Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Степени переходного состояния

    Для этой реакции можно сделать примерную оценку того, в какой степени переходное состояние близко по характеру к промежуточно образующемуся карбоний-иону. Было показано, что в водных кислотах обмен водорода в ароматических соединениях подвержен общему кислотному катализу [807, 809, 295, 268, 1151, 1277]. Каталитическая константа Йна связана с константой диссоциации /Сна соответствующих кислот согласно каталитическому уравнению Бренстеда [уравнение [c.127]


    Полная квантовомеханическая теория и теория переходного состояния, таким образом, дают возможность выразить стерический фактор через некоторые вполне определенные величины. Каждая из частиц АиВ имеет три степени свободы поступательного движения, вращательные и колебательные степени свободы, которые зависят от сложности частиц. При образовании комплекса АВ общее число степеней свободы остается неизменным, но они распределяются по-иному, так как комплекс имеет только три степени свободы поступательного движения и максимум три вращательные степени свободы. Таким образом, при образовании комплекса по крайней мере три степени свободы поступательного движения и, возможно, три степени свободы вращательного движения преобразуются в степени свободы колебательного движения. Это дает значительную потерю степеней свободы комплекса (а следовательно, и энтропии), поскольку вращательное движение более ограничено, чем свободное поступательное движение, а колебательное — более ограничено, чем первое и второе. [c.250]

    В теории переходного состояния к, — частота колебания или даже средняя частота колебания (см. разд. ХП.5), и с хорошей степенью приближения можно ожидать, что взаимодействие с растворителем не сильно влияет на ее величину, так что к,. 8) kr g). Различие в скоростях реакции, таким образом, сводится к различию термодинамических констант равновесия для двух фаз [c.432]

    Преимущество секстетно-дублетного механизма реакции гидрогенолиза пятичленного кольца, основанного на принципе геометрического соответствия молекул в переходном состоянии и поверхности катализатора заключается в определенной степени детализации элементарного акта гидрогенолиза (образование и распад переходного комплекса). Многие закономерности изучаемой реакции, как показано ниже, могут быть успешно объяснены (а некоторые из них были прогнозированы априори) с позиций этого механизма. [c.128]

    Бирадикальный механизм находится в соответствии с общей нечувствительностью реакции к растворителям и катализаторам. Он также правильно предсказывает течение реакции в случаях возможного образования двух изомеров, основываясь на двух факторах, которые более детально обсуждаются в разделе, посвященном сополимеризации. Одним из них является ожидаемая тенденция, что такая реакция идет через образование наиболее резонансно стабильного радикала [например, один непарный электрон, конъюгированный с карбонильной группой в реакции 15)]. Другим фактором является способность полярных резонансных структур повышать стабильность переходного состояния радикалов, это ведет к образованию того же изомера, что и предсказанный на основе полярного механизма. Отмечалась также близкая аналогия между радикальным механизмом и термическим инициированием процесса, наблюдающихся в некоторых случаях реакции полимеризации [36]. В качестве аргумента против такого механизма было выставлено то, что инициаторы радикалов, подобные перекиси бензоила, не ускоряют реакцию Дильса-Альдера. Однако это фактически не относится к обсуждаемому вопросу, так как реакция включает стадию (15), являющуюся процессом термического образования бирадикала, который в большей степени, чем любой другой процесс, мог бы быть инициирован присоединением посторонних радикалов по двойной связи. [c.181]


    Изучение кинетики показывает, что реакция Дильса-Альдера обычно характеризуется очень низкими значениями / -факторов в выражении скорости (10 —10 ). Это было принято как доказательство в пользу механизма с образованием непарных электронов (радикальный), на самом же деле более вероятным является утверждение, что это говорит за потерю степеней свободы в весьма ограниченном переходном состоянии (ср. [30]). [c.181]

    Здесь ароматические соединения, по-видимому, должны в большей степени участвовать в образовании переходного состояния. Можно прийти к заключению, что в этом случае переходное состояние будет иметь песколько больше свойств сг- и меньше свойств тс-комплекса, чем в соответствующей реакции с 3,4-бензилхлоридом  [c.440]

    Сравнительная трудность проведения этого процесса означает, что требуется не только какой-либо внешний агент (дополнительная молекула галоида или растворитель) для помощи в достижении переходного состояния, но и значительное участие ароматического кольца п его заместителей. Следовательно, реакция бромирования и в меньшей степени реакция хлорирования являются хорошо выраженными избирательными реакциями, они дают почти исключительно о-п-ориентацию в толуоле со слабо-идущей атакой в ж-положение. Поэтому галоидирование является весьма чувствительной реакцией для изучения влияния заместителей на активность ароматического кольца. Подобные данные [272] суммированы в табл. 13. [c.447]

    Как уже говорилось, в адиабатическом приближении каждому электронному состоянию молекулы соответствует единственная поверхность потенциаль ной энергии ППВ) в координатах ядер. По существу, конформационный анализ можно представить как анализ топологических особенностей многомерной ППЭ. Устойчивым конформациям отвечают локальные минимумы адиабатического потенциала глубиной не менее двух квантов колебаний (для каждой степени свободы) в минимуме. Оптимальные пути перехода между ними лежат через седловые точки первого порядка, отвечающие переходным состояниям. Обычное представление об определенном механизме реакции [c.137]

    Для исключения б в (212.16) раскроем вид суммы состояния активированного комплекса. Переходное состояние, содержащее п атомных ядер, имеет 3 степеней свободы, из них 3 степени свободы приходится на поступательное движение системы в целом, 3 (или 2 для линейного строения переходного состояния) — на вращательное движение и Зл—6 (или 3/г—5) — на внутреннее движение. Одна из степеней свободы внутреннего движения аналогична степени свобо- [c.574]

    Химическое превращение возбужденных молекул А в продукты реакции может протекать по нескольким реакциям. Во-первых, в возбужденной молекуле АТ в результате перераспределения внутренней энергии по степеням свободы колебательного движения часть энергии может сосредоточиться на разрывающейся связи. С какой-то степенью вероятности может образоваться переходное состояние и произойти химический акт [c.589]

    Р = 1 не отвечают бимолекулярному процессу, так как для последнего характерны значения = 42—84 кДж/моль и 5= = = 20—40 э. е. Тот факт, что энергии активации, рассчитанные для Га и гь, практически близки, еще не указывает на идентичное строение переходного состояния двух реакций. Кроме того, поскольку скорость для дифенилметана меняется незначительно при изменении начальных концентраций компонентов, а для бензола скорость существенно зависит от концентрации, следовательно общей реакцией является изменение степени по бензолу. На основании вычисленных параметров активации можно считать, что первая стадия реакции превращения — это образование поляризованного промежуточного комплекса дифенилметана и хлорида алюминия, вторая — определяющая скорость реакции — ионизация его с образованием бензил-катиона  [c.214]

    Предполагается, что переходное состояние для прямой и обратной реакции одинаково радикалы переходное состояние продукт. Абсолютные энтропии этана, три-фторэтана и гексафторэтана при нормальных условиях (298° К и атмосферном давлении) равны соответственно 54,85 [322], 66,87 и 81,85 э.е. [324, 325]. Первое слагаемое в приведенном соотношении равно —1,48 э.е. При оценке второго слагаемого предполагается, что вращение групп в-молекулах этанов является свободным и изменения колебаний для молекул этана, трифторэтана и гексафторэтана связано с вытягиванием С—С связи. Изменения колебательной энтропии для трех этанов должны оказаться в такой степени аналогичными, что ими можно пренебречь при расчетах второй скобки, а величины в основном связаны с переходом, от ограниченного к свободному вращению. Разность энтропий свободного и ограниченного вращений была вычислена на основании данных для высоты барьера и моментов инерции молекул этана, трифторэтана и гексафторэтана и равна 1,22 1,50 и 1,92 э.е. соответственно. Величина второй скобки —0,07 э.е. Для суммарной величины изменения энтропии получается значение — 1,55 э- е., что хорошо согласуется с 242.  [c.242]


    Термодинамическое рассмотрение позволяет также оценить энтропии активации, но такая оценка, естественно, будет носить качественный характер. В экзотермической реакции рекомбинации энергия активированного комплекса незначительно отличается от энергии исходных частиц ( акт.рек 0)- соответствии с правилом Хэммонда структура переходного состояния должна быть подобна структуре исходных радикалов, что возможно, если велико. Рассмотренный выше механизм указывает на значительное расстояние между радикалами в активированном комплексе. Следовательно, радикальные группы в активированном комплексе слабо связаны между собой, и поэтому среди ЗМ—7-внутренних степеней свободы движений активированного комплекса могут быть внутренние вращения этих групп. Иначе говоря, при переходе от молекулы алкана при ее диссоциации на радикалы к активированному комплексу следует ожидать значительного возрастания энтропии активации. Большая положительная энтропия активации реакции диссоциации (А5д+ ,>0) указывает на то, что в этой реакции Л-фактор также будет иметь большое значение. [c.90]

    В заключение отметим, что изменение степени сольватации и уменьшение энтропии при образовании переходного состояния — вот два важнейших фактора, ответственных за катализ и возрастание скорости в мицеллярных системах. В этом отношении последние напоминают ферменты. Другое формальное сходство мел<ду ферментативным и мицеллярным катализом заключается в сильном [c.293]

    С повышением качества изоляционных покрытий снижаются затраты на электрохимическую защиту. Целесообразность расходов, связанных с введением дополнительного контроля, обоснована снижением затрат на защиту, с одной стороны, и предотвращением опасности коррозионных разрушений, с другой стороны. Необходимо определить разумную степень улучшения состояния покрытия и соответствующую этому состоянию критическую величину переходного сопротивления. [c.276]

    Изучение степени удаления нефтяных систем от областей переходных состояний позволяет установить их устойчивость к возмущающим факторам и косвенно оценить стабильность свойств в технологических процессах, а также определить возможные воздействия на систему для ее удаления или, наоборот, приближения к области необходимых превращений. Результатом подобных превращений и системе, как правило, [c.187]

    Следует заметить, что при гидролизе бутен-2-илхлорида в условиях, благоприятствующих механизму 5ы2, аллильная перегруппировка все равно наблюдается, хотя причины, порождающие ее, несколько иные. В этом случае вследствие — /-эффекта атома галогена дефицит электронной плотности возникает не только на атоме С-1, непосредственно связанном с галогеном, но и на атоме С-3, входящем в винильную группу, вследствие легкой поляризуемости я-связи. Поэтому атака нуклеофильного реагента с приблизительно одинаковой степенью вероятности направляется как на атом С-1, так и на атом С-3. В первом случае по-видимому, реализуется линейное переходное состояние (34), которое не отличается от переходного состояния для реакций, протекающих по механизму 5к2, и образуется бу-тен-2-ол-1 (37). Во втором случае, по-видимому, может реализоваться как щестичленное циклическое переходное состояние (35) с синхронным перераспределением связей, так и линейное переходное состояние (36), что приводит к образованию изомерного продукта — бутен-1-ола-З (38). Таким образом, и в данном слу- [c.134]

    В соответствии с этими данными, большая активность рубидиевого производного метиленового компонента по сравнению с литиевым определяется большей степенью ионности связи О—М, что увеличивает нуклеофильную реакционную способность аниона. Возможно, на легкость образования шестичленного переходного состояния влияет размер иона металла, который увеличивается с увеличением атомной массы, так как он координируется одновременно по двум атомам кислорода. [c.231]

    Реакция нуклеофильного замещения атома галогена всегда осложняется тем, что с ней в большей или меньшей степени конкурирует реакция отщепления галогеноводорода. Как было рассмотрено выше, реактивы Гриньяра являются сильными основаниями, способными отщеплять протон от молекулы субстрата—алкилгалогенида. Поэтому наряду с реакцией нуклеофильного замещения SN2, проходящей через переходное состояние (9), протекает реакция элиминирования 2, для которой переходное состояние с более удлиненной цепью рассредоточения электронной плотности соответствует структуре (10). Не исключено также, что при реакции элиминирования реализуется шестичленное переходное состояние (11) [c.268]

    Образование алкена (12) не требует пояснений. Образование же изомера (13) можно объяснить, исходя из следующих соображений п-электронная плотность бутен-2-илхлорида смещена под влиянием сильного —/-эффекта галогена, и вследствие этого дефицит электронной плотности почти в равной степени рассредоточивается на атомах С-1 и С-3. Если при взаимодействии реализуется переходное состояние (14), то образуется алкен (13)  [c.270]

    В этом соотношении — сумма, которая может быть интерпретирована как сумма по состояниям для частиц, имеющих по крайней мере энергию Е на степенях свободы, существенных для реакции. — константа равновесия для частиц А, расположенных на седловинпой точке, или, другими словами, находящихся в переходном состоянии. Если принять Е за нуль энергии для комплекса, то можно подставить Е = Е — Е, и тогда [c.220]

    В принципе а может быть положительной или отрицательной величиной. Однако экспериментально было установлено, что значение а составляет приблизительно /г. Этот факт можно объяснить симметричностью переноса заряда по отношению к потенциалу в переходном состоянии [67—70]. Изменение потенциала, следовательно, в равной степени вызывает как ускорение иосстаповления, так и замедление окисления. [c.555]

    Влияние степени дисперсности Pt в катализаторах на протекание реакций дегидроциклизации и изомеризации исследовалось в ряде работ [70—78]. Обнаружено [75], что при увеличении среднего размера частицы Pt от 1,0 до 45,0 нм увеличивается выход продуктов дегидроциклизации. Однако в работе [70] показано, что количественное распределение продуктов реакции и скоростей дегидроциклизации и изомеризации не зависит от размеров частиц (в интервале 1,5—5,0 нм). Интересные закономерности получены на образцах Pt/AbOa, содержащих 0,2 и 10% Pt [71, 73]. На высокодисперсном катализаторе [(0,2%) Pt)/Al20a] преобладают одиночные, главным образом одноатомные, активные центры и, следовательно, изомеризация и другие превращения углеводородов проходят через промежуточную стадию образования циклического переходного состояния. На катализаторе с большими кристаллитами [(10% Pt)/Al203] ак- [c.200]

    Механизм реакции не вполне ясен. Реакция протекает на поверхности анода и, по-видимому, включает стадию образования переходного состояния, в котором органическая молекула присоединена к поверхности анода в окисленном состоянии. Поскольку применяется потенциал ниже того, который необходим для образования фтора, возможно, что в процессе реакции образуется в качестве промежуточного соединения активный фторид металла, который и является фторирующим агентом. Дальнейшим доказательством в пользу этого предположения является наблюдение, что идущий в некоторой степени крекинг углеродной цепи аналогичен крекингу при применении СоГ или АдГа при значительно более высоких температурах. [c.73]

    В [136] на основе модифицированной волновой теории развит резонансный подход, состоящий в том, что рассматривается физическая модель процесса, в котором два атома Н, соединяясь, образуют нестойкое колебательнорезонансное переходное состояние. Этот нестойкий активированный комплекс в ходе последовательных столкновений стабилизируется с переходом в связанное основное состояние. Вклад вращательных и поступательных степеней свободы не учитывается. Недостатки подхода заключаются в том, что, во-первых, результаты практических расчетов слабо зависят от параметров потенциальной функции, во-вторых, сечение соударения рассчитывается без учета возможностей перехода в разные состояния (т, е, пренебрегается многоканальностью выхода), в-третьих, неучет влияния континуума, т, е, столкнови-тельной диссоциации резонансных состояний и прямой рекомбинации из нерезонансных состояний, не позволяет успешно распространить подход на область высоких температур, Да и в области низких температур теория предсказывает в температурной зависимости коэффициента скорости наличие локального максимума в районе (65— 70) К — прогноз, не получивший экспериментального подтверждения [105], [c.262]

    Следует отметить, что в первоначальной схеме Линдемана понятие активированной молокулы АВ не вводилось. Это понятие было введено в теорию в связи с необходимостью учесть тот факт, что для осуществления мономолекулярного превращения нужно, чтобы энергия активной молекулы сосредоточилась 1са определенных степенях свободы. Активированная молекула отвечает состоянию активированного переходного комплекса в соответствии с определением последнего в рамках метода переходного состояния, представляя некоторое мгновенное состояние активной молекулы, переход через которое означает завершение реакции. [c.107]

    Согласно этой теории в элементарной реакции происходит посте-пс1шая перестройка химических связей, при которой начальная конфигурация атомов в исходных молекулах переходат в конеч1гую у продуктов реакции при непрерывном изменении межъядерных расстояний. Так, например, в реакции А -I- ВС -> АВ + С при сближении молекул ослабляется связь В-С, возникает связь А-В. В переходном состоянии атом В в одинаковой степени принадлежит старой молекуле ВС и новой молекуле АВ  [c.160]

    Эти данные подтверждают сделанный ранее вывод, что реакция протекает неселективно, и свидетельствуют в пользу того,, что переходное состояние реакции в большей степени должно соответствовать комплексу я, нежели а-типа, для которога свойственна значительно более высокая селективность по субстрату. Значения 5 и Нз указывают и на позиционную неселек-тивность для всех изученных алкилбензолов независимо от температуры. [c.185]

    Вообще говоря, возможны четыре типа факторов, определяющих каталитическую активность фермента. Во-первых, необходим химический аппарат в активном центре, способный деформировать или поляризовать химические связи субстрата, что делает последний более реакционноспособным, во-вторых,— связывающий центр, иммобилизующий субстрат в правильном положении к другим реакционным группам, участвующим в химическом превращении, в-третьих,— правильная и точная ориентация субстрата, благодаря которой каждая стадия реакции проходит с минимальным колебательным или вращательным движением вокруг связей субстрата, и, наконец, в-четвертых, способ фиксирования субстрата должен способствовать понижению энергии активации ферментсубстратного комплекса в переходном состоянии. Соответствующее распределение зарядов в активном центре и геометрия активного центра входят в число факторов, определяющих снижение суммарной энтропии переходного состояния. Все эти факторы в той или иной степени влияют на структуру активного центра фермента, и их нельзя рассматривать изолированно, вне связи друг с другом. В совокупности они увеличивают скорость ферментативной реакции и позволяют ферменту выступать в роли мощного катализатора [77]. [c.209]

    Вопрос о том, возникает ли эффект ориентации вследствие орбитального управления или же благодаря устранению невыгодных конформационных состояний, имеет значение лишь потому, что, согласно первой концепции, орбитальное управление влияет на переходное состояние, тогда как второй эффект возникает вследствие ограничения возможных основных состояний. Из полученных данных совершенно ясно, что сближение внутримолекулярного нуклеофила с реакционным центром может привести к значительному увеличению скорости реакции. Согласно точке зрения Брюса, преимущество внутримолекулярных реакций имеет энтропийную природу вследствие ограничения числа степеней свободы в основном состоянии. Дискуссия Брюса и Кошланда составляет часть более обширного вопроса о том, почему внутримолекулярные реакции столь выгодны. Истина, вероятно, заклю- [c.214]

    Выше было показано, что полный жизненный цикл подсистемы характеризуется развитой целостной структурой связей. В деятельности бурильщика преобладающими являются связи с элементами индикации, органами и пультом управления, рабочим местом и помощниками (речевая связь). У первого и третьего помощников имеются связи прямого замыкания с механизированным инструментом, доступными узлами оборудования при установке и обслуживании, со средой, ее предметами при соприкосновении с коллегами по работе (речевая связь) второй помощник реализует аналогичные связи в местах для установки и обслуживания оборудования при соприкосновении со средой и ее предметами. Совокупность действий (элементов) человеческого и машинного звеньев, как видно, характеризуется множеством различных переходных состояний (простых ЧМС) и значительным числом внутренних взаимозависимых связей разной природы (человека с машиной, человека с человеком, машины со средой и др.). Относительно высокий динамизм перехода ЧМС из одного состояния в другое, разное время и степень адаптации человека-оператора к новым условиям являются характерными причинами высокой травмоопасности современных буровых установок. Известно, что наибольшее число несчастных случаев происходит в момент перехода системы из одного состояния в другое. [c.242]

    Причина образования неодинаковых количеств, иастереомеров может йыть объяснена различной степенью легкости образовании шестичленного переходного состояния. Как показано ниже, енол может атаковать углерод карбонильной группы бензальдегида с двух сторон. Переходное состояние (45) более выгодно, чем (46), поскольку при его образовании объемистые фенильные радикалы, находясь в транс-положении, не создают пространственных затруднений, и поэтому трео-изомеры образуются в значительно больших количествах. [c.289]


Смотреть страницы где упоминается термин Степени переходного состояния: [c.788]    [c.76]    [c.215]    [c.37]    [c.143]    [c.341]    [c.102]    [c.80]    [c.69]    [c.561]    [c.575]    [c.575]    [c.576]    [c.580]    [c.582]    [c.593]    [c.171]    [c.171]   
Кинетика и катализ (1963) -- [ c.51 , c.56 , c.57 , c.62 , c.67 , c.84 ]




ПОИСК





Смотрите так же термины и статьи:

Активированный комплекс переходное состояние степени свободы

Меншуткина реакция степень сольватации переходного состояния

Переходное состояние степень переноса протона

Переходное состояние степень полярности

Состояние переходное



© 2025 chem21.info Реклама на сайте