Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Этилен в синтезе стирола

    Первая стадия синтеза стирола — получение этилбензола алки-лированием бензола этиленом. Катализатором при этом служит безводный хлорид алюминия, активированный небольшим количеством хлористого водорода  [c.281]

    Этан. При пиролизе этана образуется этилен — важное исходное сырье для органического синтеза, главным образом окиси этилена, этилового спирта, полиэтилена, стирола и других полупродуктов. В результате окислительного пиролиза этана получается ацетилен. Из этана вырабатывается также хлористый этил, являюш,ийся сырьем для изготовления ТЭС, спиртов, пластических масс и полимерных материалов. Прп нитровании этана могут быть получены нитроэтан и нитрометан, широко используемые в качестве растворителей. [c.15]


    Пиролизом называют процесс, аналогичный термическому крекингу, но проводимый при более высокой температуре (670— 1200 °С) и невысоком давлении (0,2—0,5 МПа). Пиролизом углеводородных газов (пропана или бутана) или бензиновых фракций получают ряд необходимых для нефтехимического синтеза и производства пластмасс веществ, таких, как этилен, пропилен, бутадиен, ацетилен. Этилен, в свою очередь, служит сырьем для производства этилового спирта, стирола, полиэтилена и оксида этилена. [c.265]

    При крупных масштабах производства жидкие продукты пиролиза, ранее считавшиеся отходами, превратились в целевые их переработка позволяет получить целую гамму ценных для народного хозяйства продуктов. Например, на установке мощностью 300 тыс. т этилена в год наряду с этиленом получается 130—140 тыс. т пропилена 40—45 тыс. т бутадиена, 45—50 тыс. т бутиленов, 110—120 тыс. т бензола, 8—10 тыс. т циклопентадиена, 5—7 тыс. т изопрена, 16—18 тыс. т нефтеполимерных смол и 40— 45 тыс. т сырья для производства технического углерода [11 ]. Поэтому пиролиз рассматривается не только как источник производства этилена и пропилена, но и как способ получения бутадиена, изопрена, циклопентадиена, стирола, бензола, нафталина и других продуктов, конкурентноспособный по отношению к традиционным методам их синтеза. [c.32]

    Синтез кумола при каталитическом алкилировании намного легче, чем синтез стирола, так как условия реакции мягче (200 — 250° С и 25 ат по сравнению с 275° С и 60 ат). Пропилен реагирует с бензолом легче, чем этилен, а побочных реакций с образованием полиалкилбензолов намного меньше, чем в случае этилбензола. Эти полиалкилбензолы и особенно диизопропилбензолы значительно влияют на скорость реакции [83]. [c.172]

    Промышленный синтез часто основывается на алкилировании ароматических углеводородов этиленом, пропиленом и изобутиленом, так как олефины дешевы. Этилирование с последующим дегидрированием служит для промышленного синтеза стирола. [c.376]

    Применение. В производстве красителей — для получения анилина, в производстве фенола — при взаимодействии Б. с серной кислотой при синтезе стирола посредством алкилирования Б. этиленом и синтезе изопропилбензола в производстве капролак-тама в лакокрасочной промышленности, при производстве пласт-масс, фармакологических препаратов, моющих средств. В лазерной промышленности. В качестве разбавителя, растворителя для экстрагирования белка, обезжиривания костей, жиросодержащих отходов. [c.116]


    Хлорид алюминия катализирует также синтезы при участии алкенов и спиртов. Так, например, бензол в присутствии хлорида алюминия легко реагирует с этиленом, пропиленом, образуя этил-и пропилбензол. Этилбензол каталитическим дегидрированием превращается в винилбензол, или стирол, —мономер для получения ценных высокополимерных соединений, технические свойства которых связаны с чистотой мономера, зависящей от качества исходных продуктов. Поэтому для синтеза стирола применяются этилен 99,9% чистоты, тогда чистота стирола —99,6—99,8%. [c.406]

    Из большого числа известных методов синтеза стирола промышленное применение получили лишь немногие, преимущественно те, 3 которых промежуточным продуктом является этилбензол, а сырьем — этилен и бензол. [c.195]

    Для синтеза стирола и капролактама (важных продуктов для получения синтетических высокомолекулярных соединений) в качестве сырья применяют бензол. Первая стадия синтеза стирола — получение этилбензола алкилированием бензола этиленом. Катализатором при этом служит безводный хлорид алюминия, активированный небольшим количеством хлороводорода  [c.251]

    Наиболее важный тип полимеризации осуществляется в случае таких простых мономеров винилового ряда, как этилен, пропилен, стирол и т. д. В настоящее время известно четыре основных типа механизмов полимеризации виниловых мономеров — свободнорадикальный, катионный, анионный и координационный. Первые три механизма были кратко рассмотрены выше (1, стр. 183—186). Возможность существования четвертого механизма связана с открытием катализаторов (обычно гетерогенных) циглеровского и других типов, действие которых, по-видимому, не связано с образованием свободных радикалов, катионов и анионов и приводит обычно к синтезу полимеров, обладающих высокой степенью стереорегулярности. [c.404]

    Завод фирмы Хюльс в Марле значительно уступает указанной выше тройке. В 1964 г. на нем работало около 15 тыс. челове-к. Стоимость продаж в том году составила 787 млн. марок. На заводе вырабатываются преимущественно продукты органического синтеза и синтетические смолы ацетилен, ацетальдегид, уксусная кислота, бутиловый спирт, винилхлорид, поливинилхлорид, этилен, этилбензол, стирол, полистирол, окись этилена, амины, гликоли, пропилен, кумол, окись пропилена, пропилен-гликоль, алкилбензол, жирные спирты, текстильно-вспо-могательные средства, сажа, каучуки, пластификаторы. Из неорганических химикатов производятся хлор и каустик, а также технические газы — кислород и азот. [c.58]

    Этилбензол используется в основном для получения стирола методом дегидрирования, а также для процесса совместного получения пропиленоксида и стирола. В промышленной практике синтез этилбензола алкилированием бензола этиленом осуществляют, применяя катализаторы на основе хлорида алюми-ния, фторида бора и цеолитов. [c.137]

    Этилен, этен СНа=СН2 — бесцветный газ, горящий на воздухе коптящим пламенем. Щи око применяется для синтеза различных органических веществ этилового спирта, стирола, галогенопроизводных, полиэтилена и т. д. Кислородно-этиленовым пламенем можно резать и сваривать металлы. С воздухом этилен образует взрывоопасные смеси. [c.73]

    Многие нефтепродукты являются ценным сырьем нефтехимического синтеза. Эта важная отрасль нефтехимической промышленности. На основе нефтепродуктов и природных газов производят следующие соединения аммиак, этилен, пропилен, бутадиен-1,3, дихлорэтан, винилхлорид, бензол, толуол, ксилолы, этилбензол, стирол, спирты и многие другие вещества. [c.356]

    Низшие олефины (этилен и пропилен) - самые востребованные продукты нефтехимического синтеза. Наиболее многотоннажным является производство этилена на его основе производят этиловый спирт, полиэтилен, стирол, винилхлорид, этиленоксид и др. Пропилен служит исходным сырьем в производстве изопропилового спирта, акрилонитрила, полипропилена, глицерина, изопропилбензола, н-бутилового спирта. [c.351]

    Этилен получают термической переработкой погонов нефти, его мировое производство достигает нескольких десятков миллионов тонн. Этилен - бесцветный газ со слабым запахом, незначительно растворим в воде, умеренно - в этаноле, хорошо - в диэтиловом эфире. Этилен служит важнейшим сырьевым источником основного органического синтеза. Его применяют для производства этиленгликоля, этиленоксида, этанола, акрилонитрила, диок-сана, ацетальдегида, уксусной кислоты, стирола, пропионового альдегида, 1-пропанола, винилхлорида, винилацетата, дихлорэтана, полиэтилена. Т. самовоспл. 540 °С. Обладает слабым наркотическим действием. ПДК 50 мг/м . [c.294]

    В формировании природных полимеров принимают участие соответствуюш,ие ферменты и катализаторы, которые обеспечивают направленное протекание реакций. В начальный период развития химии синтетических полимеров, когда еще не были най-дены совершенные катализаторы синтеза, получали полимеры с нерегулярной структурой, малой молекулярной массой и вследствие этого с низкими физико-механическими показателями. По мере развития этой отрасли химической науки и производства были разработаны способы получения пространственно и химически регулярных полимеров (стереоспецифическая полимеризация) из промышленнодоступных мономеров (этилен, пропилен, стирол и др.), что привело к громадному росту производства различных полимеров. Большинство этих полимеров в природе не существует, [c.13]


    В присут. AI I3, BF3, HF и др. кислотных катализаторов О. способны алкилировать насыщ. углеводороды образующиеся алканы разветвленного строения применяют в качестве высокооктановых добавок к моторным топливам. В условиях р-ции Фриделя-Крафтса этилен алкилирует бензол до этилбензола-полупродукта при синтезе стирола. При алки-лировании бензола пропиленом образуется кумол, используемый для получения фенола и ацетона (см. Алкилирование). [c.373]

    Этилбензол gH5 2H5 в промышленности используют в основном как сырье для синтеза стирола. Большую часть этилбензола получают алкилированием бензола этиленом и значительно меньшее его количество выделяют сверхчеткой ректификацией из продуктов риформинга прямогонного бензина. [c.357]

    Уже этого краткого рассмотрения основных характеристик полимеров достаточно для того, чтобы понять, что генезис, т. е. способ получения макромолекул из низкомолекулярных молекул мономеров, влияет практически на все основные свойства полимера. В природе полимеры (за исключением некоторых смол) образуются, как правило, с высокой степенью химической и пространственной регулярности, с правильным чередованием звеньев в структуре полимера. Это, например, молекулы целлюлозы, натурального каучука ( цыс-1,4-полиизопрен), белков и нуклеиновых кислот. В формировании природных полимеров принимают участие соответствующие ферменты и катализаторы, которые обеспечивают направленное протекание реакций. В начальный период развития химии синтетических полимеров, когда еще не были найдены совершенные катализаторы синтеза, получались полимеры с нерегулярной структурой, малой молекулярной массой и вследствие -этого с низкими физико-механическими показателями. По мере развития этой отрасли химической науки и производства (особенно с 50-х гг.) были разработаны способы получения пространственно и химически регулярных полимеров (стереоспецифическая полимеризация) из промышленнодоступных мономеров (этилен, пропилен, стирол и др.), что привело к громадному росту производства различных полимеров. Большинство из этих полимеров в природе не создаются. Получение полимеров осуществляется в результате реакций полимеризации или поликонденсации. [c.11]

    Этилен-пропиленовая фракция перерабатывается в этил — бензол и изопровилбенз ол. Этилбензол иде-г для синтеза стирола, изопропилбензол — для совместного производства фенола и ацетона. [c.178]

    Взаимодействием нафталина с этилбензолом или с этиленом в присутствии л(-ксилола и хлорида алюминия можно получать 2-этилнафталин и далее 2-винилнафталин [107]. Полимеры 2-ви-нилнафталина и сополимеры со стиролом имеют достаточно высокую механическую прочность и теплостойкость, 2-винилнафталин применяется также в производстве ионообменных смол. Окислением 2,6-диметилнафталина получают 2,6-нафталиндикарбоно-вую кислоту — сырье для полиэфирных волокон более термо- и водостойких, чем полиэтилентерефталат [108]. Алкилированием нафталина хлоралканами производятся парафлоу — депрессоры, понижающие температуру застывания смазочных масел. Нафталин может использоваться также в качестве сырья для синтеза антра-хинона [109]. [c.339]

    Мировое производство мономеров для синтеза каучука достигло огромных масштабов и исчисляется миллионами тонн в год. В Советском Союзе по мере развития промышленности синтетического каучука также намечается значительное увеличение объема производства мономеров. К числу важнейших мономеров относятся бутадиен (синтез бутадиеновых каучуков), изобутилен (синтез изопрена, полиизобутилена и бутилкаучука), этилен (синтез этанола для бутадиена, этилбензола для стирола и этилен-пропиленового каучука), изопрен (синтез изопренового каучука), пропилен (синтез а-метилстирола, этилен-пропиленового каучука, акрилонитри-ла), хлоропрен (синтез наирита и хлорнаирита). [c.92]

    Основной способ синтеза стирола СН2=СН(СеН5) — дегидрирование этилбензола, получаемого прямым алкилированием бензола этиленом. Стирол, выделенный из продуктов реакции ректификацией, модет содержать,примеси главным образом различных ароматических углеводородов (этилбензол, толуол, дивинилбензол и т. п.), фактическое содержание которых в мономере практически не сказывается на скорости полимеризации. Однако присутствие в стироле-ректификате дивинилбензола не допускается, поскольку приводит к значительному структурированию сополимера и ухудшению его технических свойств. [c.405]

    Известны многочисленные методы синтеза стирола. Однако наибольшее распространение получил метод получения стирола каталитическим дегидрированием этилбензола, который в свою очередь синтез1 уют в процессе алкилирования бензола этиленом.  [c.223]

    Схема получения полималеината, типичная для производства ненасыщенных полиэфиров, приведена на рис. 111. Синтез полиэфира проводится в реакторе 4, снабженном конденсатором 5, который соединен с вакуум-насосом для более полного удаления реакционной воды. В реактор из бункера <3 загружают фталевую кислоту, из бункера 2—малеиновую кислоту, а из сборника 1— этилен- или диэтиленгликоль. Полнэтерификацию проводят при 170—220 °С до тех пор, пока кислотное число реакционной массы не снизится до 40 мг КОН на 1 г смеси. Это соответствует образованию полиэфира с молекулярным весом около 3500. Реакционную смесь далее охлаждают до 50 С и передавливают сжатым азотом в аппарат 6, где полиэфир растворяют в мономере, например в стироле, подаваемом из сборника 7. Полученный раствор поли- [c.409]

    Значительное место отведено расчету равновесий реакций синтеза важнейших мономеров и полупродуктов, являюш,ихся исходным сырьем для производства различных высокомолекулярных продуктов и пластиков в их числе ацетилен, этилен, пропилен, дивинил, изопрен ароматические углеводороды — бензол, толуол, ксилолы и другие алкилбен-золы — стирол, винилнафталин альдегиды — кетоны, кислоты, спирты, некоторые азотсодержащие соединения и др. [c.5]

    Дальнейшая интенсификация действующих производств бутадиена предусматривается за счет перехода на более эффективные катализаторы на первой и второй стадиях, а рост выпуска бутадиена будет обеспечиваться самым экономичным путем — переработкой бутилен-бутадиеновой фракции пиролиза бензина в этилен. Б связи с организацией производства сополимерных каучуков озникла необходимость создания крупнотоннажного производства стирола, а-метилстирола, нитрила акриловой кислоты. В последнее время все возрастающее значение приобретают мономеры для синтеза каучуков специального назначения. [c.10]

    ТИ и пиролиза природного газа и этана. Этен — ключевое соединение в современной органической технологии. Почти половина его идет на производство полиэтилена, остальное — на синтез этанола, хлороэтана (для получения тетраэтилсвинца), этилен-оксида (для получения этиленгликоля и его производных), эти-лендихлорида (для получения винилхлорида), этилбензола (для получения стирола), винилацетата и ацетальдегида. Этен ускоряет созревание фруктов (является гормоном роста растений) и с этой целью используется на практике. [c.250]

    Допустим, что необходимо получить стирол, располагая в качестве исходного органического сырья только гексаном. Известно, что при крекинге гексана можно получить этилен, а при ароматизации—бензол, а при реакции между этими веще твами образуется этилбензол, который можно превратить в стирол. Так возникает цепочка синтезов  [c.272]

    В противоположность другим изомерам ароматических углеводородов С потребность в этилбензоле со времени принятия программы по созданию промышленности синтетического каучука в США во время второй мировой войны была весьма велика. Громадные количества этилбензола, дегидрированием которого можно получать мономерный стирол, требовались для производства синтетического каучука, столь необход 1мого для всей экономики страны. Несмотря на эту острую потребность, все же пришли к выводу, что непосредственное выделение этилбензола из кснлольных нефтезаводских фракций не может быть практически осуществлено из-за близости температур кипения изомеров. Вместо этого были построены установки синтеза, на которых стирол получали алкилированием бензола этиленом с последующим дегидрированием этилбензола  [c.257]

    НЕФТЕХИМИЧЕСКИЙ СИНТЕЗ, произ-во крупнотоннажных орг. и неорг. продуктов на основе нефт. фракций, прир. газа и газов нефтепереработки. Важнейшие из продуктов Н. с.— этилен, аммиак, пропилеи, бензол, дихлорэтан, этилбензол, толуол, стирол, бутилены, винилхлорид, окись этилеиа, бутадиен, ксилолы, этиленгликоль, изопропиловый и этиловый спирты. Осн. процессы, к-рые использ. в Н. с.,— пиролиз, дегидрирование (в т. ч. окислительное), галогеиирование, окисление, гидратация, гидрирование, алкилирование, аммонолиз и др. [c.376]

    ВИНИЛОВЫЕ МОНОМЕРЫ, этилен и его монозамещенные производные, способные полимеризоваться по схеме n Hj= HX -> (—СНг—СНХ—) . В зависимости от природы X мономеры могут вступать в анионную, катионную, коордииационио-ионную и радикальную полимеризации. Наиб. пром. значение для синтеза полимеров и сополимеров имеют этилен, пропилен, винилхлорид, акрилонитрил, стирол, винилацетат, метилакрилат и др. эфиры акриловой к-ты. [c.370]

    Важнейшими мономерами для производства каучуков общего назначения являются бутадиен, изопрен, стирол и а-метилстирол. Для синтеза многотоннажных специальных каучуков используются также хлоропрен — для хлоропреновых СК это основной мономер, нитрил акриловой кислоты (акрилонитрил, НАК) — в качестве сомономера для производства бутадиен-нитрмльных каучуков СКН, и изобутилен (метилпропен) —для получения бутилкаучука и полиизобутиленов. Для производства остальных каучуков специального назначения используются этилен (этен), пропилен (пропен), алифатические дигалоген-производные, диорганодихлорсиланы, непредельные фторорга-нические соединения, простые и сложные олигоэфиры, эфиры акриловой кислоты. [c.13]

    Третьим важным источником исходных продуктов для получения смол является синтез под высоким давлением аммиака и метилового спирта из водорода, который в первом случае реагирует с атмосферным азотом, а во втором — с окисью углерода аммиак применяется для получения, путем реакции с двуокисью углерода, мочевины, а метиловый спирт—для окисления его в формальдегид. Еще почти неиспользованными, но многообещающими в этой области материалами являются побочные продукты, получаемые при крекинге нефти. При соответствующем подборе сырья и условий крекинга можно получить хорошие выходы таких важных продуктов, как этилен, изобутилен, бутадиен и даже ацетилен. Хотя эти последние получаются в виде компонентов сложных систем и выделение их из смесей и очистка сопряжены сисп гхьзо-ванием сложной аппаратуры, но то обстоятельство, что эти ценные продукты пиролиза могут сильно удешевить производство смол, делает этот синтез весьма многообещающим. И действительно, уже-достигнуты большие успехи в области пиролиза нефти, при произ-. водстве светильного газа, в направлении получения значительных количеств таких ценных ненасыщенных углеводородов, как стирол. [c.479]

    Низкомолекулярньге олефины — этилен, пропилен, 1-бутен и 1-пентен — являются исходным сырьем для промышленности органического синтеза, в частности для получения полимерных материалов полиэтилена, полипропилена, стирола, синтетических волокон, пластических масс, органического стекла и т. п. Возрастающая потребность промышленности в олефинах требует разработки теории и практики эиономически выгодных способов их получения из природных и попутных газов. Для установления этих критериев необходимо прежде всего рассмотреть термодинамические характеристики процессов получения низкомолекулярных олефинов из предельных углеводородов. [c.168]


Смотреть страницы где упоминается термин Этилен в синтезе стирола: [c.105]    [c.10]    [c.456]    [c.455]    [c.58]    [c.5]    [c.409]    [c.277]    [c.478]   
Основы технологии синтеза каучуков (1959) -- [ c.265 , c.266 , c.269 ]




ПОИСК





Смотрите так же термины и статьи:

Этилен синтез



© 2025 chem21.info Реклама на сайте