Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ацетальдегид из бутана

    Ацетилен аллиловый спирт акролеин акрилонитрил ацетон ацетальдегид бутан бутилен бензин Б-70 бензин Б-95/130 бензин А-72 диизопропиловый эфир диоксан диэтиламин диметилдиоксан изобутилен изобутан изопрен изопентан изопропиловый спирт изобутиловый спирт коксовый газ пропиловый спирт пентан пропилацетат пропилформиат сольвент нефтяной сольвент каменноугольный топливо Т-1 топливо ТС-1 толуол триэтиламин бензин А-66 бензин Калоша бензол бутиловый [c.192]


    В США дивинил получали из нефтяного сырья или из этилового спирта, в последнем случае — по двухстадийному процессу. В Советском Союзе дивинил производили из этилового спирта одностадийным методом. В Германии сырьем для двух применявшихся методов являлся ацетилен. Немцы получали дивинил преимущественно из ацетальдегида с промежуточным образованием 1,3-бутандиола во втором методе промежуточными продуктами в производстве дивинила из ацетилена являлись бутиндиол и 1,4-бутан-диол. В США проводились также исследования по разработке одностадийных процессов производства дивинила из н-бутана или из этилового спирта, а также по созданию метода получения дивинила из 2,3-бутандиола. [c.205]

    Самым распространенным является метод сернокислотной гидратации 80% этилового спирта, исходным сырьем для которого является керосин, получается этим методом. В настоящее время производство синтетического этилового спирта снижается, так как некоторые из его главных производных, таких как ацетальдегид, уксусная кислота, бутадиен, тетраэтилсвинец, получают и из другого сырья (метан, бутан, бутены, этан — этилен), при переработке которого, хотя и не очень простой, получают более низкие себестоимости. Нужно также отметить, что несмотря на то, что капиталовложения при производстве синтетического этилового спирта из керосина больше, чем при производстве этилового спирта при помощи брожения, себестоимость его намного ниже (табл. 85). [c.356]

    Ацетальдегид Бутан Бутан (азо) [c.470]

    В качестве примера можно привести следующие весьма распространенные вещества к I группе относятся, например, уксусная кислота, спирты, бензол я толуол, этилацетат, а также сигаретный дым, выхлопные автомобильные газы и др. ко II группе — ацетон, акролеин, хлор, сероводород, растворители, а также пары анестезирующих веществ и др. к III группе — ацетальдегид и формальдегид, пропан и бутан, амины и др. к IV группе—оксиды углерода, этилен и др. [c.159]

    Возможно также получение ацетона как побочного продукта при гомогенном окислении пропана и бутана. Ацетон образуется также при каталитическом окислении бутана воздухом по способу, используемому на заводе в г. Пампа (Тексас, США) [172, 173]. Сырьем служит 95%-ный н-бутан, содержащий 2,5% изобутана, 2,5% углеводородов с пятью атомами углерода и выше, а также пропан. Бутан окисляют воздухом в жидкой фазе под давлением 60 ат в уксуснокислой среде в присутствии ацетатов кобальта, марганца, никеля. Температура процесса ниже 400°. В числе продуктов реакции упоминаются уксусная кислота (основной продукт), ацетальдегид, метиловый спирт, ацетон и метилэтилкетон. Продукты реакции проходят через воздушный холодильник, в котором отводится до 80% тепла, выделяющегося при реакции, водяные холодильники и сепаратор, где отделяются азот и другие газы. Углеводороды возвращают в процесс, а сжатым азотом приводят в движение газовые турбины. После отгонки ацетальдегида, ацетона и метилового спирта уксусную кислоту передают на установку по получению уксусного ангидрида. Мощность завода в г. Пампа 42 500 т гсд уксусной кислоты. [c.322]


    Ацетальдегид Бутан Бутан (изо) [c.470]

    Для ряда веществ (17 названий) отсутствует среднесуточная ПДК атмосферных загрязнений. Это прежде всего соединения, для которых резорбтивный порог в настоящее время не представляется достаточно ясным (ацетальдегид, бутан, бутиловый спирт, диметилсульфид, диметилдисульфид, метафос, трикрезол и др.). [c.95]

    Подобная тенденция проявляется в изменении структуры методов производства ряда нефтехимических продуктов с заметным переходом к широкому применению более селективных процессов. Например, следует отметить тенденцию к снижению абсолютных масштабов производства некоторых нефтехимических продуктов, в частности ацетальдегида и этилового спирта. Это явление обусловлено внедрением в промышленность новых методов получения бутилового спирта и 2-этилгексанола, на производство которых ранее расходовался ацеТ-альдегид, а также заменой этилового спирта как сырья для получения дивинила на бутилен и бутан, [c.12]

    В качестве примеров использования статистических методов планирования экспериментов в безградиентных проточных реакторах при изучении кинетики химических реакций можно указать на процесс альдолизации ацетальдегида [27] и процесс дегидрирования бутан-бутиленовых смесей [100]. Необходимо заметить, что в последней работе от регрессионных уравнений скоростей реакций, характеризующих суммарную конверсию каждого из компонентов реакционной смеси, сделан переход к эмпирическим зависимостям другого вида, константы в которых определены методом градиента по данным, рассчитанным из уравнений регрессии. [c.216]

    Ацетальдегид Уксусный ангидрид Нормальный бутан Ацетатная целлюлоза, аспирин [c.248]

    Пропан и бутан непосредственно окисляют воздухом в смесь кислородсодержащих соединений, состоящую главным образом из формальдегида, метилового спирта, ацетальдегида и уксусной кислоты. Этот процесс явился результатом исследовательских работ, начатых в тридцатых годах, хотя окисление такого типа было впервые испытано в США в 1926 г. [c.22]

    В настояш,ее время ацетальдегид получают из ацетилена, дегидрированием этилового спирта и окислением нефтяных газов — пропана и бутанов. Последний способ является наиболее прогрессивным. [c.74]

    На разных предприятиях применяются различные методы очистки сточных вод. На нефтехимических комбинатах (при производстве синтетического спирта, фенола, ацетона, синтетических жирных кислот, каучука и др.) основными местами образования загрязненных сточных вод являются цехи пиролиза углеводородов, гидратации этилена и ректификации спирта. Сточные воды цеха пиролиза углеводородов содержат этилен, пропилен, бутан, изобутан, бензол, толуол, ксилол, нафталин. В сточных водах цеха гидратации этилена и ректификации спирта присутствуют спирты, ацетальдегид, продукты полимеризации, смола. При применении биологических методов очистки содержание органических веществ (бензола, толуола, ксилола, нафталина и др.) в сточных водах значительно снижается. [c.16]

    Окисление пропана и бутанов. Окисление пропана, н-бутана и изобутана производят кислородом под небольшим давлением, рециркулируя не вошедший в реакцию углеводород. Основными полезными продуктами окисления являются формальдегид, ацетальдегид, метиловый спирт, ацетон кроме того, получаются этиловый и пропиловые спирты, различные альдегиды и кислоты, окиси, гликоли и много других веществ. Составы продуктов окисления пропана и н-бутана немногим отличаются друг от друга. Однако при окислении изобутана резко повышается выход ацетона, главным образом за счет метилового спирта, ацетальдегида и до некоторой степени формальдегида. [c.310]

    В настоящее время ацетальдегид производят из ацетилена дегидрированием этилового спирта и окислением нефтяных газов (пропана и бутанов). Наиболее прогрессивным методом нроизводства ацетальдегида является окисление пропана и бутанов, подробно описанное выше. По этому методу получают наиболее дешевый ацетальдегид. Образующиеся одновременно с ацетальдегидом формальдегид, метиловый спирт и другие продукты позволяют создать ряд производств (например, пентаэритрита, акролеина и др.), почти не требующих привозного сырья. [c.314]

    Пропан используют для выработки ацетона, уксусной кислоты, формальдегида и др., бутан — для получения олефинов этилена, пропилена, бутиленов, а также ацетилена и бутадиена (сырья для синтетического каучука). При окислении бутана образуются ацетальдегид, уксусная кислота, формальдегид, ацетон и др. [c.153]

    В качестве средства для очистки бутадиена фракционированием часто прибавляют соединения, образующие азеотропные смеси с одним или более компонентами смеси олефинов. Алкилнитриты [36] образуют с бутиленами азеотропы, кипящие ниже, чем бутадиен, что делает возможным выделение бутадиена фракционированной перегонкой. Азеотроп метилнитрита с бутаном перегоняется при — 20°, с бутиленом и изобутиленом при —16°, а с бутадиеном при — 4,7°, причем в остатке оказывается псевдобутилен. Ацетальдегид [37] и аммиак [38] действуют таким же образом, удаляя бутилены при температурах более низких, чем температура кипения бутадиена. [c.37]


    Бутан Ацетальдегид (1), ацетон (II), этанол (III), метилэтилкетон Ре (стальной реактор) жидкая фаза, 50 бар, 145° С. Выход (I 4- II + III) — 20 мол.% (на прореагировавший бутан) [223] [c.20]

    Бутан (I) Ацетальдегид (II), уксусная кислота (III) Катализатор тот же 250° С. Конверсия I — 10% выход 11—28%, 111—35% [446] [c.520]

    III группа (ацетальдегид, формальдегид, пропан, бутан, амины и др.) — слабая сорбируемость  [c.74]

    Наряду с этим бутан может быть использован для других синтезов. Например, в СССР разработан процесс получения уксусной кислоты путем прямого окисления бутана кислородом. Одностадийный процесс прямого окисления бутана в уксусную кислоту более прогрессивен по сравнению с многостадийным способом производства уксусной кислоты из ацетилена через ацетальдегид [20]. [c.19]

    По этому методу пропан или бутан в соотношении с кислородом 2 1 смешивается с циркулирующим газом, реакционная смесь при давлении 7—10 ат подогревается до 350—370° С и поступает в реактор, где поддерживается температура 430—450° С. Охлажденные продукты реакции отмываются в скрубберах, в результате чего образуется водный раствор формальдегида-сырца, содержащий 20—25% формальдегида и 10—25% других продуктов окисления, среди которых ацетальдегид, ацетон, спирты и др. После ректификации выделяются 35—40%-ный формальдегид и другие продукты окисления. На 1 г пропана получается 0,384 т формальдегида, 0,433 т ацетальдегида, 0,333 т метанола и 0,270 т других продуктов окисления [4]. [c.291]

    Условия газофазного некаталитического окисления пропана и бутана на принадлежащих фирме Силениз Корнорейшн установках в Бишопе (Тексас, США) и Эдмонтоне (Канада) приблизительно следующие смесь, состоящая примерно из 7 объемов газа циркуляции, 1 объема свежего газа и 2 объемов воздуха под давлением 7 ат, проходит через нагретую до 370° печь, где в результате экзотермической реакции температура повышается до 450°. Горячие газы поступают затем в орошаемый водой абсорбер, где быстро охлаждаются до 90°, причем образуется водный раствор формальдегида, обогащаемый затем до концентрации порядка 12—14%. Выходящие из этого абсорбера газы промываются водой вторично. Из газов извлекаются ацетальдегид, метиловый спирт, ацетон и т. д., а углеводороды и азот остаются в газообразном состоянии. Приблизительно 75% отходящего газа как газ циркуляции возвращается в печь, где он смешивается с исходным углеводородным газом и воздухом и подвергается повторному окислению. ]Иеньшая часть (25%) выходящего из последнего абсорбера газа подается на специальную установку, где пропан и бутан отделяются от азота и низкокипящих [c.152]

    Пропан и бутан. Указанные углеводороды за рубежом широко применяются в промышленности как сырье для процессов неполного окисления. В результате некаталитического парофазного окисления пропана при умеренных давлениях и температуре 250— 350° получается сложная смесь различных продуктов окисления ацетальдегид, формальдегид, метанол, пропиональдегйд, пропа-нолы, ацетон, окиси пропилена и этилена, этиловый спирт, уксусная И муравьиная кислоты, окись п двуокись углерода и др. [c.84]

    Из 1 природного газа, содержащего 60% метана (остальное пропан и бутан), фирма Уоккер получала 0,333 л жидких продуктов, в том числе 15% метилового спирта, 22% формальдегида, 3% ацетальдегида и 60% смеси, состоящей из растворителей и воды. [c.93]

    В настоящее время фирма Ситиз сервис , по-видимому, также проводит окисление пропана и бутана по процессу, аналогичному методу фирмы Силениз корпорейшн оф Америка . Эта последняя фирма осуществляет некаталитическое (термическое) окисление пропана и бутана воздухом при 350—450° и давлении 3—20 ата углеводород берут в избытке. Бутан реагирует легче, чем пропан, и им предпочитают пользоваться как исходным сырьем. Продукты реакции разделяют на конденсат, состоящий из водного раствора органических кислородных соединений, и на неконденсирую-щиеся отходящие газы, которые возвращают в процесс. Часть отходящих газов выводят из системы, чтобы предотвратить накопление в ней инертных примесей однако из этих сбрасываемых газов выделяют пропан и бутан, возвращаемые в систему. Превращение углеводородов составляет 100%i. Не менее 15—20% углеводородов сгорает до окислов углерода и воды. Получаемая смесь органических соединений имеет сложный состав в нее входят формальдегид, метиловый спирт, ацетальдегид, уксусная кислота, н-пропиловый спирт, метилэтилкетон и окиси этилена, пропилена и бутилена. По этому методу работают заводы в г. Бишопе (шт. Техас) и г. Эдмонтоне (Канада). [c.72]

    Фирмой Силениз разработан второй процесс, который эксплуатируется на заводе в г. Пампе (шт. Техас). По этому методу бутан окисляют в жидкой фазе (в присутствии растворителя) кислородом воздуха. Основными продуктами являются метанол, ацетальдегид и уксусная кислота, ыз которых преобладает последняя. Изменив условия реакции, можно получить в качестве основного продукта метилэтилкетон. [c.72]

    Примеры систем различного типа а — бензол —вода, вода — хлорбензол, вода—ксилол б —вода—фурфурол в — вода—и-бу-типовый спирт, вода — изобутиловый спирт г — бтор-бутило-вый спирт — вода а — уксусная кислота — и-октан, этиловый спирт — вода, сероуглерод — ацетон е — и-гексан — бензол, н-гептан — бензол, метиловый спирт — вода ж — бензол—толуол, этан — бутан, циклогексан—н-октап з — ацетальдегид— фурфурол, ацетон—уксусная кислота, метилацетилкетон—про-нионовая кислота и — азотная кислота—вода, соляная кислота-вода, циклогексанол —фенол. [c.53]

    Наибольшая трудность в осуществлении промышленного окисления низших метановых углеводородов заключается в разделении продуктов реакции. Ацетальдегид и формальдегид (представляющие основной интерес) отделяются от остальных продуктов достаточно легко. Однако себестоимость их значительно снизится, если будет налажено выделение других, весьма ценных продуктов. Последнее очень трудно осуществить, ибо эти смеси дают большое число азеотронов приходится использовать все виды техники разделения простые, азеотропные и экстрактивные перегонки, экстракцию жидкостей жидкостями, ионный обмен и др. Достаточно указать, что на заводе в г. Эдмондтоп (Канада), где окисляют пропан и бутан, для разделения продуктов реакции установлено более 25 колонн [144]. [c.306]

    Если еще добавить, что исходным сырьем для нроизводства акролеина альдольной конденсацией являются не пропилен, который в некоторых местах производства может оказаться дефицитным, а значительно более доступное и дешевое сырье — пропан и бутан, окислением которых получают ацетальдегид и формальдегид, следует прийти к выводу, что в зависимости от конкретных условий в данной географической точке вполне рационально использовать либо тот, либо другой метод. [c.319]

    Акролеин, акрилонитрнл, аллиловый спирт, а 1ило-вый спирт, ацетальдегид, ацетон, ацетилен, бензины Б-70, Б-95/130, Галоша , А-72, А-66 бензол, бутан, бутилен, бутиловый спирт, винилацетат, водород, водяной газ, гептан, дивинил, диметилдиоксан, диэтиловый эфир, диоксан, диэтиламин, диизопропи-ловый эфир, изобутан, изобутилен, изобутиловый спирт, изопентан. [c.286]

    Кумол Пропилбензол Дипентен Камфен Диизопентиловый эфир Ацетальдегид Хлорэтан Бута-1,3-диен Бутан Диэтиловый эфир Оксиран Бутан Уксусная кислота Этилнитрит (Хлорметил)-оксиран 3-Иодпропен [c.511]

    До сего времени альдегиды и кислоты С3 и н-пропанол вырабатывали в промышленности только методом окисления бутан-пропана (сжиженных нефтяных газов). В будущем для этого, разумеется, можно пспользовать процесс Фишера-Тропша синтеза углеводородов. Однако в обоих случаях выход соединений С3 ограничен, так как они являются побочными продуктами и получаются с низким выходом. к-Масляный альдегид и -бутанол вырабатывают не только в процессе окисления, но и (в крупном масштабе) из этанола через ацетальдегид. По-видимому, бутилпроизводные оксосинтеза могут конкурировать с продуктами, получаемыми конденсацией ацетальдегида во всяком случае две крупные фирмы применяют оксосинтез. [c.278]

    В одном из вариантов процесса [16] деароматизацию производят под давлением. Затем силикагель промывают пропаном или бутаном для удаления неаро-матпческнх углеводородов и производят десорбцию. В стадии десорбции в аппарат подают жидкий, но нагретый низкокипящий водорастворимый десорбент (ацетон, метанол, ацетальдегид). После окончания стадии десорбции давление в адсорбере снижают до атмосферного, десорбент испаряется, его пары конденсируют. Выделение ароматических углеводородов из основной массы десорбента производят в результате добавления воды к смеси при этом происходит образование двух фаз ароматической и водной. Десорбент сушат и возвращают в цикл. [c.311]

    Как правило, геометрические изомеры отличаются друг от друга но физическим свойствам не менее, чем структурные изомеры. Однако в реакциях, доказывающих структуру, геометрические изомеры ведут с>ебя одинаково, что и понятно, так как их структура идентична. Так, и цис-, и транс-бутея-2 каталитически гидрируются, давая один и тот же бутан в результате озонирования каждый из них превращается в две молекулы ацетальдегида при действии НВг они превращаются в один и тот же 2-бромбутан и т. д. [c.263]

    Если в качестве конденсирующего средства npraie-нять амальгаму магния, действуя ею в бензольном растворе на ацетальдегид, то она тут же восстанавливает образующийся альдегид в бутан-д и о л - (1,3) СНз СН(ОН). СНа СНаОН [c.133]

    Газы, получаемые в процессе гидрогенизации (фракции Си Сг, Сз и С4), являются исходным сырьем для получения водорода, ацетилена, этилена и пропилена, на базе которых осуществлены синтезы различ1ных ценных органических продуктов (ацетальдегид, этиловый и пропиловый спирты, синтетический каучук, смазочные масла, ацетон и т. п.) н-бутан и изобутан являются источником производства изооктана, синтетического каучука и других продуктов. [c.78]

    Туксусная кислота, 2 — муравьиная кис-лота (правая шкапа) В — карбонильные соединения 1 — метилэтилкетон, 2 — диацетил, 3 — ацетон, 4 — ацетальдегид Г — сложные эфиры 1 — этилацетат, 2 — метилацетат, 3— бутилацетат, 4 — сложный эфир бутан-З-ола и уксусной кислоты Д — спирты 1 — втор-бутиловый, 2—этиловый, 3 — Оутан-З-ол, 4 — метиловый Е — СОг Ж — перекиси [c.7]

    В 1904 г. Гданович [90] наблюдал, что при пропускании этилового спирта над алюминиевым порошком при 600° С наряду с ацетальдегидом и этиленом образуется небольшое количество бутан-диола. Филиппов [84а] позднее показал, что диэтиловый эфир дает более высокие выходы, чем этиловый спирт. [c.123]


Смотреть страницы где упоминается термин Ацетальдегид из бутана: [c.16]    [c.191]    [c.51]    [c.287]    [c.50]    [c.507]    [c.785]    [c.390]    [c.21]    [c.530]    [c.130]   
Общая химическая технология Том 2 (1959) -- [ c.369 ]




ПОИСК





Смотрите так же термины и статьи:

Ацетальдегид

Бутан

Бутан Бутан

Бутанал



© 2025 chem21.info Реклама на сайте