Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бериллий связь в металлическом

    Различают следующие основные типы кристаллических связей металлические, ионные, ковалентные (атомные), молекулярные. При металлическом типе связи кристаллическая решетка представляет собой каркас из положительно заряженных ионов, погруженный в электронный газ , который состоит из валентных электронов. Валентные электроны принадлежат всем атомам одновременно, поэтому силы связей не имеют строгой пространственной направленности. Атомы металлов в кристаллах окружены геометрически максимально допустимым числом соседних атомов. Большая часть металлов имеет кубические гранецентрированные, кубические объемно-центрированные и гексагональные кристаллы. При наиболее плотной гексагональной упаковке (бериллий, магний) достигается наивысший коэффициент заполнения пространства (остается только 26% незаполненного пространства между атомами). Так называемая теория свободных электронов объясняет многие свойства металлов, в частности, их высокую электропроводность, механическую прочность и пластичность. Смазочные пленки из пластичных мягких металлов, нанесенные на твердую подложку (напри-- [c.56]


    Определение кислорода в металлическом бериллии связано с некоторыми трудностями. Известно, что восстановление окиси бериллия углеродом в вакууме происходит при 2000°. При этой температуре бериллий сильно испаряется давление его паров уже при 1950° составляет 10 атм. [c.341]

    Все элементы второй главной подгруппы, кроме бериллия, обладают ярко выраженными металлическими свойствами. В устойчивом (нормальном) состоянии они являются нульвалентными, так как их внешние электроны на -подуровне спарены. Но это не значит, что они химически не деятельны. Энергия возбуждения у них мала (например, у атома бериллия 259,4 кДж) и полностью перекрывается энергией образования химических связей, поэтому один из 2.5-электронов может перейти в 2/7-состояние. В этом случае атом будет иметь два неспаренных электрона, и, следовательно, он может проявлять валентность, равную двум. [c.77]

    У магния металлические свойства выражены сильнее, чем у бериллия. В частности, он более склонен к образованию ионных связей ион вполне,устойчив и в растворах, и в кристаллах солей. Магний мягче и пластичнее бериллия. [c.262]

    Металлы с кубической гранецентрированной и гексагональной решетками в твердом состоянии. Рентгенографические и нейтронографические исследования показывают, что металлы, обладающие в твердом состоянии плотной упаковкой атомов, после плавления сохраняют ее. Это объясняется тем, что при переходе в жидкое состояние электронная конфигурация этих металлов и характер связи не изменяются. Действительно, атомы алюминия при конденсации металлического пара теряют внешний Зр-электрон. Образовавшиеся ионы А1+, обладая 2р 35 -конфигурацией, упаковываются в гранецентрированную кубическую решетку с параметром а = 4,04 Л. При плавлении электронная структура ионов не изменяется и плотная упаковка сохраняется. Незначительное уменьшение координационного числа связано с усилением трансляционной составляющей теплового движения атомов. Бериллий (конф. 15 2з ) и магний (конф. 2р 35 ) обладают высокими вторыми ионизационными потенциалами, поэтому при образовании кристалла их атомы отдают лишь один 5-электрон. Оставшийся второй -электрон придает сферическую форму однозарядным ионам, которые образуют в кристалле гексагональную решетку. При переходе в жидкое состояние электронная конфигурация ионов этих металлов и плотная упаковки существенно не изменяются. [c.176]

    Металлические свойства у элементов подгруппы бора выражены значительно слабее, чем у элементов подгруппы бериллия. Так, бор, в атомах которого электроны расположены на двух энергетических уровнях, является неметаллом, а химические связи, образу- емые им, имеют ковалентный характер. [c.212]


    Таким образом, граница между металлами и неметаллами не совпадает с границей Цинтля, а проходит по диагонали в общем направлении от бериллия к астату между элементами В — А1, 51 — Се, Аз — 8Ь, Те — Ро. Обоснованность диагональной границы между металлами и неметаллами наглядно проявляется в 18- и 32-Клеточной формах таблицы Менделеева, в которых элементы В-групп (переходные металлы), а также лантаноиды и актиниды естественным образом располагаются слева от этой границы. Все и /-элементы в виде простых веществ образуют плотноупакованные кристаллические структуры с доминирующим металлическим типом связи, хотя здесь проявляется и ковалентный вклад, обусловленный наличием дефектных внутренних электронных орбиталей. [c.243]

    От своего соседнего элемента по периоду — алюминия — магний отличается меньшим числом валентных электронов и относительно большим размером атома. Поэтому у магния металлические признаки проявляются сильнее, чем у бериллия и алюминия. В частности, для магния менее характерно образование ковалентной связи и более характерно образование ионной связи. В этом отношении он ближе к типичным металлическим элементам — элементам подгруппы кальция. [c.517]

    Значительный интерес представляют металлонаполненные полимеры [57] (металлополимеры), где наполнителями служат порошкообразные металлы или металлические волокна (алюминий, никель, сталь, олово, кадмий, бериллий, бор, вольфрам, титан, лакированные железо и медь, магний н т. д.). Такие металлополимеры отличаются высокой прочностью (особенно в случае применения волокон), термостойкостью, тепло- и электропроводностью. Прочность в некоторых случаях обусловлена химическим взаимодействием полимера с металлом (образование комплексов за счет я-электронов двойных связей, реакция карбоксильных групп с окислами на поверхности металла и т. д.) наряду с физическим взаимодействием. Некоторые полимеры этого типа вследствие своей дешевизны и доступности заменяют цветные и драгоценные металлы в производстве вкладышей подшипников, изделий с высокой теплопроводностью и низким коэффициентом термического расширения, другие применяются в радиотехнике, для защиты от радиации (свинцовый наполнитель), при изготовлении магнитных лент, каталитических систем (наполнитель — платина, палладий, родий, иридий) и т. д. [c.475]

    Галлий вызывает ко ррозию большинства твердых металлов. Корродирующее действие галлия распространяется и на такие металлы, как таллий, бериллий, титан, молибден и др. Установлено, что единственными металлами, не поддающимися его воздействию при повышенных температурах, являются вольфрам и тантал. Коррозионное воздействие эвтектического сплава галлий — олово — цинк на другие металлы меньше, чем у галлия, но при повышенных температурах этот сплав также вызывает кор-розию металлов и в связи с этим не может быть использован в атомной технике в качестве жидко-металлической ореды для отвода тепла. [c.38]

    Как видно из табл. 5.2, твердым компонентом является бериллий либо алюминий, либо гидрид металла. Использование металлического бериллия заметно увеличивает удельный импульс, особенно с кислородом. Применение дорогих горючих, таких как бериллий или литий, в данном случае оправдывается заметным ростом удельного импульса, а также сложностью и высокой стоимостью самой силовой установки из-за применения водорода. Применение фтора в качестве окислителя, очевидно, не очень рационально, удельный импульс не более 5010 м/с (510 с). По химическим показателям (минимальные затраты энергии на связи в молекуле продуктов сгорания), очевидно, кислород с бе- [c.209]

    Металлический бериллий весьма прозрачен для рентгеновских лучей и употребляется как материал для окошечек, выпускающих эти лучи из вакуумной трубки перспективно также применение бериллия как тугоплавкого, прочного и легкого металла для целей авиации и в особенности для самолетов с ядерным горючим, а также для полетов в мировом пространстве Окись бериллия в связи со своей тугоплавкостью и химической стойкостью служит огнеупорным материалом. На- [c.31]

    В дальнейшем мы увидим, что различного вида металлические связи (в чистом виде или в смешении со связями других типов) характерны не только для простых тел в твердом металлическом состоянии, но и для многих кристаллических химических соединений. Так, например, к типу металлических относятся, по-видимому, связи в твердом нитриде лития [ЫзЫ] и в твердом карбиде бериллия [ВегС]. [c.40]

    Электронное строение атома бериллия в газообразном состоянии — 15 25% Увеличение заряда ядра атома бериллия по сравнению с зарядом ядра атома лития наряду с тем, что 25-электроны только частично экранируют друг друга, приводит к двум эффектам 1) атом Ве имеет металлический радиус только 0,89 А, значительно меньше, чем в случае лития (1,22 А) 2) потенциалы ионизации Ве, 9,32 и 18,21 эв, гораздо большие, чем у Ы (5,39 эе), делают Ве значительно менее электроположительным, если рассматривать его хилшческие свойства в сравнении со свойствами Действительно, не существует никаких кристаллических соединений или растворов, в которых ионы Ве + существовали бы как таковые. Все соединения, строение которых было определено, даже соединения с наиболее электроотрицательными элементами, такие, как ВеО и ВеР.,, по крайней мере частично обладают ковалентным характером связи. Электронное строение атомов других элементов II группы (Mg, Са, 5г, Ва и Ка) подобно строению атома Ве. Однако больший размер этих ато.мов уменьшает влияние заряда ядра на валентные электроны. Так, их потенциалы ионизации ниже, чем у Ве они в основном более электроположительны, а ионная природа их соединений законо-.мерно возрастает в группе сверху вниз. [c.67]


    Атомы А1 и его аналогов Оа, 1п, и Т1 значительно больше атома В (атомные радиусы А1 и В 1,26 и 0,88 А соответственно), поэтому они в большей степени проявляют металлические свойства. Алюминий в свободном состоянии типичный металл, но в соединениях (подобно соединениям бериллия) нельзя провести четкую грань между ионным и ковалентным характером образуемых им химических связей. То же можно сказать и об аналогах алюминия —Оа, 1п, Т1. Несмотря на то что величины электроотрнцательности не особенно полезны при объяснении химических свойств этих скорее металлических элементов, все же здесь приведены их числовые выражения [c.281]

    Характеристика элемента. Неметаллический характер казалось бы не соответствует электронной конфигурации бора 8 25 2р. Ведь его пятый электрон находится на более удаленной от ядра 2р-орбитали, что компенсирует влияние заряда ядра. Действительно, ионизационный потенциал бора (8,3 эВ) ниже, чем у металлического бериллия. Однако несмотря на такую электронную структуру, бор никогда не имеет степень окисления -Ь 1 и всегда образует три связи. Разгадка противоречия лежит в легкости перехода бора в или 5рЗ-гибридизованное валентное состояние  [c.207]

    Металлический бериллий обладает многими замечательными свойствами. Тонкие пластинки бериллия хорошо пропускают рентгеновские лучи и служат незаменимым материалом для изготовления окошек рентгеновских трубок, через которые лучи выходят наружу. Главной областью применения бериллия являются сплавы, в которые этот металл вводится как легирующая добавка. Кроме бериллиевых бронз (см. стр. 572), применяются сплавы никеля с 2—4% Ве, которые по коррозионной стойкости, прочности и упругости сравнимы с высококачественными нержавеющими сталями, а в некоторых отношениях превосходят их. Они применяются для изготовления пружин и хирургических инструментов. Небольшие добавки бериллия к магниевым сплавам повышают их коррозионную стойкость. Такие сплавы, а также сплавы алюминия с бериллием применяются в авиастроении. Бериллий — один из лучших замедлителей и отражателей нейтронов в высокотемпературных ядерных реакторах. В связи с ценными свойствами бериллия производство его быстро растет. [c.609]

    Бериллий относится к числу элементов, для которых характерен значительный разрыв между временем открытия и началом широкого промышленного применения. Причиной этому явились трудности, связанные не только с переработкой бериллиевого сырья, но и со сложностью получения чистого металла, с его химической активностью, особенно большим сродством к газам и в первую очередь к кислороду и азоту. Отсутствие чистого металлического бериллия как объекта исследования не позволяло долгое время оценить его замечательные свойства, а следовательно, и с наибольшей полнотой определить области его применения. Долгое время применение бериллия было связано лишь с использованием свойств его окиси, употреблявшейся для изготовления огнеупорных изделий, высококачественного фарфора для электроизоляторов, газокалильных колпачков и специальных стекол [1—3]. [c.110]

    Магний заметно отличается от бериллия размерами атома и нона (радиусы ионов Ве + и Mg + соответственрю равны 0,034 и 0,078 нм). От своего соседа по периоду — алюминия — магний отличается меньшим числом валентных электронов и относительно большим размером атома. Таким образом, у магния металлические признаки проявляются сильнее, чем у бериллия и алюминия. В частности, для магния менее характерно образование ковалентной связи, чем для бериллия и алюминия, и более характерно образование ионной связи. В этом отношении он ближе к типичным металлическим элементам — элементам подгруппы кальция. [c.476]

    Щелочноземельные металлы более электроотрицательны по сравнению со щелочными металлами, тем не менее все их соединения, за исключением некоторых соединений Ве, являются ионными. Бериллий представляет собой первый пример общей закономерности, согласно которой в пределах любой группы элементы с валентными электронами, характеризуемыми меньщим главным квантовым числом, обладают менее ярко выраженными металлическими свойствами, потому что их валентные электроны расположены ближе к ядру и связаны с ним более прочно. Эта закономерность проявляется в повышении электроотрицательности при переходе к элементам с меньшими атомами в пределах одной группы (табл. 10-4). Бериллий имеет меньщий окислительный потенциал, т. е. более [c.435]

    Чистые щелочноземельные металлы имеют более высокие температуры плавления и кипения по сравнению с щелочными металлами, потому что для образования металлических связей в них имеется по два электрона на атом. По той же причине они обладают большей твердостью, хотя их тоже можно резать острым стальньгм ножом. Бериллий и магний-единственные элементы этой группы, широко используемые как конструкционные. металлы благодаря своей легкости они используются в чистом виде или в составе сплавов в авиастроительной и космической промышленности, где вес является очень важным фактором. [c.436]

    В разделе, посвященном химии бериллия, с привлечением термодинамических данных был обсужден вопрос о применимости тех или иных восстановителей для получения металлического бериллия из его соединений. Было показано, что для восстановления окиси бериллия из обычно применяемых металлов пригоден лишь Са. Но продукт восстановления загрязняется кальцием вследствие образования соединения aBeig. Неудачна и попытка использовать для восстановления Ti и Zr. В данном случае реакция проходит в твердой фазе (температуры плавления компонентов очень высоки), поэтому выход во многом зависит от степени контактирования ВеО с восстановителем, в связи с чем брикетирование производилось под давлением 1000 атм. Этот процесс, проводившийся в глубоком вакууме (10 мм рт.ст.) и при 1785°, оказался слишком дорогим, чтобы получить широкое применение. [c.208]

    Ионные каркасные структуры, как ионные островные, цепочечные и слоистые, могут давать постоянные переходы к координационным структурам в зависимости от заряда и размера внешних ионов [7]. Изложенная классификация в значительной степени условна так, берилл, относимый к основным структурам, можно считать и координационным, поскольку расстояния в пределах шестичленного кольца [5 б018] не очень резко отличаются,от всех прочих. Тот же берилл мы можем считать каркасным, если Ве-тетраэдрам приписать ту-же роль, что и 81-тетраэдрам. В структуре мышьяка слоистость выражена особенно четко, поскольку ковалентным связям внутри слоя с расстоянием между атомами в слое 2,51 А противостоят ван-дер-ваальсовы связи между слоями с расстоянием между атомами соседних слоев 3,15 А. При переходе от мышьяка к висмуту, относящемуся к тому же структурному типу, доля металлической связи в межслоевом взаимодействии растет, и поэтому разница между расстояниями обоих типов становится не столь резкой (3,10 и 3,47 А). Это дает основание считать структуру висмута не слоистой, а координационной. [c.58]

    Превращения в металлических и керамических материалах в результате ядерных реакций при облучении нейтронами приводят к образованию атомов примесей. Как правило, это не очень существенно, за исключением случаев, когда образуются газы (например, при реакции нейтронов с бериллием образуется гелий). Газы в решетке могут накапливаться, образуя пузырьки, и приводить к сильному распуханию [31 ]. Особенно сильное радиационное распухание (свеллинг) наблюдается при делении урана и плутония. Оно является результатом накопления осколков деления, значительная часть которых (около 30% выгоревших атомов) состоит из газовых атомов, в первую очередь криптона и ксенона. Это явление в настоящее время служит главным препятствием, ограничивающим использование металлического ос-урана в качестве топлива в реакторах, где требуются высокая степень выгорания и работа в условиях повышенных температур. В связи с этим охотнее пользуются двуокисью урана (иОа). Двуокись урана — химически довольно стойкое вещество, слабо реагирует с водой, совместима (не вступает в химические реакции) со многими конструкционными материалами (тантал, молибден, нержавеющие стали и др.), выдерживает нагрев до высоких температур. Главным же достоинством плотной спеченной иОа является ее способность довольно прочно удерживать продукты распада урана, в том числе газовые атомы, без значительного изменения внешних размеров. 212 [c.212]

    Ряд исследований был посвящен изучению коррозионного растрескивания бериллия под напряжением в солевых растворах. Согласно имеющимся на сегодняшний день данным технически чистый бериллий не склонен к коррозии под напряжением в солевых растворах или в морской воде. В то же время сильная питтинговая коррозия, происходящая в этих средах, значительно снижает способность бериллия выдерживать напряжение. Согласно некоторым данным приложенное напряжение, хотя и не сопровождается увеличением плотности питтингов на поверхности, способствует ускоренному росту отдельных питтпнгов. Применение бериллия в морских условиях требует принятия дополнительных мер противокоррозионной защиты. Высокой устойчивостью в солевых растворах обладают анодированные покрытия с пропиткой силикатом натрия. Используются также алюминиевые покрытия с керамическим связующим (Serme Tel W). Прекрасные результаты получены при нанесении двойного слоя такого материала на предварительно обдутую металлической крошкой поверхность бериллия (сушка при 80 °С п отверждение при 343 С) ГЮ7]. В морских атмосферах это покрытие может использоваться при температурах свыше 200 °С, тогда как анодированное покрытие в этих условиях становится неустойчивым. [c.158]

    В последние годы за рубежом, особенно в США, ведутся работы по созданию реактивных топлив с высокой теплотой сгорания путем диспергирования в авиакеросинах металлических порошков с размерами частиц 1—20 мк. В литературе наиболее широко освеш ены материалы по применению порошков бериллия, бора, алюминия и магния. Однако создание однородных и стабильных смесей керс> сина с металлическими порошками связано с большими трудностями. Как правило, такие смеси нестабильны и через несколько часов, или дней, расслаиваются, а порошок оседает на дно емкости. [c.35]

    От енольной формы СНз—СО—СН = С(ОН)—СНз производится ряд интересных металлических соединений ацетилаце-тона—ацетилацетонатов железа, меди, алюминия, бериллия, хрома, кобальта и др. Они легко образуются при смешении с ацетилацетоном свежеосажденных гидроокисей этих металлов, взвешенных в воде. Обычно сначала осадки гидроокисей переходят в раствор, из которого затем выделяются труднорастворимые ацетилацетонаты. Они легко растворимы в органических растворителях и являются неэлектролитами (или лишь очень слабо диссоциированы). Многие из них способны возгоняться и даже перегоняться без разложения. Например, ацетилацето-нат алюминия А1(С5Н70г)з кипит при 314°С, ацетилацетонат бериллия Ве(С5Н70г)г кипит при 270° С. Очень часто окраска этих веществ отличается от окраски обычных солей соответствующих металлов. Все указанные особенности резко отличают эти соединения от типичных солей с ионной связью между катионом металла и анионом. [c.507]

    Непосредственно взаимодействует с некоторыми металлами, образуя гидриды. Гидриды щелочных и щелочноземельных металлов — белые кристаллические вещества, энергично разлагающиеся водой с выделением водорода, растворимые в расплавах солей и гидроксидов, сильные восстановители. Известны также металлообразные и полимерные гидриды. Металлообразные гидриды по характеру химической связи близки к металлам- имеют металлический блеск, обладают значительной электропроводностью, но очень хрупки. К ним относнг гидриды титана, ванадия и хрома. В полимерных гидридах (алюминия, галлия, циика, бериллия) атомы металла связаны друг с другом водородными мостиками . Они представляют собой белые, сильно полимернзованные вещества, при нагревании разлагающиеся на водород и металл. [c.418]

    Хрупкость бериллия, по-видимому, связана с распространением трещин в монокристаллах. Если это так, то любой способ обработки, уменьшающий размер зерен или препятствующий их росту, способствует повышению пластичности металла. Одним из наилучших способов получения пластичного бериллия является уплотнение тонкого порошка. Пленка окисла, окружающая каждое небольшое зерно, препятствует при этом распространению трещин. Ввиду этого при изготовлении изделий из металлического бериллия для использования в ядерных реакторах преимущественно применяются методы порошковой металлургии. Некоторые из применяемых при этом приемов описаны в сообщении АН СССР [53], а также Кауфманом и Кьельгреном [49]. Бериллий, полученный методом порошковой металлургии, можно прокатывать, выдавливать и обрабатывать резанием. [c.204]


Смотреть страницы где упоминается термин Бериллий связь в металлическом: [c.150]    [c.609]    [c.207]    [c.31]    [c.125]    [c.245]    [c.245]    [c.115]    [c.86]    [c.103]    [c.276]    [c.50]    [c.362]    [c.382]    [c.592]    [c.274]    [c.494]    [c.605]    [c.41]   
Как квантовая механика объясняет химическую связь (1973) -- [ c.280 ]




ПОИСК





Смотрите так же термины и статьи:

Литий и бериллий. Представление о металлическом состоянии и металлической связи

Металлическая связь



© 2024 chem21.info Реклама на сайте