Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Изотопов разделение биологическое

    Что касается числа стадий, необходимых для достижения данной степени разделения, то было найдено, что уже одноступенчатой перегонки, при очень низких давлениях, достаточно для разделения биологически важных веществ [2]. В более трудных случаях, например при разделении изотопов тяжелых элементов, таких как ртуть, уже требуется применять многоступенчатый прибор. В случае нефтяных углеводородов, с которыми мы имеем дело, подлежащая разделению смесь является весьма сложной и содержит несколько или большое число типов молекул с почти одинаковой летучестью. Любой аппарат для разделения нефтяных углеводородов при очень низких давлениях должен быть приспособлен для работы с достаточным числом ступеней разделения. [c.101]


    В сочетании с радиоактивными измерениями очень эффективной оказалась также бумажная хроматография капля раствора наносится на фильтровальную бумагу и затем вымывается раствором комплексообразователя. Отдельные компоненты исследуемой смеси располагаются на поверхности бумаги изолированными пятнами, которые идентифицируются по растворимости, цветным реакциям и в случае разных радиоактивных веществ — по характеру излучения. Распределение радиоактивных фракций и приблизительное определение их пропорции проще всего определять по радиографическим отпечаткам. Более точно это делают, измеряя активность золы от сжигания вырезанных участков хроматограммы. Этим способом можно разделять следы редкоземельных элементов в нескольких мкг смеси [И 19], следы металлов в биологических тканях и др. Во всех этих работах применялись смеси веществ, меченных соответствующими радиоактивными изотопами. Разделение облегчается комбинацией хроматографии с электролизом бумаги, смоченной комплексообразующим раствором. Например, трехдневный электролиз бумаги, смоченной молочной кислотой или тартратом аммония, дал полное разделение смеси лантанидов в 50 мм раствора с активностью 0,3 каждого из них [1120]. Дальнейшие примеры сочетания бумажной хроматографии с радиографией приведены на стр. 477. [c.435]

    В ходе геохимических и биологических процессов произошло разделение изотопов серы, и в образцах верхнего слоя земной коры значения O S варьируют от —50 до -f90 /oo- [c.8]

    Наиболее часто требуется определять бериллий в присутствии Ре, А1, М , 2п, Мп, Т1, 2г, реже Мо, У (в рудах и продуктах обогащения), Си, N1, Со, Ре, А1, М (в сплавах). Все возрастающее значение бериллия в ядерной технике вызвало необходимость разработки методов отделения его от и, ТЬ и элементов с большим сечением захвата нейтронов (редкоземельные элементы, бор). Особую трудность представляет отделение следов бериллия от больших количеств других элементов. Эта проблема возникает при определении содержания бериллия в биологических пробах, в воздухе, в горных породах, а также при выделении радиоактивных изотопов. В этих случаях обычно используют соосаждение микроколичеств бериллия с коллекторами, избирательную экстракцию или ионный обмен с применением маскирующих средств. Для более эффективного разделения часто комбинируют несколько методов. [c.125]


    Процессы изотопного обмена имеют очень важное значение для решения многих химических, биологических и физических проблем. Особый интерес они представляют для радиохимии и изотопных методов исследования. Детальное изучение процессов изотопного обмена — одно из важнейших условий понимания природы химических реакций, индуцированных ядерными превращениями, разработки методов обогащения радиоактивных изотопов и разделения ядерных изомеров. Только с учетом количественных характеристик реакций изотопного обмена можно правильно определять выход продуктов ядерных реакций, а также получать правильные результаты активационного анализа и анализа методом изотопного разбавления. Процессы изотопного обмена лежат в основе установления природы химических связей, их равноценности в молекуле, а также методов получения меченых соединений. Особое значение эти процессы имеют для изучения механизма реакций. [c.10]

    НИХ имеют биологическую природу, хотя, конечно, они являются результатом физических или химических процессов, действующих в организме. Ниже перечислены некоторые методы, позволяющие осуществить разделение изотопов в лаборатории. Часть методов вызывает изменение относительного содержания природных изотопов по сравнению с естественными распространенностями некоторые пригодны для разделения изотопов в крупных масштабах [153], другие— для получения высокой степени обогащения. [c.458]

    Молекулы с разными изотопами одного и того же элемента несколько различаются по своим физическим и химическим свойствам, поэтому при геохимических и биологических процессах происходит некоторое разделение изотопов. Таким образом, изотопный состав элемента в природном образце отражает реакции, которые привели к образованию того или иного соединения образно говоря изотопный состав является летописью природных процессов. Правильная расшифровка изотопных данных может обеспечить исследователей дополнительной информацией о природе и способе образования пород, руд и минералов и дать некоторые сведения о процессах, протекавших многие миллионы лет назад. Но для решения подобных задач требуется привлечение физических и физико-химических методов исследования. Одним из таких методов является изотопный анализ. [c.3]

    Другие биологически важные элементы, такие, как 8, Са, К, Мд, Ге, В, 81, н, хотя и представлены смесью двух или более стабильных изотопов, однако их разделение для получения меченых соединений представляет большие трудности. [c.559]

    Выбор методики анализа фракций определяется природой анализируемого материала причем выбрать методику анализа, а в некоторых случаях и испытать необходимо перед началом хроматографирования. Применяют физические, химические и биологические методики. Чаще всего измеряют показатель преломления. Пользуются также различными колориметрическими методами, а также тонкослойной или бумажной хроматографией и электрофорезом. Идеальным способом является детектирование радиоактивных изотопов. Измеряя pH и электропроводность отбираемых фракций, можно контролировать условия элюирования. Именно такой контроль позволяет воспроизводить условия градиентного элюирования. В ряде случаев очень полезно комбинировать несколько методов детектирования. Полезны также непрерывное автоматическое детектирование (с достаточно высокой чувствительностью) разделенных соединений и регистрация хроматограмм (см. разд. 8.6, 8.7). Результаты измерений записывают в виде кривой зависимости измеряемой величины от объема элюата или номера фракции. Исходя из распределения пиков на хроматограмме некоторые фракции можно объединить. При этом необходимо следить, чтобы объединялись совершенно чистые фракции, не содержащие примесей других компонентов, иначе потребуется повторное хроматографирование. Фракции, предназначенные для количественных анализов, хранят в темноте и на холоду с тем, чтобы не допустить нежелательных реакций. Фракции соединений, окисляющихся на воздухе или поглощающих диоксид углерода, следует хранить в герметически закрытых сосудах. [c.281]

    С начала 60-х годов многие достижения органической химии, биохимии, химической технологии оказываются неразрывно связан-ными с теми или иными этапами развития метода газо-жидкостной хроматографии, такими, как применение жидких фаз высокой селективности [6, 7], разработка чувствительных ионизационных детекторов [8—10], капиллярных колонок [И], техники препаративного разделения веществ [12, 13] и др. Развитие этих направлений позволило ставить и решать совершенно новые проблемы, такие, как разделение близких изомеров и соединений, содержащих разные изотопы одного элемента, анализ смесей десятков и сотен компонентов, изучение состава биологически активных веществ, выделяемых в количестве тысячных долей миллиграмма. [c.6]


    До середины 30-х годов область применения изотопов в качестве меченых атомов была очень ограничена. Для химических и биологических исследований можно было располагать лишь природными радиоактивными изотопами нескольких тяжелых элементов, не принадлежащих к наиболее важным в этих областях науки. После того как в 1932 г. был открыт тяжелый водород, быстро стала развиваться техника разделения стабильных изотопов и в короткое время сделано много исследований с разными применениями дейтерия, а также тяжелых изотопов углерода, азота и кислорода. Еще важнее было открытие в 1934 г. искусственной радиоактивности, приведшее к разработке методов получения изотопов всех элементов. [c.196]

    Меченые атомы. Большинство химических элементов представляет собой смесь изотопов, состав которой в ходе физических, химических и биологических процессов обычно остается неизменным. Это подтверждается постоянством изотопного состава элементов, полученных из самых разнообразных источников, а также тем фактом, что атомные веса с очень большой точностью можно определять химическими методами. Следует, однако, иметь в виду, что в случае наиболее легких элементов, у которых наибольшие разности масс изотопов (выраженные в процентах), в ходе различных процессов может происходить некоторое разделение изотопов. Этот эффект необходимо учитывать при любых исследованиях, в которых используются в качестве меченых атомов изотопы водорода. Если не считать изотопов водорода и Ве (масса которого отличается от массы стабильного Ве только на 25%), то наиболее легким элементом, изотопы которого широко используют при исследованиях методом меченых атомов, является углерод. Для этого элемента в большинстве исследований, не требующих повышенной точности, специфическими изотопными эффектами уже можно пренебречь. В настоящем разделе будем исходить из представления, что радиоактивность данного изотопа ни в коей мере не изменяет его химических (или биологических) свойств. Случаи возможных отклонений от этого правила рассматриваются в разделе В. [c.195]

    При радиохимических разделениях получение высокого выхода часто не имеет особого значения в том случае, если величину выхода можно оценить. Может оказаться, что важнее получить 50%-ный выход (или даже 10%-ный) отделяемого радиоактивного элемента за 10 мин, чем 99%-ный выход за 1 час (особенно если период полураспада изотопа составляет 10—20 мин). Высокая химическая чистота препаратов радиоактивных веществ требуется далеко не всегда. Для идентификации и изучения радиоактивных элементов и при многих исследованиях методом меченых атомов она не имеет существенного значения. Для большинства биологических исследований, однако, может потребоваться высокая химическая чистота препарата. С другой стороны, радиохимическая чистота необходима во всех случаях и часто должна быть очень высокой. [c.396]

    Высокая чувствительность метода обратного изотопного разбавления с радиореагентом, а также селективность, которую обеспечивает применение индикаторного изотопа, позволяют определять микроколичества смесей первичных и вторичных аминов. Эти методы широко применяли в определениях различных аминокислот в биологических образцах [85—88]. В работе [86], в частности, описано использование этих методов для оценки содержания одиннадцати таких соединений в 1 мг белка. Метод с пипсилхлоридом применялся для анализа гистамина, причем в этом анализе проводилось четыре цикла перекристаллизации соответствующего производного с целью его очистки до получения постоянного значения удельной радиоактивности. После проведения этого анализа было предложено [89] применять данный метод для определения любого амина, который дает кристаллический замещенный д-иод-бензолсульфамид. Этим же методом оценивались микрограммные количества 2,4-диоксипиримидина и его 5-метильного производного [90]. Для разделения пипсильных производных в дополнение к бумажной хроматографии применялись жидкофазная колоночная хроматография [91] и тонкослойная хроматография [92]. Хроматографию на бумаге применяли также для оценки радиохимической чистоты реагента [93]. [c.310]

    Можно вводить метку в а-положение аминокислоты путем декарбоксилирования производных а-ацетиламиномалоновой кислоты см. схему (7) в кислых растворах тритийсодержащего растворителя. Альтернативно, можно вводить метку в а-положение аминокислоты непосредственно в условиях, которые вызывают рацемизацию при а-С атоме, т. е. в сильно щелочных средах или при кипячении с уксусным ангидридом в уксусной кислоте. Однако для проведения многих биологических исследований лучще избегать применения [а- или Р- Н] меченных аминокислот. Обмен трития в этих положениях происходит через реакции трансаминирования схема (32) потеря трития, находящегося в р-положении аминокислот, используется в методе анализа трансаминаз. Обработка а.р-тритированных а-аминокислот с помощью оксидаз аминокислот или почечной ацилазы может приводить к существенной потере активности осторожность следует соблюдать и при использовании ферментов для разделения рацемических аминокислот, меченных радиоактивными изотопами. [c.249]

    В последние годы, особенно в хромато-масс-спект-ральном анализе биологически активных соединений, широко используют в качестве внутренних стандартов соединения, меченные стабильными изотопами [27], причем одним из оптимальных методов является использование соединений, содерлощих 3 или 4 атома С. Как положительную особенность этого метода следует отметить отсутствие изотопного эффекта в процессах газохроматографического разделения, или при детектировании в процессе химической ионизации, исполь- [c.21]

    Стронский и др. [102], применяя колонку с ТОФО на тефлоне, последовательно вымывали 0Sr и изотоп без носителя 0,5 и 9,0 М HNO3 соответственно. Для разделения этих радиоизотопов использовали также систему Д2ЭГФК — H IO4 [64], причем применяли как хроматографию на бумаге (носителем служила целлюлоза), так и колоночную хроматографию. Аналогичную систему для определения в биологических материалах использовали Теста и др. [106, 107]. [c.238]

    Таким образом, проведенные исследования показали возможность использования метода лазерной масс-спектрометрии для безэталонного изотопного анализа многокомцонентных биологических объектов. Обнаружены сущест Венные различия в элементном и изотонном составе наружного и внутреннего слоя речной раковины мидии. Это, ио-ви-димому, указывает на процессы разделения и об мена изотопами в живом организме, при протекании химических радикальных реакций. Рассмотрены основные ядерные характеристики легких элементов и установлена корреляция между аномальным фракционированием изотопов и энергией связи нейтронов в цх ядрах. Наблюдаемые в эксперименте изотопные аномалии качественно объяснены с помощью ядер-но-спинового изотопного эффекта. [c.44]

    Таким образом, величина молярной радиоактивности биологически активных соединений связана с разделением изотопов водорода при их растворении в палладии, что, как уже было показано выше, является многостадийным процессом. Есть несколько возможностей уменьшить негативные последствия этого явления. Один из них — применение катализаторов с низким (0,01-0,05%) содержанием палладия на носителе. В подобных катализаторах [35] изотопы водорода практически не растворяются, и гидридная форма отсутствует. С учётом коэффициента разделения протий-тритий при фазовом и адсорбционном равновесии на палладии, равном 2,5, молярная радиоактивность препаратов при замене одного атома галлоида на тритий должна достигать 0,94 ПБк/моль, что соответствует экспериментальным данным [36. Но на практике такие катализаторы оказались очень неустойчивыми к отравлению. Поэтому на один миллиграмм исходного соединения необходимо около одного грамма такого катализатора, что приводит к повышенному расходу [c.500]

    Приведенная работа Месельсона интересна также тем, что наряду с первым применением на практике принципа ультрацентрифугирования в градиенте плотности оказалась основополагающей для типично биологической проблемы — выяснения механизма воспроизведения (редупликации) молекул дезоксирибонуклеиновой кислоты (ДНК). В градиенте плотности хлорида цезия авторы проводили центрифугирование смеси молекул ДНК, меченных тяжелым изотопом азота ( К) или 5-бромурацилом, с немечеными молекулами. Вследствие весьма незначительной разницы в плотностях таких молекул возможно разделение меченых и немеченых молекул. Таким образом было показано, что в процессе удвоения количества ДНК у бактериальных клеток кишечной палочки все молекулы ДНК первого поколения клеток оказываются гибридными (содержат равные количества меченого и немеченого материала), во второй же генерации получаются в равных количествах гибридные молекулы и молекулы, не содержащие метки. Позже было показано подобное распределение молекул ДНК и у других размножающихся митозом организмов. В итоге такие данные позволили отвергнуть дисперсный механизм редупликации ДНК и строго доказали наличие двойной структуры молекулы ДНК, воспроизводящейся, вероятно, по полукопсервативпому механизму.— Прим. перев. [c.242]

    Выделение радионуклидов в ходе радиохимического анализа может быть осуществлено как с применением носителей, так и без них. Разделение смзси изотопов без носителей особенно характерно для физико-химических методов анализа. Метод изотопного разбавления требует введения соответствующих носителей до выпаривания водных проб и непосредственно перед растворением (в пробах атмосферной пыли, золы биологических материа.чов, пищевых продуктов и т. д.). При дробном анализе носители соответствующих изотопов вносятся в отдельные части пробы, из которых затем производится выделение групп элементов, нередко родственных по своим химическим свойствам. Например, Ва, Зг и Са — в виде сульфатов или Ад, Сс1 и Мо — в виде растворимых аммиачных комплексов. Разделение элементов внутри каждой группы может осуществляться различными широко известными способами [116]. Однако в каждом конкретном случае должны разрабатываться свои условия выделения. Это связано с характером макросостава анализируемой пробы, ее радиохимическим составом и необходимостью выделения тех или иных изотопов. Наиримзр, радиохимический анализ многочисленных биологических материалов, пищевых продуктов и почв проводится с целью оиределения Зг . В таких случаях отделение второй аналитической группы, к которой относится стронций, производится либо осаждением карбонатов элементов этой группы, либо их фосфатов, оксалатов или сульфатов [79, 117]. [c.54]

    Сэмсал и сотр. [38 — 43] разработали универсальную схему разделения для больщого числа радиоактивных изотопов, образованных при нейтронной бомбардировке биологических материалов. Используя [c.309]

    Первые попытки в этом направлении были сделаны Сциллар-дом [100] для установления связи между термодинамической энтропией и информацией и Льюисом [101] для описания процессов разделения газов термодиффузией. Затем этот подход был осуществлен при анализе передачи сигналов по каналам связи 1102], как важное логическое звено при основании кибернетики [103], для оценки состояния биологических систем [104], при описании различных разделов науки с позиций теории информации [105] и для оценки процесса разделения изотопов [106, 107]. В самое последнее время подобный подход был использован для оценки эффективности процессов разделения углеводородов [108, 109] и для описания процесса расширенного воспроизводства в различных экономических моделях [110]. [c.34]

    Учитывая имеющиеся сведения, включающие несколько наглядных примеров использования техники элюирования, основанной на образовании комплексното иона [57], Кон с сотрудниками [10] сконструировал и испытал аппаратуру для извлечения высокоактивных продуктов деления, в которой использовался процесс элюирования для приготовления больших количеств чистых растворов отдельных продуктов деления, необходимых для биологических и химических исследований. С помощью этих исследований было получено первое указание на то, что фракционирование радкоземельных элементов может быть произведено при помощи элюирования буферным раствором лимонной кислоты при оптимальном значении pH. Они также выполнили разделение иттрия и церия, а Кон [10] наблюдал присутствие других активностей при последующем разложении промежуточных между иттрием и церием фракций. В табл. 1 дается краткая характеристика изотопов наиболее важных элементов распада, их выход в процентах и величины удельного излучения в кюри. [c.406]

    Отделение химии и химической технологии Заведующий R. F. Phillips Направление научных исследований методы разделения веществ использование радиоактивных изотопов хроматография на бумаге рентгеноструктурный аиализ спектроскопия карбонильных соединений гетерогенные реакции реакции свободных радикалов титан и его сплавы керамика и огнеупорные материалы фосфорорганические соединения производные сахаров с потенциальной биологической активностью противовирусные средства структура и свойства полимеров синтез и свойства при- [c.263]


Смотреть страницы где упоминается термин Изотопов разделение биологическое: [c.9]    [c.9]    [c.114]    [c.143]    [c.11]   
Химия изотопов Издание 2 (1957) -- [ c.36 , c.38 , c.41 ]




ПОИСК





Смотрите так же термины и статьи:

Разделение изотопов



© 2025 chem21.info Реклама на сайте