Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Суспензи стабилизация

    Суспензии. Суспензиями называют микрогетерогенные системы с жидкой дисперсионной средой и твердой дисперсной фазой с размерами частиц выше, чем в коллоидных системах, т. е. в диапазоне 10 — 10 м. Наиболее грубодисперсные системы называют взвесями. Способы получения и стабилизации суспензий во многом сходны с таковыми для коллоидных растворов — золей. [c.451]


    При добавлении ССБ в готовую суспензию стабилизация поверхности происходит, очевидно, за счет адсорбции ССБ на поверхности частиц кремнезема. Подтверждением этого является постоянство свойств поверхности кремнезема (см. табл. 1). [c.30]

    К грубодисперсным относятся гетерогенные системы с размерами частиц УО - 10 1. Грубодисперсные системы агрегативно неустойчивы и нуждаются в стабилизации К ним относятся суспензии, эмульсии, пены, некоторые аэрозоли. В настоящем пособии мы остановимся на суспензиях и эмульсиях. [c.58]

    Стабилизацию суспензий можно производить полимерами. При этом не только повышается агрегативная устойчивость, но и замедляется седиментация, так как повышается вязкость дисперсионной среды. [c.452]

    При однованном методе образующийся продукт После стабилизации суспензия ПВБ поступает [c.41]

    Достаточная агрегатная устойчивость в суспензиях с неполярной средой обеспечивается при барьере в 6,5 ед. кТ. На основании этого можно сделать вывод о существенной роли электростатического фактора стабилизации в системах с добавками ПАВ. Однако остается непонятным, каким же образом повышение энергетического барьера способствует улучшению процесса депарафинизации К тому же и сами расчеты потенциальных кривых не отличаются достаточной строгостью остается неясным, каким образом можно оценить диффузность слоя и величину Л. Вызывает также сомнение приравнивание потенциала поверхности к -потенциалу. [c.31]

    Для стабилизации суспензии в этот бак вводят определенное количество едкого натра. Суспензия самотеком поступает в барабанную мельницу 2. Чтобы продукт в процессе размола не загрязнялся металлами, барабан мельницы изнутри футеруют керамическими плитами (фарфор или кварцит), а в качестве рабочих тел применяют кремневую гальку. [c.20]

    Для прекращения процесса, проводимого при 50° С, вводится гидрохинон, а при низкотемпературной полимеризации — диметил-дитиокарбонат натрия. Суспензия частиц полимера в воде называется латекс. Для стабилизации каучука в латекс последнего реактора добавляется еще один реагент — фенил-Р-нафтиламин. [c.332]

    Полного ацеталирования поливинилового спирта Полученную суспензию ПВБ передавливают в достигнуть не удается, поэтому технические поливи- промыватель 7, в котором ее промывают обессолен-нилацетали содержат кроме ацетатных и ацеталь- ной водой при модуле ванны 1 8. Отработанные ных групп 15—20 мол. % гидроксильных групп. промывные воды не должны содержать соляной Производство поливинилацеталей осуществляет- кислоты. Отсос маточного раствора осуществляется ся различными методами. Эти методы можно раз- при помощи специальных фильтров, вмонтирован-делить на две группы пых в конусное днище аппарата 7 или опускаемых совместное омыление поливинилацетата и аце- в этот аппарат во время отсоса, талирования поливинилового спирта без выделения Далее ПВБ промывают 0,02%-ным водным распоследнего (однованные методы) твором едкого натра (стабилизация), поступающим раздельное получение поливинилового спирта и из емкости 8, при 55°С. Модуль ванны 1 8, про-его ацеталирование (двухванные методы). должительность промывки 2 ч. [c.41]


    В горном деле при бурении скважин используют глинистые суспензии, которые однако обладают малой седиментационной устойчивостью и быстро агрегируют, особенно при проходке пород, содержащих минералы Са, Mg, А1, Ее. Для стабилизации глинистых суспензий используют торфо- и углещелочные реагенты. Реагенты приготовляют сухим и мокрым способами, аналогичными получению биологически активных веществ из торфов и бурых углей обработкой их щелочами. Для увеличения коагуляционной устойчивости углещелочных реагентов в присутствии ионов Са , Mg , [c.30]

    Такое же защитное действие на гидрофобные коллоиды оказывают поверхностно-активные вещества (ПАВ), но в этом случае большое значение имеет характер ориентации ПАВ в адсорбционном слое. Устойчивость коллоидных систем е водной среде более высокая, если полярные группы ПАВ адсорбционного слоя обращены в воду, так как только при этом увеличивается гидрофиль-ность поверхности. Установлено, что адсорбционные слои не всегда бывают сплошными. Во многих случаях стабилизация системы наступает при покрытии монослоем всего 40—60% поверхности коллоидных частиц, когда защитный слой имеет прерывный характер. Но максимальная устойчивость некоторых коллоидных систем зависит от образования полного мономолекулярного слоя (например, при добавлении желатина к золям золота или суспензиям кварца). [c.84]

    Согласно П. А. Ребиндеру, структурно-мехаНический фактор является наиболее сильным фактором стабилизации и его использование якобы неизбежно при получении высокоустойчивых, особенно концентрированных дисперсных систем (например, технических пен, эмульсий и суспензий). [c.284]

    Как было выяснено ранее, чем выше дисперсность, тем больше поверхностное натяжение, тем больше склонность к самопроизвольному уменьшению дисперсности. Поэтому для получения устойчивых, т. е. длительно сохраняющихся, суспензий, эмульсий, коллоидных растворов необходимо ие только достигнуть заданной дисперсности, но и создать условия дл я ее стабилизации. Ввиду этого устойчивые дисперсные системы состоят не менее чем из трех компонентов дисперсионной среды, дисперсной фазы и третьего компонента — стабилизатора [c.294]

    Гидрофобизующая ориентация в результате адсорбции любого органического поверхностно-активного вещества из углеводородной жидкой среды на поверхности частичек суспензии вызывает стабилизацию их, чем предотвращает агрегирование, особенно, если первоначально частички были гидрофильными нли олеофобными. В водных суспензиях такая гидрофобизация вследствие адсорбции вызывает обратный эффект — рыхлое сцепление (флокуляцию) частичек направленными наружу углеводородными цепями. На принципе флокуляции базируется ряд процессов обогащения полезных ископаемых, она сопутствует флотации и имеет большое значение для повышения скорости оседания суспензий (концентратов) и отфильтровывания от них водной среды. [c.69]

    Адсорбция поверхностно-активных веществ, которая может вызвать гидрофилизацию твердых частичек в воде, особенно первоначально гидрофобных частичек, казалось бы, должна приводить к стабилизации суспензий. Однако эти эффекты часто плохо выражены, так как маскируются электрическими явлениями на поверхности частичек —  [c.69]

    По достижении заданной степени конверсии реакционная масса разбавляется бензином с целью охлаждения ее до 50—55 °С, Дополнительное разбавление массы бензином производится в аппарате 6, откуда суспензия насосом подается в мутильник 7, а затем в центрифугу 8. Отжатый маточный раствор поступает на регенерацию триоксана. Отмывка сополимера от непрореагировавшего триоксана и остатков катализатора производится в нескольких последовательно соединенных центрифугах и му-тильниках. Промывной раствор поступает противотоком. На последнюю промывку подается умягченная вода, нагретая до 70—80 °С. Паста сополимера из центрифуги 8 поступает в бункер 9, а затем шнеком подается в мутильник 10, в котором разбавляется умягченной водой. Суспензия сополимера насосом перекачивается в аппарат стабилизации 11. Остатки бензина удаляются отпаркой при 68— 70 °С, Бензин с водой конденсируется в холодильнике /2 и поступает на разделение. После удаления бензина производится термообработка сополимера по режиму  [c.50]

    Схема регулирования работы сушилки с пневматическим распылением дана на рис. 88 [ПО, 111]. Схема также предусматривает стабилизацию заданного соотношения количества воздуха и высушиваемой суспензии за счет изменения подачи суспензии воздействием на привод-регулятор 8 питающего насоса. Количество рас-пыливающего агента, подаваемого к форсунке 2, устанавливается вручную вентилем 4, а на регулятор соотношения количества воздуха и суспензии 7 через пневмоэлектропреобразователь 5 поступает импульс от датчика 3 расхода воздуха, а также индукционного расходомера 6 подачи суспензии к форсунке 2. [c.238]


    Стабилизацию эмульсий мухановской нефти создают главным образом асфальтены, что подтверждается тем, что при деасфальтизации петролейным эфиром эта нефть практически теряет способность образовывать устойчивую эмульсию [8]. Поэтому с уменьшением содержания ароматических в растворителе устойчивость эмульсии, характеризуемая расходом реагента, сначала резко возрастает, достигает максимума, а далее несколько снижается. Такое изменение устойчивости эмульсий характерно для растворов асфальтенов в смеси парафиновых и ароматических углеводородов [8] и связано с переходом при постепенном снижении содержания ароматических углеводородов в растворителе от молекулярных растворов асфальтенов к коллоидным и далее к грубым суспензиям с максимальной устойчивостью эмульсии для растворов с ОНТцмаАьной коллоидной дисперсностью асфальтенов. [c.11]

    I — исходное сырье 11 — маточный раствор II степени III — жидкий этилен IV — газообразный зтилен на холодильную установку V — суспензия I ступени VI — маточный раствор I ступени на стабилизацию VII — пар V11J — расплав кристаллов Г ступени на стабилизацию IX — пропилен X — сырье II ступени XI — маточный раствор II ступени для разбавления суспензии XII — п-ксилол XIII — стабильный маточный раствор I ступени с установки. [c.119]

    Гипотеза, объясняющая моющее действие образованием присадкой защитных пленок на твердых или пластичных частичках, представляющих собой продукт окисления или термического распада масла и топлива, является весьма распространенной. По мнению Брея, Мура и Мерилла [3], а также Таллея и Ларсена [4], эти защитные пленки препятствуют слипанию частиц между собой и их росту, а также прилипанию частиц к металлическим поверхностям двигателя. Таким образом, согласно этой точке зрения роль присадок сводится к стабилизации суспензии —тончайшей взвеси асфальтовых и углистых частиц, каковой является работающее в двигателе масло. На этом же основано, видимо, и действие естественных стабилизаторов (асфальто-смолистых веществ, кислот), содержащихся в неочищенных продуктах (дистиллятах) в большем количестве, чем в очищенных маслах. [c.359]

    Механизм действия моющих присадок многообразен и зависит от их свойств в объеме масла и на поверхности металла. Важными составляющими действия моющих присадок в объеме масла являются пептизация (диспергирование продуктов уплотнения), солюбилизация (поглощение углеродистых образований мицеллами присадок) и стабилизация суспензии твердых частиц (предотвращение их слипания и осал<дения). К поиерхпостному действию присадок относят понижение адгезионного взаимодействия частиц нагаров с металлическими поверхностями, некоторые электрические и другие эффекты. Эффективность щзисадок повышается при способности их тормозить процессы окисления углеводородов масел и нейтрализовать образующиеся кислоты. Существенны также концентрация присадок и состав масел. [c.307]

    Н. Н. Серб-Сербиной, Э. Г. Кистера и Т. П. Губаревой установлено, что гуматы с низкими степенями кальцинирования представляют гидрофильные полуколлоидные системы. Проведенные М. И. Липкесом исследования механизма известкования глинистых суспензий показали, что специфический характер адсорбции извести (особенно при высоких температурах) позволяет регулировать концентрацию ионов кальция в их фильтратах, поддерживая на определенном уровне соотношение ионов натрия и кальция в гуматах. Ввод в раствор добавок щелочи (0,25—0,50%) ускоряет процесс обмена ионов кальция на натрий, в обменном комплексе глин, уменьшая тем самым количество кальция в гуматах. Переход гуматов в растворимое состояние улучшает стабилизирующие свойства УЩР, а дополнительное кальцинирование твердой фазы повышает ингибирующие свойства раствора. Видимо, этим можно объяснить и действие акриловых полимеров при стабилизации известковых растворов. [c.181]

    Существует ряд стабилизаторов дисперсий, вполне пригодных. для описываемых суспензий, но, по-видимому, они не привлекли к себе должного внимания. Вопрос стабилизации углеродных дисперсий весьма тн тельно разработан ван-дер-Ваарденом (см, ссылку 10), который пришел к выводу, что частицы газовой сажи адсорбируют преимущественно ароматические углеводороды, причем, эта тенденция у них настолько сильна, что уже адсорбированные ими алифатические углеводороды вытесняются ароматическими. Стабилизация алифатического углеводородного растворителя достигается путем применения ароматического соединения с одной или несколькими алкиловыми группами боковой цепи. Эти защитные завесы из алкиловых групп вокруг каждой из частиц препятствуют сближению последних, благодаря чему предотвращается флокуляция. Еще раньше Ребиндер и другие (см. ссылку 11) показали, что карбоновые кислоты производят ста- бнлизирующее действие. на суспензию углерода в бензоле- Катионообменные моющие средства также стабилизируют углеродные [c.32]

Рис. 15. Схема стабилизация суспензий молекулами ПАВ а -в углевсдсрсдной среде б -в воде Рис. 15. <a href="/info/96031">Схема стабилизация</a> суспензий молекулами ПАВ а -в углевсдсрсдной среде б -в воде
    Необходимо полностью уяснить себе, что заш,итное действие (т. е. стабилизация коллоидного раствора) проявляется в двояком виде, а именно в 5лектрическом или ионном и в молекулярном. Совершенно правильным будет сказать, что суспензия частиц углерода может иметь две степени устойчивости одну, образуемую ета-потенциалом, и вторую, являющуюся следствием формирования пленки адсорбированного вещества. В первом случае устойчивость объясняется взаимным отталкиванием частиц друг от друга. Во втором случае это действие имеет пространственный или геометрический характер, так как толстая пленка адсорбированного вещества препятствует такому тесному сближению, которое может выявить флокуляцию. Но для этого требуется, чтобы адсорбированная пленка была достаточно толста и в то же время обладала значительной адгезией в отношении частиц. В водных коллоидных растворах эта адсорбированная пленка может фактически состоять из молекул воды. СЗчень показательный пример — это коллоидный раствор агар-агара, поскольку он способен сохранять свою устойчивость, будучи даже изоэлектрическим. Однако добавление 50 процентов спирта или ацетона приводит к дегидратации частиц и последующей флокуляции. Еще более интенсивно происходит дегидратация в коллоидном растворе частиц агар-агара, если добавить к раствору один процент таннина. В этом случае половина углевода молекулы таннина адсорбируется агар-агаром, в то время как ароматическая часть таннина направляется в сторону воды. В конечном итоге частица становится гидрофобной. Таким образом вода десорбируется, вслед за чем наступает флокуляция. [c.86]

    Если сначала рассмотреть черты, общие для водной и невод-пой систем, то выяснится, что прежде всего характер загрязняющего вещества и способ его прилипания к ткани в обоих случаях одни и те же. Надо, правда, оговориться, что шерсть чистится преимущественно химическим способом, а не стиркой, и что вообще говоря, поверхности волокон шерсти и целлюлозы существенно отличаются друг от друга. Все же большинство видов искусственного шелка и некоторые хлопчатобумажные ткани с одинаковым успехом очищаются в любой из названных систем при умовии, конечно, принятия соответствующих мер предосторожности. Далее одинаковым для обеих систем является механическое воздействие на ход чистки (перемешивание). Понятно также, что обе системы преследуют одну и ту же цель, а и.менно отделение пятпа от ткани и стабилизацию раствора с вытекающими отсюда эмульгированием или суспензией. Если подытожить общие для обеих систем черты, то можно сказать, что одинаковыми для них являются загрязнитель, волокно, стоящая перед ними задача и основной предмет применяемого оборудования (промыватель). Все остальное не только не похоже, но радикально различно. [c.99]

    Примерно такие же исследования были произведены в отношении суспензий двуокиси кремния в ксилене (см. ссылку 96). В результате этих исследований было установлено, что металлические нафтенаты, лецитин и различные марки аэрозоля оказались так же как и при опытах с углеродом, наиболее эффективными. Имеются данные, подтверждающие значительную степень адсорбции двуокисью кремния поверхностно-активных средств. Такое явление вполне совместимо с предположением, что стабилизация зависит от защитного действия коллоидов. [c.106]

    По данным 2-го завода полиграфических красок, образец по-верхностнс-активного препарата Дуомина Т при испытании в качестве вещества, препятствующего оседанию твердой фазы в краске Д.1Я глубокой печати, представляющей 25-процентную суспензию гидрата окиси алюминия в толуольно-скипидарно.м растворе фенолформальдегидной смолы (копала 44), показал, что ъто вещество препятствует осаждению указанного пигмента при введении 3% Дуомина Т и стабилизирует систему в процессе ее хранения в течение месяца. Стабилизация красок для глу-боко печати имеет большое значение в деле улучшения качества печатной продукции. [c.187]

    ПАВ, образующие гелеобразную структуру в адсорбционном" слое и в растворе, относятся к третьей группе. Такие вещества предотвращают коагуляцию частиц, стабилизируют дисперсную фазу в дисперсионной среде, поэтому их называют стаб илиз а-торами. Механизм действия сильных стабилизаторов состоит в том, что, кроме возникновения структурно-механического барьера для сближения частиц, важное условие стабилизации состоит в том, чтобы наружная поверхность такой оболочки была гидрофильной и чтобы не могло произойти агрегирования вследствие соприкосновения наружных поверхностей. Стабилизаторами могут быть сравнительно слабые ПАВ, так как даже при слабой адсорбции они могут образовывать сильно структурированные защитные оболочки. К числу ПАВ, обычно применяемых в качестве стабилизаторов, относятся гликозиды (сапонин), полисахариды, высокомолекулярные соединения типа белков. Стабилизаторы не только препятствуют агрегированию частиц, но и предотвращают развитие коагуляционных структур, блокируя путем адсорбции места сцепления частиц и препятствуя тем самым их сближению. Поэтому стабилизаторы суспензий являются также адсорбционными пластификаторами. Последние нашли очень широкое применение в гидротехническом строительстве, керамическом производстве, сооружении асфальтовых дорог, инженерной геологии, сельском хозяйстве с целью улучшения структуры почвы и др. [c.35]

    Стабилизация суспензий мо/кет быть осуществлеиа следующими способами  [c.127]

    Стабилизация дисперсных систем за счет сольватации дисперсной фазы молекулами дисперсиониой среды возможна как в полярных, так и в неполярных средах. Так, гидратация частиц глины и кремниевой кислоты имеет существенное значение для устойчивости суспензий глин и золя кремниевой кислоты в водной среде. [c.311]

    Однако стабилизация дисперсных систем значительно более эффективна при добавлении к ним поверхностно-активных веществ (ПАВ) и Бысокомолеку.ляр-ных соединений, адсорбирующихся на границе раздела фаз. Адсорбционные слои ПАВ и высокомолекулярных соединений, обладая упругостью и механической прочностью, предотвращают слипание дисперсных частиц. Образование таких молекулярно-адсорбционных твердообразных поверхностных слоев П. А. Ребиндер назвал стпруктурно-механически.и фактором стабилизации дисперсных систем. Этот механизм стабилизации играет основную роль при получении предельно устойчивых высококонцентрированных пен, эмульсий, коллоидных растворов и суспензий не только в неводных, но и в водных средах. Для структурномеханической стабилизации дисперсий н водной среде применяют мыла щелочных металлов, белки, крахмал, а в неводных средах — мыла щелочноземельных металлов, смолы, каучуки. Такие вещества называют защитными коллоидами. [c.311]

    КОНЦЕНТРАТЫ СУЛЬФИТНО-СНИР-ТОВОЙ БАРДЫ (сульфитно-бардяные) — техническое название кальциевых солей лигносульфоновых кислот, образующихся при сульфитной варке целлюлозы и переходящих вместе с нецеллюлозными углеводными компонентами древесины в раствор сульфитного пгело-ка. К. с.-с. б.— малогидратированные лиофильные коллоиды, сильные поверхностно-активные вещества, легко вступающие в реакции замещения катионов и т. п. К. с.- с. б. применяют для разжижения сырьевого шлама цементных и бетонных растворов, в производстве силикатных, абразивных, фарфоро-фаянсовых изделий, для стабилизации суспензий и эмульсий, в качестве вяжущего и дубящего средства, для получения ванилина, протокатеховой кислоты и др. В СССР выпускают КБР — жидкие (50% сухих веществ), КБТ — твердые (76% сухих веществ), КБП — порошкообразные (87% сухих веществ). [c.134]

    Важное значение поверхпостиь/х явлений для фармации определяется тем, что большинство лекарственных форм являются дисперсными системами с больиюй удельной поверхностью порошки, таблетки, эмульсии, суспензии, мази и т. д. В производстве лекарств большую роль играют такие поверхностные явления, как адсорбция, смачивание, адгезия. Вопросы рациональной технологии, стабилизации, хранения, повышения эффективности терапевтического действия неразрывно связаны с уровнем и достижениями исследований в области физикохимии поверхностных явлений. [c.302]

    Н. П. Песков (1920) ввел понятие о двух видах устойчивости дисперсных систем седиментационной (кинетической) и агрегативной. Седиментационная устойчивость позволяет системе сохранять равномерное распределение частиц в объеме, т. е. противостоять действию силы тяжести и процессам оседания или всплывания частиц. Основными условиями этой устойчивости являются высокая дисперсность и участие частиц дисперсной фазы в броуновском движении. Агрегативная устойчивость дисперсных систем — это способность противост()ять агрегации частиц. В этом отношении дисперсные системы делят на два класса 1) термодинамически устойчивые, или лиофильные, коллоиды, которые самопроизвольно диспергируются и существуют без дополнительной стабилизации (мицеллярные растворы ПАВ, растворы ВМВ и т. п.). При образовании этих систем свободная энергия Гиббса системы уменьшается (Лй<0) 2) термодинамически неустойчивые, или лиофобные, системы (золи, суспензии, эмульсии). Для них А6 > 0. [c.424]


Смотреть страницы где упоминается термин Суспензи стабилизация: [c.332]    [c.336]    [c.271]    [c.257]    [c.188]    [c.42]    [c.43]    [c.15]    [c.164]    [c.275]    [c.520]    [c.75]    [c.45]    [c.194]    [c.452]   
Синтетические моющие и очищающие средства (1960) -- [ c.256 ]




ПОИСК





Смотрите так же термины и статьи:

Волченко. Стабилизация водных графитовых суспензий различными органическими веществами

Глина, стабилизация суспензии

Диспергирование, дефлоккуляция и стабилизация суспензий

Стабилизация пигментных суспензий

Суспензии

Суспензия стабилизация

Суспензия стабилизация



© 2025 chem21.info Реклама на сайте