя водяной холодильник 6, собирается также в приемнике сухого растворителя. Остаток с низа колонны 9, пройдя за счет перепада давления клапан и трубное пространство парового подогревателя 14, поступает в парожидком состоянии в колонну 15. Пары из колонны 15 объединяются с парами, выходящ,ими из колонны 10. [c.87]

    Регенерация растворителя из раствора гача (петролатума) осуществляется в три ступени. Раствор гача насосом 20 подается в паровой подогреватель 19. Образующиеся в нем пары отделяются от жидкости в колонне 18. Пары растворителя по выходе из колонны 18 конденсируются в водяном кожухотрубном конденсаторе-холодильнике 24 конденсат стекает в приемник влажного растворителя. Остаток с низа колонны 18 насосом 25 через паровой подогреватель 26 подается в колонну 28. Отделившиеся здесь пары растворителя присоединяются к парам, выходящим из колонны 18. [c.87]

    Непрореагировавшие углеводороды илп улавливают маслом, как это делается на газобензиновых заводах, или выделяют путем охлаждения и абсорбции холодными сжиженными газами. Помимо этого, сбросовые газы часто компримируются до 36—40 ama и частично конденсируются в сепараторе парами, идущими во фракционирующую колонну, в которой остаток сжиженных газов отделяется от инертных газов. Остаток фракционирующей колонны, содержащей сконденсированные углеводороды после промывки водой и нейтрализации, смешивают с углеводородами из сепаратора и возвращают снова на окисление. Промывка углеводородов каустической содой осуществляется для удаления из них примесей, способных подвергаться дальнейшему окислению п, следовательно, способных снизить выход целевых продуктов реакции окисления. [c.90]

    По окончании растворения автоклав останавливают люком вверх (прп этом положении конец сифонной трубы погружен в раствор), соединяют его с общим коллектором, осторожно открывают задвижку в сторону теплообменника и медленно снижают давление до 2,5— 3 ат. После этого по перепускной трубе передавливают жидкое стекло в разбавитель, предварительно залитый водой на /а объема. В него же самотеком из сборной емкости направляют сконденсировавшийся пар с унесенными брызгами жидкого стекла. При снижении давления в автоклаве над раствором происходит частичное испарение жидкого стекла, поэтому сборная емкость связана трубопроводом с теплообменником, где образующийся пар конденсируется. Окончание передавливания определяют по резкому падению давления в автоклаве до пуля. В полном опорожнении автоклава перед очередным растворением необходимости нет. Более того, остаток нерастворенной силикат-глыбы и щелочного раствора ускоряет последующее растворение. Не реже одного раза в месяц автоклав чистят от скоплений шлама и нерастворенной силикат-глыбы. [c.37]


    С самого начала заполнения сырьем реакторов замедленного коксования происходит довольно <2 значительное снижение температуры сырья (с 460—470 до 420 °С). Тепло расходуется на нагрев сравнительно холодного ма-териала реактора и тяжелых фракций коксового дистиллята, которые конденсируются на верхних частях реактора и возвращаются в коксующийся остаток. По мере поступления дополнительного тепла с более горячим сырьем температура остатка постепенно [c.57]

    Зо всех этих случаях хладоагент, в качестве которого часто используют воду, служит для приема и отвода тепла. Таким образом, холодильник является теплообменником, который при необходимости может использоваться и для нагревания потока жидкости. Как и в промышленных установках, подобные теплообменники используют для подогревания исходной смеси. Если температура затвердевания дистиллята выше температуры охлаждающей воды из водопровода, то в качестве хладоагента следует использовать воду из термостата, температура которой должна быть выбрана таким образом, чтобы исключалось выпадение твердых частиц дистиллята в холодильнике. Дефлегматором называют такой холодильник, в котором путем регулирования расхода охлаждающей воды конденсируют лишь часть потока пара. Образующийся конденсат подают в качестве флегмы в колонну, а не-сконденсировавшийся остаток паров полностью конденсируют в конденсаторе и отбирают в качестве дистиллята (см. разд. 5.2.3). [c.369]

    Контактный газ после промывной колонны конденсируется в аппарате 9 и поступает в отстойник 4, откуда органический слой ( печное масло ), заправленный ингибитором, направляется в колонну первичного разделения, а водный слой возвращается в промывную колонну. Отводимая с низа аппарата 3 вода поступает в колонну 5. Вода, отогнанная на этой колонне, возвращается в процесс, а кубовый остаток, составляющий около 10% от массы питания, сбрасывается в стоки. [c.197]

    Технологическая схема получения неопентилгликоля изображена на рис. 10.8. Технический формалин (37%-ный) подается в колонну I. С верха колонны при температуре 64—66 С отводится метанол в виде товарного продукта. Кубовый остаток из колонны 1 при 100 С подается на верхнюю тарелку колонны 2, предназначенной для извлечения остаточного метанола. С верха колонны 2 при температуре 96—98 °С отводится продукт, содержащий 10—11% метанола, который возвращается в куб колонны 1. Кубовый продукт колонны 2, содержащий не более 0,1% метанола, охлаждается до 60—65 °С и подается в середину вакуумной колонны 3 (верх колонны — 50—100, низ — 400 мм рт. ст.), которая предназначена для концентрирования формальдегида. С верха колонны 3 при температуре 42—45 °С отводится 9—10%-ный водный раствор формальдегида, часть которого подается на орошение колонны 3, а остальной — в колонну 4 для извлечения остаточного формальдегида. Кубовый продукт колонны 3 представляет собой 70%-ный формальдегид, который после смешения с изобутило-вым спиртом подается на стадию конденсации в реактор 5. В колонне 4 раствор формальдегида в воде укрепляется от 9—10% до 37—38% (масс.). Пары формальдегида и воды конденсируются, и жидкий продукт направляется на питание колонны 2. Кубовый остаток колонны 4 отводится на очистку. [c.340]

    В нижнюю часть испарителя низкого давления поступает крекинг-остаток из основного испарителя К2. Испаряющиеся из крекинг-остатка легкие фракции проходят через внутреннюю шлемовую трубу в аккумулятор и, контактируясь с более холодным мазутом, конденсируются, обогащая и одновременно нагревая мазут. [c.256]

    Сырье (тяжелый мазут, гудрон или крекинг-остаток) пасосом Н1 или Н2 подается в нагревательный змеевик печи П1, откуда, подогретое до 350°, поступает в нижнюю часть ректификационной колонны К1 на четвертую каскадную тарелку. Стекая но тарелкам вниз, сырье вступает в контакт с горячими парами продуктов коксования, поступающими в низ колонны из коксовых камер Р1, Р2, РЗ. За счет тепла паров продуктов коксования сырье нагревается, от него отгоняются более легкие (соляровые) фракции, а из иаров продуктов коксования конденсируются и переходят в сырье более тяжелые фракции. Смесь сырья и тяжелых рециркулирующих фракций коксования при температуре 360— 380° забирается с низа колонны К1 насосом Н2а (типа КВН 55 X 70) н прокачивается через реакционный змеевик печи П1 — сначала через подовые экраны обеих радиантных секций печп, а затем потолочный экран второй радиантной секции, где нагревается до 485—500°. [c.322]

    При барботировании кислородом смеси 1 л жидкого бутана и 250 мл треххлористого фосфора при —5° легко получают дихлорид н-бутилфосфиновой кислоты заданную температуру лоддерживают охлаждающей смесью. Продукты реакции обрабатывают очень просто. Не вступивший в реакцию бутан испаряют и конденсируют в приемнике для следующего опыта. Остаток сначала освобождают отгонкой от треххлористого фосфора и затем перегоняют в вакууме. Смесь дихлоридов изомерных бутилфосфиновых кислот кипит при 68—70° (3,5 мм рт. ст.). Выход составляет 45% от теоретического, считая на прореагировавший треххлористый фосфор. [c.502]

    Однократная перегонка осуществляется испарением или дросселированием жидкой смеси. На рис. 1-21 показаны варианты схемы процесса однократной перегонки. При однократном испарении (рис. 1-21, а) исходную жидкую смесь непрерывно подают в подогреватель 1, где она нагревается до заданной температуры, соответствующей определенной доле отгона смеси при фиксированных значениях давления и температуры, затем парожидкостная смесь поступает в адиабатический селаратор 2, где паровая фаза отделяется от жидкой. Пары конденсируются и охлаждаются в конденсаторе 5 и в виде дистиллята поступают в емкость 4. Дистиллят из емкости и остаток из сепаратора после охлаждения непрерывно отводятся с установки. [c.54]

    Аналогичным образом из жпдиого сырт,евого слоя L после однократной перегонки получаются обогащенный компонентом а жидкий остаток R и паровая фаза Д, состав которой обязательно должен быть внутри интервала концентрации ж,, а ,/. Поатому пар D конденсируется и охлаждается до температуры о, нолу-ченпая жидкость расслаивается по изотерме L Ly и жидкие слои комбинпруются с одноидгеннымп фазами сырьевого потока. Таким образом, в замкнутую схему нроцесса перегонки поступает сырье U п уходят жидкие потоки R, с преимущественным содер- [c.124]

    OM подается в час F килограмм раствора концентрации Хр (крепкий, насыщенный раствор). Здесь за счет подвода теплоты Qw получается D килограмм пара с содержанием хладагента х,1 (почти чистый хладагент). Остаток (F—D) кг раствора через дроссельный вентиль поступает в абсорбер и имеет концентрацию л а. В абсорбере с выделением теплоты абсорбции Qa абсорбируется из испарителя D килограмм пара концентрации х,1 и, таким образом, снова получается F килограмм раствора концентрации хр, для подачи которого в кипятильник затрачивается работа насоса Q (в тепловых единицах). Полученный и кипятильнике пар конденсируется в конденсаторе ХК с отнятием от него теплоты и обычрю еще несколько переохлаждается в холодильнике П-Х (см. рис. 43). Полученная жидкость концентрации ха через дроссельный вентиль 2 поступает и испаритель, где, поглощая теплоту охлаждаемого потока Qo, испаряется и в виде наров направляется в абсорбер А. [c.130]

    Выделенные в нервом испарителе 4 из нагретого в теплообменниках 2 и печи 1 сырья дестиллатпые пары направляются непосредственно в реактор на крекинг, а горячая смолистая жидкост]> ностунает в вакуумный испаритель 5 для отбора дополнительных количеств солярового дестиллата. Нары этого дестиллата конденсируются в конденсаторе 3 и из сборника 6 насосом направляются п жидком виде в реактор. Тяжелый смолистый остаток — битум или гудрон — откачивается снизу вакуумного испарителя, охлаждается и выводится с установки. [c.34]

    Кубовый остаток (смесь высших спиртов и смол) через холодильник и приемник поступает в куб для вакуумной перегонки. Куб обогревается паром 12 ати. Отгоняется смесь высших спиртов при остаточном давлении 5 мм рт. ст. Пары спиртов конденсируются, охлаждаются, и спирты направляются на склад готовой продукции. Выход высших спиртов С]2—С16 на 1 т 2-этилгекса-нола по фактическим данным составляет 150 кг. Выход кислот и лактона — 20 кг т. [c.126]

    Газообразные продукты реакции, включающие ценные кислородсодержащие соединения, непрореагпровавшие углеводороды, окпслы углерода и азот, поступают в водяной абсорбер для выделения конденсирующихся продуктов реакции. Разбавленный водный раствор продуктов реакции направляется далее в колонну для выделения ценных компонентов. Остаток из колонны, состоящий в основном из воды, нейтрализуется и снова направляется в водяной абсорбер для извлечения химических продуктов из реакционных газов. [c.90]

    В реакторе часть углеводородного сырья испаряется. Пары, содержащие главным образом изобутан и пропан, сжимаются, конденсируются и возвращаются в реакционную зону. Часть этого потока направляют в пропановую колонну для выделения товарного пропана. Остаток из пронановой колонны возвращают в реактор. Расход кислоты в процессе составляет 0,15 кг л. Выход алкилата достигает 200% в расчете па предельный углеводород. Алкилат является высококачественным авиационным бензином. [c.136]

    Упрощенная схема этого процесса изображена на рис. 87. Па-ро-газовую смесь исходных веществ подогревают в теплообменнике I горячими реакционными газами и подают в реактор 2. Выходящая из него смесь последовательно охлаждается в теплообменнике 1 и системе водяных и рассольных холодильников 3, где конденсируются все жидкие вещества. Иепрореагировавший ацетилен возвращают на приготовление исходной смеси, а жидкость направляют на разделение в систему ректификационных колонн 5, где отгоняются легкая фракция, винилацетат, уксусная кислота (возвращаемая на синтез) и этилидендиацетат. Тяжелый остаток идет на сжигание. [c.300]

    Эфиры, выходящие с низа эфирнзатора 7, дросселируют и подвергают вакуум-перегонке при остаточном давлении 133 гПа. Вначале в испарителе 8 отгоняют смесь эфиров от менее летучих смолистых примесей. Легкий погон из ректификационной. колонны 10 представляет собой метил-л-толуилат. Он конденсируется в конденсаторе-дефлегматоре 11. Часть его идет на орощение колонны, а остальное количество стекает в сборник 13, откуда направляется на окисление. Эфиры дикарбоновых кислот из куба колонны 10 поступает на вакуум-ректификацию в насадочную колонну 12, где более летучий диметилтерефталат отгоняется от днметиловых эфиров изомерных дикарбоновых кислот ( изофталаты ). В конденсаторе-дефлегматоре 14 эфир конденсируется часть его возвращается на орошение колонны, а остальной продукт стекает в сборник 15. Кубовый остаток из колонны 12 еще содержит значительное количество диметилтерефталата. Его направляют на кристаллизацию из метанольных растворов, на схеме не показанную. Изофталаты лучше растворяются в метаноле, и диметилтерефталат отделяют от них в виде кристаллов, возвращая его на рек-тифика дию. [c.401]

    Технология синтеза малеинового ангидрида отличается от рассмотренной для фталевого ангидрида только стадией разделения продуктов. После охлаждения реакционных газов примерно 50% мглеинового ангидрида конденсируется или в твердом виде отделяется в ребристых конденсаторах или циклонах. Остальное его количество поглощают водой, получая 40%-ный раствор малеино-вой кислоты. Раствор упаривают и дегидратируют кислоту в ангидрид термическим путем (отгонка воды в тарельчатых или пленочных аппаратах) или отгоняя азеотропную смесь воды с о- ссилолом. Полученный малеиновый ангидрид подвергают ректификации, отгоняя вначале легкий погон, а затем отделяя тяжелый остаток. [c.432]

    По понижающейся степени метаморфизма. Пластичность уменьшается, так как реакции конденсации возникают все более быстро, что обусловлено ростом содержания кислорода. Пламенные угли с высоким содержанием кислорода дают значительное количество смолообразных продуктов во время термической деструкции, но они не могут больше пластифицировать остаток витринита одновременно и потому, что они термически не стабильны и потому, что твердый остаток коксования очень быстро конденсируется, чтобы образовать мак-ромолекулярные твердые вещества. Добавление пека может тогда способствовать началу перехода в пластическое состояние, но не может каким-либо образом воспрепятствовать преждевременному затвердеванию до того, как завершатся реакции термической деструкции. [c.97]

    Продукты крекинга из П-1 и П-2 объединяются и идут в выносную реакционную камеру К-1, а затем в испаритель высокого давления К-2. В К-2 от п 1рожид-костной смеси отделяется крекинг-остаток, самотеком перетекающий в испаритель низкого давления К-4. В К-4 из крекинг-остатка выделяются пары газойле-вой фракции. Колонна К-4 также разделена на две части глухой тарелкой. В верхней части К-4 пары керосино-газойлевсй фракции контактируют с движущимся им навстречу жидким сырьем. При этом контакте часть паров керосино-газойлевой фракции конденсируется. [c.76]

    Смесь продуктов реакции поступает на первую по ходу вакуумную колонну 6. Погон этой колонны конденсируется в системе из водных 7 и рассольных 8 конденсаторов. В системе 7 конденсируется в основном непревращенный этилбензол, который возвращается на дегидрирование. В системе 8 конденсируются более летучие продукты — бензол и толуол — с примесью этилбензола. Кубовый продукт колонны 6 поступает на дополнительную отгонку низкокипящих примесей на колонну 9. Погон этой колонны присоединяется к питанию колонны 6, а кубовая жидкость подается на колонну выделения стирола-ректификата 10. Остаток из куба колонны 10, содержащий около 40% стирола (остальное количество — это высококипящие примеси, полимеры, стабилизатор и т. д.), поступает на доисчерпывание в один из попеременно работающих вакуумных перегонных кубов 12 или 13. Отогнанный стирол возвращается на питание колонны 10, а остаток сжигается. [c.385]

    Технологическая схема процесса показана на рис. 12.17. Жидкий дихлорэтан и сухой хлор подают в реактор 1 с псевдоожиженным слоем катализатора. Туда же возвращают и поток циркулирующих ароматических продуктов из секции разделения и очистки. Газообразные продукты реакции подвергают закалочному охлаждению в колонне 2 при этом большая часть органических продуктов конденсируется. Небольшое количество водорода, содержащегося в конденсированном сыром продукте, удаляется нейтрализацией разбавленным щелочным раствором в нейтрализаторе 4. Сырой перхлорэтилен направляют в отстойник 5 для отделения от водной фазы, сушат в осушителе 6 и перегоняют в колонне 8. Легкие органические примеси (например, трихлорэтилен и четыреххлористый углерод) конденсируют и возвращают в виде циркулирующего потока в реактор. Остаток (перхлорэтилен и высококипящие примеси) разделяют перегонкой в колонне 10, перхлорэтиленовый дистиллят нейтрализуют, сушат, после чего к нему добавляют ингибитор. Изменяя рабочие условия в реакторе, при наличии дополнительного дистилляционного оборудования, наряду с перхлорэтиленом можно получать и трихлорэтилен. [c.414]

    Тонкоизмельченный уголь, смешанный с катализатором, растирают с маслом и угольную пасту и вместе с водородом нагревают в подогревателе. Отсюда масса и водород поступают в реакционную печь, а затем в присоединенный к ней горячий сепаратор. В последнем происходит разделение продуктов реакции на жидкую и газообразную части. Жидкая часть выводится в виде шлама, а газообразные (парообразные) продукты конденсируются во втором — продуктовом — сепараторе, в виде так называемого гидрюра. Масло, образующееся в этом процессе, распределяется между гидрюром и шламом. Дальнейшая обработка состоит в том, что гидрюр подвергается дестилляции и разделяется на различные фракции, причем первая фракция, кипящая примерно до 325°, отбирается в качестве среднего масла. Остаток внизу у колонны представляет собой тяжелое масло с началом кипения 325°. Шлам, содержащий непревра-щениый уголь, золу угля и контакта, асфальт и масло, центрифугируют для удаления большей части масла. Остаток от фугирования в целях увеличения выхода масла подвергается полукоксованию. Тяжелое масло гидрирования, масло фугирования и полукоксования возвращаются в цикл как затирочное для угля. В отходящем избыточном водороде гидрирования нахо- [c.155]

    В результате резкого падения давления и подачи в низ дополнительного испарителя водяного пара происходит испарение из крекинг-остатка увлеченных соляровых фракций, которые через внутреннюю шламовую трубу переходят из нижней части в верхнюю часть аппарата и, встретившись там с более холодным мазутом, конденсируются почти нацело и одновременно нагревают мазут до 100—110°. Крекинг-остаток из низа дополнительного иснарителя насосом 35 прокачивают через холодильник 28 и направляют в емкость. [c.241]

    Пройдя через редукционный вентиль, продукты реакции, имеющие температуру 4б0—470°, вступают в испаритель высокого давления 1 2. Здесь, вследствие снижения давления с 20—25 ати до 10—12 аттш, происходят испарение и отделение газо-паровой частп продуктов крекинга от жидкого крекинг-остатка. После разделения крекинг-остаток еще содержит в себе значительное количество фракций, выкипающих до 350°. Чтобы выделить эти фракции и вернуть их на повторный крекинг, крекинг-остаток с низа иснарителя при температуре 430—440° направляется самотеком в ннжнюю часть испарителя низкого давления К4. В результате снижения давления с 10—12 ати до 1,5—3 ати из крекинг-остатка испаряются наиболее легкие части — соляровые фракции, которые по внутренней шлемовой трубе переходят в верхнюю аккумуляторную часть испарителя Я4, конденсируются там и, присоединяясь к исходному сырью-мазуту, одновременно нагревают его. [c.258]


Смотреть страницы где упоминается термин Остаток конденсированный: [c.230]    [c.103]    [c.8]    [c.166]    [c.276]    [c.51]    [c.357]    [c.390]    [c.392]    [c.78]    [c.86]    [c.710]    [c.247]    [c.314]   
Горение гетерогенных конденсированных систем (1967) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Конденсированные ВВ

Пар конденсирующийся



© 2025 chem21.info Реклама на сайте