Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ориентация заместителей в ароматических ядра

    Влияние заместителей при сульфировании аналогично другим реакциям электрофильного замещения в ароматическое ядро, причем для сульфирования характерна средняя селективность в отношении ориентации в разные положения молекулы и относительной реакционной способности. Так, толуол сульфируется в 5 раз быстрее бензола, причем получается 75% пара-, 20% орто-и 5% лета-толуол сульфокислот. Электроотрицательные группы значительно дезактивируют ароматическое ядро, вследствие чего не удается ввести вторую сульфогруппу при действии серной кислотой. В отношении состава изомеров сульфирование имеет некоторые особенности, зависящие от обратимости реакций. При мягких условиях состав изомеров определяется относительной реакционной способностью различных положений ядра, при нагревании или при большой продолжительности реакции он зависит от термодинамической стабильности изомеров. Так, нафталин в первом случае дает главным образом 1-сульфокислоту, а во втором 2-изомер. [c.329]


    Активирующая группа — заместитель, под влиянием которого возрастает реакционная способность ароматического ядра по сравнению с бензолом в реакциях электрофильного или нуклеофильного замещения. См. также Правила ориентации в бензольном ядре. [c.13]

    В заключение можно сказать, что как реакционная способность, так и ориентация при электрофильном замещении в ароматическом ядре определяются скоростями образования соответствующих промежуточно образующихся карбониевых ионов. В свою очередь эти скорости зависят от устойчивости этих ионов, которая зависит от электронодонорного или электроноакцепторного влияния заместителей. [c.354]

    Наблюдаемая ориентация находится в полном соответствии с предполагаемым влиянием различных заместителей на сравнительную кислотность атомов водорода в ароматическом ядре. [c.473]

    Влияние заместителей в ароматическом ядре на ориентацию сульфогруппы при сульфировании серной кислотой [c.318]

    Раскройте сущность понятий ароматичность , ароматический секстет , бензольное ядро , делокализация я-связей , правила ориентации в бензольном ядре , заместители первого и второго рода . [c.354]

    Правила ориентации имеют объяснение, основанное на представлениях об электронном характере направляющей группы. Стоящие у ароматического ядра заместители могут либо увеличивать электронную плотность в ядре, либо уменьшать ее. Влияние на ядро может осуществляться двумя путями — с помощью индукционного или мезомерного эффекта (эффект сопряжения). [c.123]

    Правила ориентации при алкилировании в общем подобны другим реакциям электрофильного замещения в ароматическое ядро, но строение продукта может существенно изменяться в зависимости от катализаторов и условий реакции. Так, электронодонорные заместители и атомы галогена направляют дальнейшее замещение преимущественно в пара- и орго-положения, однако в более жестких условиях и особенно при катализе хлоридом алюминия происходит изомеризация гомологов бензола с внутримолекулярной миграцией алкильных групп й образованием равновесных смесей, в которых преобладают термодинамически более стабильные изомеры. Ранее эта реакция встречалась применительно к изомеризации ксилолов в бо" [c.232]

    Ориентация вступающего в ядро заместителя обусловлена распределением электронной плотности в ароматическом ядре. Если в бензольном кольце, лишенном заместителей, электронная плотность одинакова по всему кольцу, то в молекуле нафталина нарушается выравненность связей. В связи с этим наибольшую реакционную способность обнаруживают углеродные атомы в а-поло-жении (1, 4, 5, 8). У незамещенного антрацена наибольшей реакционной способностью отличаются жезо-положения (9, 10), [c.24]


    Молекула антрахинона представляет собой своеобразную систему, состоящую из двух бензольных ядер, соединенных двумя карбонильными группами. Таким образом, каждое бензольное кольцо имеет два заместителя второго рода в орго-положении. Такое размещение заместителей приводит к несовпадающей ориентации и дезактивации молекулы антрахинона в целом. Поскольку ароматические ядра разобщены карбонильными группами, замещение в одном из ядер не приводит к заметному изменению реакционной способности второго ядра. В связи с этим образование моносульфокислот всегда сопровождается получением дисульфокислот в качестве побочных продуктов. Схема сульфирования антрахинона представлена на стр. 47. [c.46]

    Влияние заместителей на реакционную способность ароматического ядра и ориентацию вступающей нитрогруппы такое же, как при других реакциях электрофильного замещения в ароматическое ядро. Ввиду значительного дезактивирующего влияния нитрогруппы каждая последующая стадия нитрования протекает значительно медленнее предыдущей l(k //г -lXl]. Поэтому реакцию л/ожно осуществить с высоким выходом любого из продуктов последовательно-параллельного замещения (моно-, ди- или три-нитролроизводных), подбирая силу нитрующего агента и температуру. Так, при нитровании толуола вначале в более мягких условиях (40°С) образуются мононитротолуолы (смесь 58—59% орто-, 4—5% мета- и 36—39% паро-изомеров), которые затем в более жестких условиях (70—80°С) дают дннитротолуолы (смесь в ос-новнсм 2,4- и 2,6-изомеров) и в конце концов — тринитротолуол  [c.343]

    Влияние заместителей в ароматическом ядре на его реакционную способность и ориентацию реагента при дальнейшем замещении остается при хлорировании таким же, как в других реак- [c.198]

    Влияние заместителей на реакционную способность ароматического ядра и ориентацию вступающей нитрогруппы такие же, как при других реакциях электрофильного замещения в ароматическое ядро. Ввиду значительного дезактивирующего влияния нитрогруппы каждая последующая стадия нитрования протекает значительно медленнее предыдущей 1). Поэтому реакцию можно [c.467]

    Если случаи катионоидных замещений наблюдались бы чаще и анионоидные реагенты были бы достаточно сильными, то при установлении приведенных выше правильностей замещения не было бы упущено значение полярности реагента для типа замещения. Ныне же мы должны ввести ограничение в правило о постоянстве типа замещений и формулировать его так ориентация заместителя, вновь входящего в ароматическое ядро, зависит более всего от двух факторов от вида уже имеющегося заместителя и от полярности применяемого реагента при одинаковой полярности реагентов тип замещения зависит только от вида наличного заместителя. [c.68]

    Среди катализаторов сульфирования наиболее интересны соли ртути, позволяющие изменить ориентацию при сульфировании олеумом соединений с мета-ориентирующими заместителями. Действие солей ртути основано на промежуточном образовании ртутно-органического соединения, и положение атома ртути в этом соединении определяет место вхождения сульфогруппы в ароматическое ядро. [c.93]

    В соответствии с классическими эмпирическими правилами ориентации Голлемана, заместители первого рода повышают реакционную способность ароматического ядра (исключение составляют галогены) и направляют в орто- и пара-положения. Заместителями первого рода являются алкильные группы, галогены, аминогруппа, гидроксил, азогруппа. Заместители второго рода уменьшают реакционную способность и направляют в мета-положение. К. ним относятся карбоксильная, карбонильная, нитрогруппа, аммониевая группа,, сульфо- и цианогруппа. Эти эмпирические правила в настоящее время находят объяснение на основе электронных эффектов, характерных для направляющего- заместителя (мезомерные и индукционные эффекты). [c.85]

    Мы рассмотрели два рода реакций замещения в ароматическом ядре — реакции, идущие по электрофильному и нуклеофильному механизмам. В этих замещениях направление ориентации определяется, с одной стороны, электронной природой ориентирующего заместителя, с другой стороны, знаком заряда на вступающей в ядро группе. [c.135]

    Мы предлагаем для облегчения и упрощения расчетов вклады заместителей от их взаимной ориентации в ароматических и других циклических системах находить, как отношение параметра удерживания соединения с известным расположением заместителей в ядре к параметру удерживания рассчитанного по формуле (5) для гипотетического соединения, в котором заместители занимают неопределенное положение. В силу этого ориентационный вклад от орто-, мета- и пара-расположения заместителей можно записать в форме уравнения (7). Аналогично можно оценить ориентационные вклады заместителей [c.119]


    Относительная реакционная способность и эффекты ориентации в ароматическом ядре количественно варьируют очень сильно. Толуол в 200 раз реакционносиособнее бензола в реакции бромирования в уксуснокислом растворе, и только в 30 раз более реакционносиособен при нитровании в среде нитрометана. Причины такого различия не отражены в данном упрощенном рассмотрении. Ошибки возникают при отождествлении промежуточного соединения в реакции с переходным состоянием в стадии, определяющей скорость реакции замещения. Хотя переходное состояние, вероятно, очень похоже на это промежуточное соедгшение, но оно с ним не тождественно. В истинных переходных состояниях степень вытягивания я-электронов из ароматической системы, возможно, меняется с природой вступающего заместителя. [c.363]

    Рассмотрим теперь причины селективности силикагеля с гидроксилированной поверхностью при элюировании неполярным элюентом в отношении алкилпроизводных ароматических углеводородов. В этих углеводородах заместители, во-первых, изменяют распределение электронной плотности в ароматическом ядре молекулы, т. е. изменяют ее специфическое взаимодействие с адсорбентом. Во-вторых, они могут по-разному влиять на неспецифическое межмолекулярное взаимодействие адсорбат — адсорбент и адсорбат— элюент, а следовательно, и на ориентацию молекул адсорбата. Алкильные заместители в алкилбензолах, хотя и не сильно, но по-разному влияют на распределение электронной плотности в бензольном кольце и, следовательно, могут по-разному изменять специфическое межмолекулярное взаимодействие бензольного кольца с гидроксильными группами поверхности силикагеля. В н-алкилзамещенных бензола изменение влияния алкильного заместителя на распределение электронной плотности в бензольном кольце при удлинении алкильной цепи быстро становится незначительным. Однако в этом случае про исходит увеличение вклада неспецифических межмолекулярных взаимодействий не только адсорбат — адсорбент, но и адсорбат — элюент, т. е. взаимодействий алкильной цепи молекул замещенных ароматических углеводородов с молекулами неполярного элюента — к-гексана. Поэтому заместители влияют на ориентацию таких молекул на поверхности. [c.287]

    Таким образом, впервые осуществлено исследование химических свойств 1-тиаинданов, их S-окисленных форм и производных s реакциях ионного и радикального характера, протекающих как по ароматическому ядру, так и по гетероциклическому кочьцу, установлено влияние гетероатома и имеющихся заместителей на ориентацию последующего замен,зния. [c.65]

    Повышение или понижение реакционной способности ароматических соединений (влияние на легкость замещения), вызванное уже имеющимся в ядре заместителем, ничего не говорит о его влиянии на направление замещения. Объяснение правил ориентации, которое дается во многих учебниках, исходя из мезомерных предельных состояний монозамещенных ароматических соединений, предполагает, что заместители не только влияют на общую основность ядра в основном состоянии, но и у каждого углеродного атома ядра создают различные плотности электронов. Как показывают измерения ядерного магнитного резонанса, различия в электронных плотностях у отдельных углеродных атомов основного состояния монозамещенного ароматического соединения не так велики, как это следовало бы ожидать на основании мезомерного эффекта заместителей. У хлор- и бромбензола, фенола и анизола, например, не наблюдается вообще никаких различий. Следовательно, плотность электронов в нормальном состоянии ароматического соединения не может одна определять ориентацию заместителя при вторичном электрофильном замещении. Разные направления вторичного замещения объясняются тем, что заместители влияют на величину энергии активации реакций, ведущих к орто-, мета- и лара-замещенным продуктам. Именно это и определяет скорости трех электрофильных конкурирующих реакций [см. уравнение Аррениуса (39), ч. П1]. Различие в энергиях активации для орто-, мета- и пара-заместителей основано на том, что разница энергий между основным и переходным состоянием Ai (см. рис. 91) у этих веществ существенно отличается. Так как энергия переходного состояния неизвестна, то вместо нее будет рассматриваться о-комплекс (В на рис. 91), который лежит вблизи переходного состояния. Неточность, связанная с этим упрощением, невелика. [c.282]

    В одной из теорий ориентации замещения ароматических соединений, основанной на концепции Вернера о частичном расходовании химического сродства (Флюршейм, 1902 г.), принималось, что некоторые атомы, как, например, пятивалентный атом азота КОз-группы, расходующий все свое сродство на соединение с атомами кислорода, развивает слабое сродство по отношению к углероду, тогда как, например, кислородный атом фенольной групны, связанный одной пз своих валентностей с водородом, сильно влияет на атом углерода, с которым он связан второй валентностью. Таким образом, атом углерода ароматического ядра может быть связан со своим заместителем либо связью с большим сродством, либо связью с малым сродством. В свою очередь этот атом наводит в остатке молекулы поочередно слабые и сильные связи (изображенные тонкими и жирными линиями). В первом случае атомы в орто-пара-положспиях обладают большим остаточным сродством (изображенным длинными пунктирными линиями) и, следовательно, опи более реакционноспособны во втором случае повышенной реакционной способностью характеризуются ета-положения. [c.31]

    Эффект сопря кени1г, возникающий в бензольном кольце благодаря неравпоценностн двух связей, из которых состоит двойная связь, и меньшей прочности тг-связи играет существенную роль в ориентации новых заместителей, вводимых в ароматическое ядро. [c.389]

    Специфическая ориентация вхождения заместителей в орто- и пара-положения согласуется с электрофильной атакой ароматического ядра. Наряду с этим во всех изученных случаях выделены продукты разложения перекиси циклогексанон и циклогексанол, которые образуются в результате реакции диспропорционирования цнклогексилоксирадикалов в клетке растворителя (см. таблицу). [c.243]

    Особого рассмотрения заслуживают реакции замещения в ароматическом ядре, уже содержащем два или более заместителя. Влияние заместителей в три- или полизамещенных ядрах проявляется достаточно сложно, поэтому мы ограничимся лишь соответствующими реакциями для двузамещен-ных бензолов. Для некоторых из них, например для л-ди-нитробензола или и-нитротолуола, место вступления новой группы легко определить, поскольку в данном случае имеет место согласованная ориентация уже имеющихся групп. Стрелки на приведенных ниже рисунках обозначают наиболее вероятные места вступления заместителей. [c.70]

    Электроноакцепторные заместители сильно дезактивируют ароматическое ядро. Хлорбензол алкилируется примерно в 10 раз медленнее бензола, а карбонильные, карбоксильные, циан- и нитрогруппы приводят к полной дезактивации ароматического ядра, вследствие чего соответствующие производные вообще не способны к алкилированию. Этим реакция алкилирования значительно отличается от других процессов замещения в ароматическое ядро, например от хлорирования и сульфирования. Правила ориентации при алкилировании в основном такие же, как при других реакциях электрофильного замещения в ароматическом ядре. Алкильные группы,, атомы галогена и оксигруппы направляют замещение в пара- и в меньшей степени — в орто-положение. Однако при использовании А1С1з эти закономерности нарушаются, что связано с изомеризацией продуктов реакции. [c.344]

    Ориентация при электрофильном замещении в бензольном ядре. Как уже отмечалось ( 39), при вступлении второго заместителя в любое однозамещенное соединение бензольного ряда могут образоваться три изомера, различающиеся взаимным положением заместителей — орто-, мета- или пара-изомеры. Еще в прошлом веке в результате исследований известного немецкого химика Голлемана были установлены закономерности, наблюдаемые при таких реакциях. Эти закономерности, как было выяснено впоследствии, относятся к реакциям электрофильного замещения в ароматическом ядре. [c.114]

    Общие представления о механизме электрофильного ззхмеще-ния в ароматических соединениях, я- и а-комплексы. Влияние заместителей в ядре на реакционную способность и ориентацию. [c.224]

    Нуклеофильное замещение галоидов в галоидарилах, содержащих электроноакцепторные заместители. Замена сульфогруппы на гидроксил и цианогруппу. Замещение водорода ароматического ядра на гидроксил, аминогруппу при наличии электроноакцепторных заместителей. Правила ориентации в этих реакциях. Синтез вторичных аминов из п-нитрозодналкиланилинов. [c.225]


Смотреть страницы где упоминается термин Ориентация заместителей в ароматических ядра: [c.343]    [c.201]    [c.245]    [c.42]    [c.45]    [c.395]    [c.145]    [c.8]    [c.90]    [c.227]    [c.100]    [c.516]    [c.533]   
Общая химическая технология Том 2 (1959) -- [ c.473 ]




ПОИСК





Смотрите так же термины и статьи:

Заместители в ароматическом ядре



© 2024 chem21.info Реклама на сайте