Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Терпены структура

    И та, и другая классификации не лишены недостатков. Одним из недостатков фармакологической классификации является то, что часто группа лекарственных веществ определенного действия включает в себя вещества самой разнообразной структуры. Так, в группу стимуляторов сердечной деятельности входят и представители гетероциклического ряда как природные (кофеин, стрихнин), так и синтетические (коразол, кордиамин), и представитель терпенов (камфора) и сердечные гликозиды, которые по своей химической структуре представляют стероидные соединения. Аналогичен недостаток и химической классификации, когда близкие по химическому строению вещества обладают совершенно различным физиологическим действием. Кроме того, химическое строение вновь полученных веществ, особенно сложного природного характера, в течение некоторого времени может быть спорным и неясным, поэтому включение их в какую-то определенную группу химического строения может быть весьма относительным, а иногда ошибочным. В связи с этим в некоторых случаях продолжает использоваться смешанная классификация, учитывающая одновременно и те, и другие признаки. Однако на современном этапе с развитием науки и техники все более совершенствуются методы исследования веществ, что исключает прежние трудности в установлении строения вновь созданных лекарственных веществ. В связи с этим все более широкое признание получает химическая классификация, которая имеет основное преимущество в том, что позволяет устанавливать связь между химическим строением лекарственного вещества и его действием на организм. [c.18]


    Реакции ароматизации особую роль сыграли при доказательстве структуры циклических природных соединений, в частности стероидов и терпенов. Ароматизации часто подвергаются и аддукты Дильса — Альдера (которые содержат как минимум одну двойную связь) [24]. [c.266]

    С возможностью подобного рода перегруппировок, сопровождающихся изменением углеродного скелета в процессе протекания, казалось бы, однозначных реакций, следует особенно считаться при интерпретации опытов по установлению строения химических соединений. Некоторые перегруппировки этого типа протекают очень сложно, например в случае природных терпенов, что часто приводит к большим трудностям при определении структуры. [c.125]

    Обычно термин терпены применяется для обозначения соединений, содержащих целое число изо-С5-фраг-ментов независимо от того, содержатся ли в их молекулах другие элементы, чаще всего кислород. Терпеноиды — это соединения с различным числом углеродных атомов, но структурными их предшественниками являются правильные терпены, т.е. они образованы реакциями вторичного метаболизма терпенов. Иногда терпенами называют только углеводороды соответствующего состава и структуры, а терпеноида-ми — любые их производные и метаболиты. Но эти два понятия, как и сами классы соединений, так тесно взаимосвязаны между собой, что принципиального различия в терминологии можно и не делать. В общем, это терпены и терпеноиды. [c.137]

    Классификация монотерпенов, как и всех последующих классов терпенов, основана на строении углеродного скелета молекул — в зависимости от степени его циклизации и структуры цикла (табл. 6.3.1). [c.141]

    Конформационный анализ стал известен совсем недавно, но уже позволил сделать весьма важные выводы и предсказания в химии алициклических соединений, и применением этого метода в значительной мере объясняется бурное развитие таких сложных областей химии, как исследования полициклических терпенов, стероидов и т. п. Приложение конформационного анализа в химии углеводов дало более скромные результаты, так как только в самые последние годы конформационные представления начинают обретать свои права в этой области органической химии. Тем не менее и здесь в некоторых случаях достигнуты известные успехи. Так, устойчивость некоторых изомерных структур и их реакционная способность были объяснены нли предсказаны на основании законов конформационного анализа. [c.53]

    Соединения, содержащие в своей структуре шестичленные алициклы,— одни из наиболее распространенных в органической природе. Соответствующие циклические группировки атомов входят в большинство терпенов, стероидов, алкалоидов. Часто встречаются циклогексановые мостиковые соединения, соединения со срощенными циклами. Эти типы соединений будут рассмотрены специально (см. ч. И,раздел Изопреноиды ). Циклогексан и его гомологи в значительных количествах содержатся в бензинах, особенно входящих в состав кавказских нефтей. [c.550]


    Изменение конформации молекулы изменяет указанный возмущающий потенциал. Поэтому одноэлектронная теория эффективно применяется в конформационном анализе. В ряде работ Джерасси и других авторов данные по АДОВ и КД для кето-нов, терпенов, стероидов и т. д. были интерпретированы на основе одноэлектронной теории. В результате были определены конформации множества соединений и установлены важные общие правила, связывающие оптическую активность со структурами молекул (см. [98—100]). [c.303]

    Пренильная группа изопентенилпирофосфата служит прямым предшественником в биосинтезе терпенов, каротиноидов и стероидов (рис. 12-11) [75—78]. Образование этой пятиуглеродной разветвленной структуры обсуждалось уже ранее (гл. И, разд. Г, 10 рис. 11-8) и схематически изображено на рис. 12-11. Один из этапов синтеза мевалоновой кислоты, а именно двухступенчатое восстановление З-окси-З-ме-тилглутарил-СоА, является строго регулируемой реакцией. Предполагается, что у человека скорость этой реакции в печени определяет интенсивность биосинтеза холестерина [44, 79]. Активность фермента снижается по принципу обратной связи при накоплении холестерина или его метаболитов. [c.563]

    При исследовании терпенов часто приходится делать выбор между двойной связью и циклической структурой. Этот вопрос может быть легко разрещен на микровесах каталитическим гидрированием образца и повторным получением масс-спектра. Если нет еще каких-либо легко восстанавливаемых групп, то увеличение массового числа пика молекулярного иона является мерой числа двойных связей другими ненасыщенными местами должны быть циклы. [c.42]

    Схема 7.L Основные структуры терпенов [c.144]

    В отличие от витаминов группы А, непосредственно относящихся к терпенам, в структурах витаминов групп Е и К присутствуют еще и ароматические фрагменты. [c.478]

    В первой половине приведенной выдержки речь идет о замечательной мысли Ф. ]И, Флавицкого о том, что терпепы проставляют собой высшие углеводороды, образованные в результате воссоединения непредельных остатков С5 с кратными связями. Ведь углеродный сколет триметилэтилена и является той структурной единицей, в результате цепеобразного или кольчатого соединения которого образуются по современным представлениям все терпены, даже изопреповый каучук [222]. Эта догадка Ф. М.. Флавицкого, которая в литературе (даже советской) приписывается финскому химику Аскану [223], не была экспериментально подкреплена им. Лишь спустя много лет идея Флавицкого была возрождена в трудах Л. Е. Фаворского, А. И. Лебедевой, других ученых и лежит в основе всех современных представлений о строении самых различных терпенов. В самом деле, в составе алифатических терпенов структура углеродного скелета триметилэтилена повторяется дважды в открытом строении в случае моно- и бициклических терпенов и их производных эта же структурная единица также дважды повторяется, но в замкнутом варианте, с [c.127]

    В биохимии и органической химии существует некая обширная обп1,ая область. Биологи называют ее статической биохимией. Химики же рассматривают ее как одиу из основных областей структурной органической химии. Речь идет об открытии, химическом анализе и изучении строения характерных для живой природы веществ. Исторические корни этой об, асти уходят в далекое прошлое, но она не утратила своей актуальности и теперь. И нельзя не отметить, что к ней относятся даже такие поистнпе эпохальные исследования, как раскрытие структуры терпенов и сесквитерпенов Л. Ружичкой, хлорофилла и гемина Р. Вильштеттером и Г. Э. Фишером, холевых кислот и стероидов О. Вн./ андом и А. Виндаусом, моно- и поли- ахаридоа У. И. Хеуорсом, каратиноидов и флавинов Р. Куном и П, Каррером, Все эти исследования отмечены Нобелевскими премиями. [c.175]

    Термостабильными противоизносными присадками могут слу-л<ить 1,2-дитиациклопентен-4-тионы-3 (монозамещенные дитиол-тионы), синтезированные при взаимодействии терпенов с серой [15, с. 107]. Структура их не расшифрована, однако предполагается, что их образование протекает аналогично реакции а-метилсти-рола с серой  [c.109]

    Ниже приведены типы структур, положенных в основу специальной номенклатуры моноциклических и бициклических терпенов даны их специальные названия и системы нумерации. Взамен названий камфан и борнилан вводится название борнан, а взамен названий норкамфан и норборнилан — название норборнан. [c.352]

    Структура терпенов выводится из таких предшественников, как изопентенильный остаток, гераниол, фарнезол и сквален. Хендриксон, исходя из предположения о биоге- [c.26]

    За свою более чем полуторавековую историю структурная химия достигла поистине поразительных результатов. Уст 1-новлено строение и открыты пути синтеза сложнейших природных соединений — терпенов, углеводов, пептидов п белков, нуклеиновых мислот, стероидов, антибиотиков, витаминов и коферментов, алкалоидов. Созданы научные основы препаративного органического синтеза самых разнообразных соединений. И, конечно, все эти успехи вовсе не означают того, что структурная химия достигла потолка. Нет, дальнейшие перспективы ее развития безграничны. Они состоят в поисках новых зависимостей между валентностью (реакционной способностью) свободных атомов и структурой образуемых из них частиц, новых корреляций между различными видами химических связей в результате более эффективных методов количественного обсчета многоэлектронных систем, в установлении новых форм химических соединений типа ферроцена, бульвалена, В севоэмож)Ных элементоорганических соединений, в частности фто-руглеродов и их производных. [c.100]


    Она сыграла важную роль при изучении ра."1нообразных и сложных по структуре соединений с этиленовыми связями, например терпенов. Используя свой метод, Е. Е. Вагнер установил, например, строение таких терпеновых соединений, как карвон, лимонен, камфен. [c.250]

    Формально (т.е. на основании структуры углеродного скелета) к гемитерпенам могут быть отнесены часто встречаемые в природных объектах кислоты изовалериановая, тиглиновая и ангелиновая, итаконовая и др. (схема 6.2.2). Но пока неясно, принадлежат ли они к терпенам по пути биосинтеза, так как все терпены характеризуются [c.140]

    Жук-короед [1р соп и5из) — насекомое-паразит, разрушающее ежегодно миллиарды кубических метров корабельной древесипы. Сначала на дерево нападает неболь-вюе число жуков, в испражнениях которых содержится агрегирующий феромон. Этот феромон, 2-метил-6-метилиден-7-октен-4-ол, и привлекает огромное число жуков, а) Нарисуйте структуру феромона, б) Относится ли он к терпенам в) Родствен ли он гераниолу г) Каталитическое гидрирование этого вещества избытком водорода приводит к получению двух оптически активных соединений. Объясните этот результат.,  [c.533]

    Разработка Ф. Преглем в нач. 20 в. методов микроанализа орг. в-в способствовала дальнейшему быстрому развитию химии прир. соед., что ознаменовалось работами Виланда (1910) по установлению природы желчных к-т, А. Виндауса (1913-15)-природы холестерина, работами Г. Фишера (1927-29) по синтезу таких ключевых соед., как порфирин, билирубин и гемин, У. Хоуорюа (Хеуорс)-по установлению структуры углеводов, синтезу витамина С, П. Каррера, Р. Куна (1911-39)-по получению каротиноидов и витаминов Bj, Bg, Е и К химия алкалоидов, половых гормонов, терпенов была создана работами А. Бутенандта (1929- 61), Л. Ружички (1920-24), А.П. Орехова и Р. Робинсона. [c.397]

    В названиях терпенов префикс нор означает полную замену сех стоящих у циклической структуры метильных групп на атомы эодорода. Такая замена приводит еще к трем структурным типам  [c.270]

    Структура книги и рекомендации но ее использованию. После общих замечаний по планированию, подготовке и проведению органических реакций, по аппаратурному обеспечению эксперимента, ведению лабораторного журнала (гл. I) говорится о получении и превращениях соединений с простыми функциональными группами алкенов, алкинов, галогеналканов, спиртов, простых эфиров и оксиранов, органических соединений серы, аминов, альдегидов и кетонов, а также их производных, карбоновых кислот и их производных, ароматических соединений (гл. 2). Полученные соединения служат затем в качестве строительного материала для синтеза более сложных молекул. После описания важнейших методов образования связи С—С (разд. 3.1) следует раздел, посвященный образованию и превращению карбоциклов (разд. 3.2). гетероциклов (разд. 3.3) и красителей (гл. 4). Далее изложены. методы введения защитных групп и изотопных меток (гл. 5), а также приведены примеры регио- и стереоселективных реакций (гл. 6). Центральное место в книге занимают более сложные синтезы аминокислот, алкалоидов, пептидов, углеводов, терпенов, вита.минов, ферромонов, простаглан-динов, инсектицидов и фармацевтических препаратов, планирование и разработка которых обсуждаются с привлечением принципов ретро-синтетического расчленения (гл. 7). Почти все рассмотренные в этой [c.10]

    Гераниол ,HigO — терпен, найденный в розовом масле, — дает ИК- и ПМР-спект-ры, которые приведены на рис. 16.7. В следующей задаче приведены химические реакции, на основании которых можно сделать вывод о его структуре прежде чем решать следующую задачу, посмотрим, какую же информацию можно получить только из спектров. [c.527]

    Таким путем были выявлены некоторые фундаментальные структурные взаимосвязи часто высказывались даже довольно удачные предположения относительно природы первичных соеди-нений-предшественников. Среди наиболее известных ученых, внесших свой вклад в создание теории биогенеза на самых ранних этапах ее развития, следует упомянуть Л. Ружичку, привлекшего внимание к полиизопреноидной структуре терпенов и стеринов [c.351]

    Изопреноидная структура лежит в основе всех терпеновых соединений, в том числе алифатических. Собственно терпенами являются соединения состава С10Н16, содержащие два изопреноидных звена сочетание трех звеньев характерно для сескви-терпенов дитерпены построены из четырех изопреноидных звеньев. Встречающиеся в живом веществе алифатические мо-нотсрпены представлены в основном мирценом и оцименом, но [c.56]

    Введение второй двойной связи, сопряженной с первой, индуцирует еще больший батохромный сдвиг (примерно на 30 нм) Хмакс однако в ациклических системах из-за деформация молекул увеличение числа сопряженных двойных связей до 6 и более сопровождается прогрессирующим снижением э4х1>ективности перекрывания тг- и тг -орбиталей, благодаря чему каждая последующая двойная связь вносит меньнхий вклад в общий батохромный едвиг. Более жесткая молекулярная структура циклических молекул защищает хромофор, поэтому введение сопряженных групп в циклические системы вызывает более ретулярное изменение Д Изучив УФ-спектры множества органических соединении, главным образом стероидов и терпенов, физер и Вудворд (см. работу (1 ]) предложили простые правила (табл. 2.1), позволяющие рассчитать Д циклических полиенов. [c.18]

    Открытие Вагнера имело исключительно большое зиаченне, так как оно объяснило казавшиеся совершенно непонятными чрезвычайно легкие переходы от терпенов с одним углеродным скелетом к терпенам с другим углеродным скелетом. В соответствии с этим рассматриваемую перегруппировку назвали перегруппировкой Вагнера. Впоследствии оказалось, что она ОЧеиь распространена как среди мостиковых соединений, так и алифатических. Отмечая заслуги Вагнера, крупный английский химик-органик ИНгольд писал Принимая во внимание, что в 18М г. не была твердо установлена структура ни одного бициклического терпена, выводы Вагнера об их структуре и о взаимных переходах при помощи неизвестного ранее типа перегруппировки должна считаться творением гения [156].  [c.32]

    Рудаков, Шестаева и Иванова [149] изучали влияние структуры поверхности твердого катализатора на направление реакции. Было установлено, что серная и фосфорная кислоты, изомеризующие пииен почти исключительно в моноциклические терпены, после ианесения иа поверхность некоторых каталитически неактивных носителей начинают изомеризовать его и в камфен. При этом было показано, что соотношение между образующимися при реакции моноциклическими терпенами и суммой камфена и фенхенов зависит не от природы кислот, нанесенных на поверхность носителя, а от специфических свойств самого носителя. Например, выход камфена при каталитической изомеризации пинена под влиянием сериой, фосфорной кислот и алюмосиликата, нанесенных на поверхность каталитически неактивной двуокиси кремния, совершенно одинаков. Однако выход камфена возрастает после нанесения серной и фосфорной кислот на двуокись титана и падает после нанесения фосфорной кииюты иа древесный уголь (табл. 17). Это показывает, что образование тех или иных продуктов реакции определяется ие только способностью твердого катализатора отщеплять протон, но и структурой его поверхности. [c.56]

    Под этим названием объединяют ряд углеводородов и их кислородсодержащих производных — спиртов, альдегидов и кетонов, углеродный скелет которых построен из двух, трех и более звеньев изопрена. Сами углеводороды называют терпеновыми углеводородами, а их кислородсодержащие производные — герпеноидами. Терпенами богаты эфирные масла растений (герани, розы, лаванды, лимона, перечной мяты и др.), смола хвойных деревьев и каучуконосов. К терпенам относятся и различные растительные пигменты и жирорастворимые витамины. Группировка терпенового типа (изопреноидная цепь) включена в структуру многих биологически активных соединений. [c.473]

    Как уже говорилось, изопентеиилыше фрагменты исгюльзуются для образования широкого спектра гидрофобных структур. Из приведенных в 2.5 структур некоторых терпенов — гераниола, ментола, камфоры — нетрудно усмотреть, что их углеродный скелет построен из изопентенильных фрагментов. [c.385]


Смотреть страницы где упоминается термин Терпены структура: [c.385]    [c.123]    [c.354]    [c.352]    [c.147]    [c.521]    [c.83]    [c.397]    [c.272]    [c.300]    [c.506]    [c.13]    [c.353]    [c.89]    [c.10]    [c.135]   
Биохимия Том 3 (1980) -- [ c.5 ]




ПОИСК





Смотрите так же термины и статьи:

Терпены



© 2025 chem21.info Реклама на сайте