Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Метилизобутилкетон, получение

    Ацетон является исходным материалом для получения ряда продуктов, как, нанример, диацетонового спирта, являющегося превосходным растворителем для ацетата целлюлозы. Окись мезитила, метилизобутилкетон и др. являются растворителями для искусственных веществ и лаков. На рис. 128 показано, какими возможностями располагает нефтехимическая промышленность для получения важнейших растворителей, на рис. 129— то же в отношении мягчителей и пластификаторов. На рис. 130 приведена принципиальная схема получения растворителей и пластификаторов на основе нефти и природного нефтяного газа. [c.206]


    Метилизобутилкетон также обладает рядом преимуществ по сравнению с метилэтилкетоном (табл. 24), к числу которых относятся большая скорость фильтрования, меньшая температура застывания полученного масла и (вследствие более высокой температуры кипения и низкой взаимной растворимости с водой) меньшие потери. [c.157]

    За рубежом работает около 50 установок фракционирования парафинов для получения одновременно двух или более товарных продуктов с разными температурами плавления. Процесс включает кристаллизацию парафина в растворе МЭК — толуола, метилизобутилкетона или его смеси с МЭК, причем растворитель [68, с. 195] добавляют к сырью до начала кристаллизации. На первой ступени фильтрования отделяется высокоплавкий парафин, [c.159]

    Приготовление стандартных растворов. Готовят пять стандартных растворов, содержащих 4, 8, 10, 15 и 20 мкг/мл кадмия, из рабочего раствора. Для этого в мерные колбы вместимостью 100 мл переносят соответственно 4, 8, 10, 15 и 20 мл рабочего раствора соли кадмия, доводят объемы до метки 5-10 М раствором серной кислоты и тщательно перемещивают. Для получения экстрактов в пять кварцевых стаканов вместимостью 100 мл помещают по 5 мл стандартных растворов соответствующих концентраций, по 5 мл 0,1 М раствора Lil и по 5 мл метилизобутилкетона. Проводят экстракцию поочередно. Для этого погружают в экстракционную систему полиэтиленовую мешалку, соединенную с. мотором, так чтобы ее конец находился на границе двух фаз. Плавно поворачивая ручку автотрансформатора, увеличивают число оборотов мешалки до скорости, при которой образуется эмульсия, но разбрызгивания пробы не происходит. Время экстракции — 3 мин. Переливают эмульсию в пробирку и дают экстракционной системе расслоиться. Отбирают прозрачный экстракт (2—3 мл) пипеткой и фильтруют через бумажный фильтр ( синяя лента ) в стеклянные стаканы. [c.47]

    Задача XII,3. 100 кг.раствора ацетон (В)—вода (Л . содержащего 25% ацетона, подвергают одноступенчатой экстракции метилизобутилкетоном (5). Определить минимальное количество экстрагента, количества и концентрации полученных продуктов. Для решения задачи воспользоваться данными табл. ХИ-З. [c.412]

    Задача ХП.5. 75 кг раствора, содержащего 35% ацетона В) и 65% воды (Л), подвергают многоступенчатой экстракции с перекрестным током для получения рафината, содержащего 7,5 /о ацетона. В каждую ступень подают по 25 кг экстракта (метилизобутилкетон), Определить необходимо число теоретических ступеней экстракции, количества и концентрации продуктов каждой ступени. Данные по равновесию приведены в табл. ХП-З.  [c.412]


    Температура застывания масел, полученных после депарафинизации при —35° и —25° метилизобутилкетоном, на 3—5° ниже, чем при использовании смеси метилэтилкетон-бензол, и на 6—7° ниже, чем смеси ацетон-бензол. Температурный градиент депарафинизации при использовании метилизобутилкетона равен нулю. [c.208]

    Первоначально в качестве экстрагента использовался диэтиловый эфир. Однако его летучесть и огнеопасность заставили искать другие реактивы. Из кислородсодержащих органических растворителей (спиртов, сложных эфиров, кетонов) наилучшим оказался бутилаце-тат. Если при экстракции галлия из солянокислого раствора диэтиловым эфиром коэффициент распределения (при кислотности 5,5 н.) равен максимально 75, то при экстракции бутилацетатом (кислотность 6 н.) он превышает 400. Коэффициент разделения галлия и алюминия при экстракции этим реагентом практически не зависит от соотношения их концентраций в растворе и составляет 2-10 [901. Еще больший коэффициент распределения галлия получен при экстракции метилизобутилкетоном ( 2800). Однако этот растворитель недостаточно селективен — экстрагирует не только трехвалентное, но и двухвалентное железо, а также медь, цинк, ванадий и другие металлы [75]. [c.253]

    По данным, полученным на опытной установке, гидрирование окиси мезитила проводят в течение 4—5 час. при температуре не выше 40° в аппарате с мешалкой и фильтровальными свечами. С одной загрузкой катализатора можно провести более 10 операций гидрирования. Расход катализатора составляет менее 4 % от веса полученного метилизобутилкетона [186]. [c.325]

    Значительные количества ацетона расходуются на получение метилизобутилкетона. Каким путем осуществляется синтез метилизобутилкетона  [c.829]

    Результаты по экстракции шестивалентного молибдена из 6 М НС1 при помощи метилизобутилкетона, полученные Нелидовым и Даймондом [1127], были подтверждены Вотебери и Бри-кером [1513]. Из раствора объемом 10 мл при концентрации [c.142]

    Тантал и ниобий вводились в смесь кислот в виде гидратов окисей, полученных путем гидролиза безводных хлоридов. Весовое отношение ниобия и тантала составляло 1,2. В проведенных определениях пользовались 3,3 н. фтористоводородной кислотой и 0,5 н. соляной кислотой, в 1 л смеси кислот содержалось 16 г тантала и 19,2 г ниобия. Отношение органического растворителя и кислотной фазы было равно 1 1. В условиях опытов в органическуюфазу переходил главным образом тантал, ниобий—в гораздо меньшем количестве. Наиболее благоприятное распределение достигается при применении метилизобутилкетона (р =736), который применялся и в дальнейших исследованиях, а также циклогексанона ( 5=856). В дальнейшем было установлено, что экстракция заметно зависит от концентрации кислот и металлов и лишь в ничтожной степени от отношения ниобия к танталу в исходном растворе. С увеличением концентрации фтористоводородной и соляной кислот количество экстрагированного ниобия в исследованном интервале концентраций непрерывно увеличивается, а количество тантала сначала увеличивается до некоторого максимума, а затем уменьшается. Такое поведение металлов облегчает их разделение. В случае одной фтористоводородной кислоты (без соляной) максимум экстрагирования тантала достигается [c.450]

    Благодаря низкой растворяющей способности по отношению к твердым углеводородам и высокой растворимости в них масляных углеводородов такие растворители, как метилизобутилкетон и н-метилпропилкетон, могут быть использованы как индивидуальные, а не в смеси с ароматическими углеводородами [39, 48, 49]. Растворяющую способность высших кетонов и их смесей с ацетоном и метилэтилкетоном можно регулировать, изменяя содержание в них воды. При обезмасливании продуктов с целью получения высокоплавких твердых углеводородов используют насыщенный водой метилизобутилкетон, позволяющий проводить обезмасливание при более высокой температуре, причем выход церезина увеличивается на 1—2% [40]. К недостаткам изученных кетонов следует отнести их малую доступность и дороговизну. Кетоны с семью углеродными атомами в молекуле и более высокомолекулярные не используют в процессах депарафинизации и обезмас-ливания, что объясняется их высокой вязкостью при низких температурах, затрудняющей кристаллизацию твердых углеводородов. Кроме того, более высокая температура кипения таких кетонов усложняет их регенерацию. [c.145]

    На ряде зарубежных заводов для получения низкозастывающих масел осуществляется по новой технологии процесс 011сЬ1П [68, с. 153 87]. В этом процессе использован оригинальный метод кристаллизации парафина, заключающийся в прямом введении холодного растворителя в нагретое сырье при энергичном перемешивании в кристаллизаторе, снабженном перемешивающим устройством. Образующиеся сильно разрозненные и компактные агломераты кристаллов твердых углеводородов обеспечивают высокие скорость фильтрования и выход депарафинированного масла. Затем в скребковых кристаллизаторах температуру суспензии понижают до требуемой температуры фильтрования. Кристаллы парафина отделяются от м асла филы1ро.ванием в одну или более ступеней в зависимости от заданного содержания масла в парафине. Дополнительной обработки не требуется. Для предотвращения образования льда в оборудовании, работающем с холодным растворителем, применяется система осушения растворителя. Обычно в качестве растворителя используют смесь метилэтилкетона с метилизобутилкетоном или толуолом. По этой технологии можно депарафинировать сырье практически любой вязкости и получать масла с низкой температурой застывания при увеличении скорости фильтрования суспензии на 40—50% и уменьшении содержания масла в гаче до 2—15% (масс.) при одноступенчатом фильтровании. В случае двухступенчатого фильтрования получается парафин с содержанием масла менее 0,5% (масс.). [c.165]


    Разработанный в СССР способ депарафинизации нефтепродуктов кристаллическим карбамидом с применением в качестве растворителя-активатора низших нитроалканов [72] позволит, по мнению авторов этой работы, упростить процесс. С целью улучшения качества нидких парафинов, упрощения процесса депарафинизации воднш раствором карбамида и кристаллическим кар Замидом в запатентованы [73] способы комплексообразования в присутствии растворителя легче или тяжелее комплекса и метилизобутилкетоне (МИБК). Запатентованный способ карбамидной депарафинизации позволяет получать чистые н-алканы через комплексы, представляющие собой мелкокристаллический порошкообразный продукт. Получение и обработка комплекса в присутствии смеси углеводородов Сд - С0 о 5-30 вышекипящих соединений, предпочтительно в присутствии МКШ, позволяет весТи комплексообразование при 20-35°С. Получаемый комплекс легко отделяется на центрифугах. Известны и другие способы, которые, однако, в промышленность не внедрены. [c.158]

    Получение метилэтилкетона из бутенов и метилизобутилкетона из гексанов. Промышленный процесс производства метилэтилкетона (МЭК) из бутенов разработала фирма Ноес11з1-иЬ<1е (ФРГ). Он осуществляется по реакциям  [c.192]

    Получение метилизобутилкетона окислением смеси метилпентенов разработано фирмой British Petroleum. Процесс осуществляется при 45—75 °С и давлении 4,5 МПа в присутствии нафтената кобальта (0,2 кг/м ) в качестве катализатора. Окисление ведется кислородом воздуха по реакции  [c.193]

    Димеры пропилена, содимеры этилена с бутенами, полученные на кислотных и основных катализаторах, используются для получения изопрена, термостойких полимеров и сополимеров, изогексиловых и изогептиловых спиртов, метилизобутилкетона и других продуктов. [c.319]

    Образец бензина (5 мл) разбавляют метилизобутилкетоном, и соединения свинца стабилизируют реакцией с иодом и четвертичной аммонийной солью (трикаприлметиламмонийхлорид). Содержание свинца в образце определяют путем атомноабсорбционной пламенной спектрометрии при 2833 А, применяя для сравнения стандарты, приготовленные на основе хлорида свинца. Стандарты готовят, растворяя хлорид свинца в 10%-ном растворе аммонийной соли в метилизобутилкетоне, разбавляя один стандарт, содержащий 5,0 г РЬ/галлон (бензином, не содержащим свинца). По поглощению, полученному при анализе, находят на калибровочном графике соответствующую концентрацию рабочего стандарта и вычисляют содержание антидетонатора в бензине. [c.208]

    На базе 4-метилпентена-1 могут быть получены метилизобутилкетон, термостойкие полимеры, сополнмериые волокна и др. По некоторым данным [3], этот олефин наиболее экономично получать каталитической димеризацией пропилена лри температуре 140—145 °С и давлении 8—10 МПа. Содержание 4-ме-тилпентена-1 в продукте среднего состава при димеризации пропилена на контакте натрий на поташе равно 87% (масс.) Кроме того, в нем содержатся 4-метилпентен-2—4% гексен-1—5% гексен-2—1,65.% и др. Попытки внедрить в промышленность процесс димеризации этилена с получением бутиленов не увенчались успехом ввиду неэкономичности этого процесса. [c.11]

    Пример XII.5. 1000кг раствора ацетона (В) в воде (А), содержащего 50% ацетона, подвергают экстракции метилизобутилкетоном (5) для получения рафината, содержащего 10% ацетона. Определить потребное количество теоретических ступеней, если экстракцию проводят перекрестным током, причем в каждой ступени используется 250 кг чистого растворителя. [c.403]

    Ацетон является исходным веществом для получения целого ряда продуктов, которые имеют промышленное значение как растворители, пленко-образователи, искусственные смолы и т. п. Когщеисация ацетона приводит к образованию диацетонового спирта — хорошего растворителя для ацетата целлюлозы, нитроцеллюлозы, хлорвинил-випилацетатных смол. Отщепляя от диацетонового спирта воду, получают окись мезитила, являющуюся превосходным растворителем многих смол. Гидрированием в мягких условиях можно перевести окись мезитила в метилизобутилкетон, для которог(> существуют многочисленные области технического применения. В первук> очередь метилизобутилкетон используют как растворитель для смешанных полимеров винилацетата и хлорвинила, для ацетата и бутирата целлюлозы, ДДТ, пиретрума, как экстрагент пенициллина и других антибиотиков, для депарафинизации смазочных масел и т. п. [c.473]

    Окись мезитила кипит при 128—129°. Растворимость ее в воде-не превышает 3%. Окись мезитила используют для снижения летучести растворителей для лакокрасочных покрытий и для уменьшения вязкости некоторых лаков, особенно нитроцеллюлозных и виниловых. В основном окись мезитила применяется как полупродукт для производства насыщенных кетонов и спиртов. При гидрировании в мягких условиях окись мезитила превращается в метилизобутилкетон (СНз)2СНСН2СОСНз (т. кип. 116°) — ценный растворитель для лаков и красок, применяющийся также для депа-рафинизации нефтепродуктов и для удаления старых красочных покрытий. Гидрирование в жестких условиях приводит к получению метилизобутил-карбинола (т. кип. 131,8°). Его применяют в качестве растворителя со средней температурой кипения, пенообразователя при флотации руд, а также для производства ксантогенатов и сложных эфиров, из которых наиболее [c.318]

    Значительная часть продуктов его переработки в свою очередь используется как растворители и как сырье для органических производств. Пиролизом ацетона получается кетен, который затем перерабатывается на уксусные ангидрид п кислоту. Ш,елочной конденсацией ацетона производят диацетоновый спирт (см. ниже), являющийся полупродуктом для получения окиси мезитила, метилизобутилкетона и метилизобутилкарбинола (изоамилового спирта). Ацетон перерабатывают также в форой, изофорон и ацетопциан-гидрин (промежуточный продукт в производстве метилметакрилата). [c.320]

    Процесс проводят, вводя окись этилена в суспензию терефталевой кислоты в органическом растворителе, способном, как правило, растворять этерифицированные продукты реакции. Катализатор должен также растворяться в выбранном растворителе. В качестве растворителей предлагают этанол, бутанол и изопропанол [41], смесь бутанола и метилизобутилкетона [42], различные кетоны [43, 44], ароматические и алифатические углеводороды [45], этиленгликоль [46], галоидные углеводороды [47], сложные эфиры уксусной и других кислот [47], алкилнитрилы [39, 48]. В качестве катализаторов преимущественно рекомендуют вторичные и третичные амины, хорошо растворимые в вышеуказанных растворителях. Аминные катализаторы должны быть удалены из мономерных продуктов реакции, так как в их присутствии получаются окрашенные полиэфиры. Для получения неокрашенных продуктов рекомендуют в качестве катализаторов этерификации применять триалкилфосфины [44, 49], триарилфосфины [48], органические соединения титана, германия или сурьмы [50]. [c.34]

    Такая проверка была произведена сопоставлением полученных зависимостей с результатами эксперимента. Кроме известных литературных данных [40, 41], в работе были исследованы 0,5%-ные бинарные растворы воды в ацетоне, метилэтилкетоне, метилизобутилкетоне, диэтил-кетоне, циклогексане, ацетофеноне, диоксане, дипропило-вом эфире, амилацетате, нитробензоле, трибутилфосфа-те, ацетонитриле и пиридине, а также тройные смеси этих растворов с четыреххлористым углеродом, растворы полутяжелой воды и спектры растворов при разных температурах. Для составления растворов использовались растворители марки ч. д. а., которые дополнительно еще осушались цеолитом типа А до 0,005 вес.%. [c.29]

    Изучались также реакции кетена с соединениями, содержащими группировку —N = 0—С—. Однако, поскольку такие соединения могут реагировать в енаминной форме —N—С = С—, реакции можно рассматривать по схеме присоединения кетена к углерод-углеродной двойной связи. Реакция шиффовых оснований с кетеном описана в патентной литературе [123]. При действии кетена на 1-метил-4-(Ы-фенилимино)пентан, полученный из анишина-и метилизобутилкетона, без катализатора или в присутствии хлористого алюминия, хлористого цинка или трехфтористого бора, промежуточно образуется соединение XIX, которое при гидролизе дает 6-метилгептандион-2,4 (XX). Аналогично ацетофенон действием алифатического первичного амина, например 2-амино-4-метилпентана, превращают в шиффово основание, из которого реакцией с кетеном получают бензоилаце-тон. Эта реакция заслуживает более подробного изучения. [c.221]

    Довольно широкое применение для отделения плутония экстракцией получил триизооктиламин [496, 497, 557, 559]. Мур [557] исследовал экстракцию Pu(VI) из 4,8 М НС1 триизооктил-амином (ТИОЛ) в ксилоле и метилизобутилкетоне. Pu(VI) был получен окислением бихроматом калия при нагревании. Влияние концентрации КзСггО на полноту экстракции показано в табл. 48. [c.344]

    Описан [1638] комбинированный метод определения 8Ь в геологических материалах, включающий предварительное ее отделение отгонкой в виде 8ЬТз из смеси анализируемого материала с КН Т, растворение возгона в 10%-ной НС1, экстракцию 8Ь из полученного раствора 4%-ным раствором триоктилфосфинокиси в метилизобутилкетоне и распыление полученного экстракта в воздушно-ацетиленовое пламя. При определении 8Ь в никеле рекомендовано предварительно концентрировать ее соосаждением с МпОа [955]. Некоторое повышение чувствительности определения ЗЬ и ряда других элементов (до 50 %) достигается за счет применения диафрагм на конденсорных линзах [1147]. [c.90]

    Для определения ЗЬ в железе, сталях и железных рудах простыми и быстрыми являются методы атомно-абсорбционной спектрофотометрии [954, 1141, 1387, 1601] простейший вариант — непосредственный анализ раствора, полученного после растворения пробы. При использовании воздушно-ацетиленового пламени возможно определение ЗЬ при ее концентрации 2—20 мкг мл (8 = = 0,03 -4- 0,05) [1601]. В непламенном варианте возможно определение до 10 г 8Ь. Методы атомно-абсорбционной спектрофотометрии с экстракционным отделением ЗЬ в виде НЗЬС , с применением метилизобутилкетона в качестве экстрагента и воздушноацетиленового пламени [954, 1141, 1387] характеризуются высокой чувствительностью (1-10" %). В одном из таких методов [954] ЗЬ экстрагируют 5%-ным раствором трифенилфосфиноксида в метилизобутилкетоне и экстракт распыляют в воздушно-ацетиленовое пламя. [c.131]

    Тяжелые металлы. Растворяют 5,0 г испытуемого вещества в смеси 70 мл уксусной кислоты ( 300 г/л) ИР и 30 мл воды, кипятят 2 МНН, охлаждают и разводят до 100 мл уксусной кислотой ( 120 г/л) ИР. При необходимости фильтруют через предварительно обожженный и обсмоленный фильтр нз фарфора или кремнезема подходящей порозности для получения прозрачного фильтрата. К 20 мл фильтрата (фильтр оставляют для испытания на вещества, нерастворимые в уксусной кислоте, а оставшийся фильтрат — для испытания на кальций) добавляют 15 мл соляной кислоты ( 250 г/л) ИР и встряхивают с 25 мл метилизобутилкетона Р в течение 2 мин. Дают слоям разделиться и выпаривают водный слой досуха. Раство- [c.197]

    Подводя итоги, мы видим, что слои пластинки, обладающий конкретной активностью, теряет воду, когда подвергается впоследствии воздействию не только паров воды, но и паров растворителя, за счет чего активность слоя повышается. Это видно по данным, показанным на рис. 187, когда период, соответствующий перемещению всех пятен, оказывался одним и тем же. Следовательно, пятна тех же самых веществ должны бьши подняться примерно на ту же высоту. Это не касается уровней, занимаемых фронтом. Однако фактически пути, проходимые пятнами, оказывались короче на той стороне пластинки, которая подвергалась предварительнрму насыщению (поскольку такое насыщение приводило к повышению активности слоя). Предварительное насыщение не только снижает значения Rf, но влияет и на селективность при тех вариантах разделений, которые чувствительны к содержанию воды. Как показывает рис. 189, может даже наблюдаться изменение порядка элюирования. Рассмотренный выше эффект улучшения активности четко проявляется при использовании относительно сильных растворителей (таких, как тетрагидрофуран и метилизобутилкетон) хроматограммы, полученные при насыщении этими растворителями, как видно из рис. 189, оказались значительно более качественными, чем без предварительного насыщения. [c.128]

    Изучалось отделение цинка от кобальта экстракцией из солянокислых растворов [1020]. Исследовано извлечение раствором метилдиоктиламина в трихлорэтилене, раствором трпбен-зиламина в хлороформе, трихлорэтилене и ксилоле. В различных условиях цинк переходит почти количественно в неводный слой, увлекая небольшие количества кобальта так, при экстракции из 3 Л/ раствора соляной кислоты раствором трибензилами-на в хлороформе около 72% цинка вместе с 0,11% кобальта переходит в неводный слой. При этой же кислотности раствор метилдиоктиламина в трихлорэтилене извлекает практически весь цинк и около 1,5% кобальта. Установлена возможность разделения роданидов железа, никеля и кобальта посредством противоточной экстракции фурфуролом [1345], Для получения очень чистого кобальта для мишеней при циклотронной бомбардировке и очистки его от никеля использована экстракция роданида кобальта неводными растворителями. Из 14 исследованных растворителей наилучшие результаты были получены с Метилизобутилкетоном (гексоном), метил-н-амилкетоном и бутилацетатом, так как коэффициенты распределения роданида никеля в этих растворителях оказались самыми низкими [1307]. [c.73]


Смотреть страницы где упоминается термин Метилизобутилкетон, получение: [c.690]    [c.706]    [c.407]    [c.47]    [c.301]    [c.82]    [c.232]    [c.314]    [c.161]    [c.385]    [c.309]    [c.309]    [c.154]    [c.190]    [c.213]   
Практические работы по органическому катализу (1959) -- [ c.145 , c.147 , c.149 ]




ПОИСК







© 2025 chem21.info Реклама на сайте