Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Очистка ферментов

    Так как в процессе выделения фермента необходимо знать лишь относительную активность на отдельных стадиях очистки, то выражать ее можно в условных единицах (например, в единицах оптической плотности). Их выбор определяется методом измерения активности. После получения гомогенного или высокоочищенного препарата фермента его активность и удельная активность должны быть определены с использованием наиболее точных методов их измерения и выражены в международных единицах. Результаты очистки фермента суммируют в таблице  [c.198]


    При выделении фермента используют метод фракционирования белков путем изменения pH. Очистка фермента на этой стадии достигается за счет денатурации белков, которые отделяют центрифугированием. Изменение pH белкового раствора следует осуществлять осторожно, по возможности не использовать сильные кислоты и щелочи. Рекомендуется добавлять уксусную кислоту, трис-буфер, карбонат натрия и др. Добавление соответствующего буфера или кислоты проводят на холоде. Их вносят по каплям, по стенке сосуда, при постоянном перемешивании. После нейтрализации раствора проводят короткую инкубацию при 25—30° С, чтобы перед центрифугированием произошла полная агрегация денатурированных белков. [c.199]

    В биологии ионный обмен используют для разделения органических кислот, аминокислот и углеводов или выделения витаминов и антибиотиков, для очистки ферментов и других веществ. [c.142]

    Большинство ферментов являются лабильными белками. При переводе их в экстракт они лишаются своего естественного (в клетке) окружения и легко подвергаются денатурации и инактивации под влиянием различных факторов. В связи с этим при выделении и очистке ферментов необходимо соблюдать целый ряд предосторожностей. Как правило, все операции следует проводить при 2—4° С (лучше — в холодной комнате), а фракционирование органическими растворителями — при температуре ниже О С. [c.196]

    Нередко в ходе очистки фермента используют последовательно [c.418]

    Для очистки ферментов применяют осаждение их из водных растворов органическими растворителями такими, как метиловый, этиловый, изопропиловый спирты, ацетон высаливание сульфатами аммония, натрия, цинка, хлоридом натрия фракционирование. Высушивание предварительно очищенных и сконцентрированных препаратов осуществляют в распылительных сушилках или методом сублимации. [c.89]

    Число стадий очистки фермента Время производственного цикла получения водного концентрата (после отделения биомассы) [c.290]

    Иониты применяют в биологии для разделения органических кислот, аминокислот и углеводов, для выделения витаминов, алкалоидов и антибиотиков, для очистки ферментов и других веществ. Ионный обмен приобретает все большее значение в агропочвоведении и в агрохимическом анализе. А на промышленных предприятиях и электрических станциях иониты используют для умягчения или деминерализации воды. [c.302]

    Преимуществом колоночной хроматографии является возможность количественного фракционирования больших количеств веществ без превращения их в какие-либо производные. Однако хорошее разделение часто возможно лишь при малых скоростях элюирования, поэтому были разработаны новые виды колоночной хроматографии. Методы аффинной и адсорбционной хроматографии основаны на избирательной адсорбции молекул на нерастворимом адсорбенте, который содержит группы (молекулы), специфически взаимодействующие с молекулами подлежащих очистке соединений, например ингибиторы (для очистки ферментов) или антитела (для очистки антигенов) в настоящее время эти методы нашли широкое применение и для разделения углеводов. Невзаимодействующие с адсорбентом примеси удаляются, а связанный с адсорбентом сахар затем десорбируют способом, не приводящим к его разрушению. Десорбцию можно осуществить, изменяя pH, ионную силу среды или применяя соответствующий ингибитор взаимодействия, удерживающего вещество на адсорбенте. Для разделения ряда полисахаридов были использованы иммобилизованные формы (см. разд. 26.3.7.6) конканавалина А [40], являющегося фитогемагглютинином (лектином), который специфически взаимодействует с разветвленными полисахаридами определенного строения в настоящее время применяют и другие иммобилизованные фитогемагглютинины. Колоночная хроматография на носителях, покрытых полиароматическими соединениями [41], также находит применение для разделения полисахаридов. Благодаря достижениям в производстве носителей для жидкостной хроматографии под высоким давлением можно осуществить хроматографическое разделение быстро и избирательно описаны методы фракционирования небольших олигосахаридов, продолжающегося менее 1 ч [42]. [c.224]


    Процитируем еще один недавний пример хроматографической очистки фермента из мембраны. Здесь используется только один детергент, но его функции в системе очистки варьируют в связи с изменениями его концентрации в растворе. [c.185]

    Эти красители (торговое название — проционовые красители )-образуют особую группу лигандов, используемых для очистки ферментов, интерферона и других белков. Приведем структурные формулы двух наиболее распространенных красителей этого типа  [c.365]

    ОЧИСТКА ФЕРМЕНТОВ КЛЕТОЧНОГО МЕТАБОЛИЗМА [c.412]

    В 1968 г. был предложен высокоэффективный метод очистки белков -аффинная хроматография, или биоспецифическая хроматография по сродству, которая особенно часто используется при выделении и очистке ферментов. [c.24]

    Для иллюстрации изложенных в предыдущем разделе обш их соображений и возможностей использования различных аффинных сорбентов рассмотрим определенное число примеров, отобранных из периодической научной литературы последних трех лет. Большая их часть относится к очистке ферментов клеточного метаболизма (и отдельно — белков, регулирующ,их активность нуклеиновых кислот). Далее будут приведены примеры аффинного фракционирования и очистки самих нуклеиновых кислот, в том числе на иммуносорбентах. Основное внимание уделим более простому и универсальному методу — неспецифической элюции, однако био-снецифическая аффинная элюция белков тоже будет представлена несколькими типичными примерами. Рассмотрение начнем с использования сорбентов с индивидуальной специфичностью, ограничившись здесь тремя примерами, поскольку нет смысла пытаться сколько-нибудь полно иллюстрировать бесчисленное разнообразие возможных сорбентов этого типа. Аффинная хроматография белков клеточного метаболизма на сорбентах с групповой специфичностью будет иллюстрирована подробнее, а затем последуют два примера использования ковалентной хроматографии. [c.412]

    Практическая работа в лаборатории сопровождается проведением семинаров, где рассматриваются теоретические вопросы, связанные со способами очистки ферментов, оптимизацией методов определения активности, а также вопросы ферментативной кинетики растворимых и иммобилизованных ферментов. Обсуждаются и основные экспериментальные результаты, полученные студентами. [c.196]

    Перед тем как приступить к выделению и очистке того или иного фермента, необходимо выбрать удовлетворительный тест для его идентификации и количественного определения. Прямые методы существуют лишь для очень ограниченного круга ферментов, поэтому используют способность ферментов катализировать специфическую реакцию. Чтобы иметь возможность контролировать степень очистки фермента, его активность относят на 1 мг общего белка (так называемая удельная активность ). [c.198]

    Вещества, имеющие большую поверхность частиц (гель фосфата кальция и гель гидроокиси алюминия), характеризуются высокой адсорбционной способностью. Разные белки адсорбируются и элюируются по-разному, что и дает возможность использовать адсорбенты для очистки ферментов. Различают негативную адсорбцию, когда при добавлении адсорбента фермент остается в растворе, и положительную адсорбцию, когда фермент адсорбируется, а часть балластных белков остается в растворе. Наибольший эффект достигается при их совместном использовании, т. е. сначала адсорбируют возможное ко- [c.203]

    Дальнейшая очистка фермента может проводиться путем еще 2—3 перекристаллизаций. [c.222]

    Фракционирование сульфатом аммония. К прозрачному супернатанту медленно добавляют сульфат аммония (40 г на 100 мл). После добавления последней порции раствор перемешивают в течение часа и вновь центрифугируют (30 мин при 20 ООО ). Осадок отбрасывают, а к супернатанту снова добавляют сульфат аммония (11,6 г на 100 мл). Спустя час после добавления последней порции центрифугируют (30 мин при 20 ООО ). Полученный осадок используют для дальнейшей очистки фермента. [c.263]

    Выделение и очистка фермента из скелетных мышц кролика [c.274]

    Многие ферменты дороги и быстро теряют свою активность. Применение бактерий, микроорганизмов и биологических тканей различного происхождения позволяет устранить недостатки, присущие ферментным биосенсорам. При этом отпадает необходимость в получении и очистке ферментов. Однако такие биосенсоры имеют низкую селективность вследствие того, что микроорганизмы, ткани растений и животных являются источниками самых разнообразных ферментов. Кроме того, время отклика биосенсоров на основе тканей и микроорганизмов может быть достаточно большим. Тем не менее, в последнее время наблюдается повышенный интерес к электродам, содержащим не сами ферменты, а их первозданные источники - биологические материалы. Установлено, что тканевые срезы выполняют функцию биокатализаторов. При этом пластины биоматериала могут храниться без потери активности в течение года. [c.504]

    Весьма важное место принадлежит аффинной хроматографии [116, 117]. Она основана на использовании особых адсорбентов, специфически взаимодействующих с макромолекулами и избирательно удерживающих данный вид макромолекул (отсюда и название метода). Примером, о котором уже говорилось в разд. Г.10, служит адсорбция комплементарных фрагментов молекулы нуклеиновой кислоты на иммобилизованной ДНК. Аффинная хроматография используется также для очистки ферментов, антител и других белков, способных прочно связываться со специфическими малыми молекулами. [c.161]


    Примером применения аффинной хроматографии для очистки ферментов может служить выделение стафилококковой нуклеазы (фермен- [c.161]

    Метод афинной хроматографии основан на единственной в своем роде биологической специфичности взаимодействия между биологическими макромолекулами, такими как ферменты, и лигандами — субстратами, специфическими ингибиторами и коферментами. Этот мощный метод приобретает все возрастающее значение для очистки ферментов. Обычным экспериментальным приемом в связи с этим является образование ковалентной связи между специфическим лигандом и нерастворимой матрицей-носителем. Результирующий материал пакуют в колонку, на которой, в принципе, будет сорбироваться только фермент (ферменты), обладающий значительным сродством к лиганду, в то время как все другие белки будут беспрепятственно проходить через нее. Элюция специфически адсорбированного белка достигается изменением состава растворителя, благоприятствующим диссоциации комплекса фермент-лиганд [127]. [c.642]

    Выделение и очистка ферментов [c.202]

    Ферментативные системы, связанные с функцией кофермента В12, достаточно сложны. В связи с этим имеется несколько сообщений об очистке В12-зависимых ферментов или В12-связывающих белков с помощью аффинных сорбентов, обладающих сродством к витамину В12. Фактически для очистки ферментов или белков аффинная хроматография широко используется как один нз наиболее привлекательных методов [270]. С этой целью был разработан метод синтеза нерастворимого носителя кобаламинсефарозы (рис. 6.14). Этот носитель использован для очистки М-5-метилтетрагидрофолатгомоцистеин1юбаламинмстилтрапс-феразы из Е. oli. [c.394]

    Очистка ферментов — дорогостоящий процесс. Поэтому для ферментативного катализа в проточных аппаратах возникла пеоб- [c.341]

    Биоспецифическая хроматография применяется для очистки ферментов, так как она позволяв извлекать ферменты из сложных смесей в одну стадию с высокой степенью очистки и с большим выходом. В последнее время в качестве адсорбентов-носителей в биоспецифической хроматографии находят применение как макропористые неорганические адсорбенты (силикагели, силохромы, пористые стекла), так и макропористые органические сшитые сополимеры, например макропористые сополимеры глицидилме-такрилата с этилендиметакрилатом типа сферой (см. лекцию 6) со сферическими зернами разных размеров. Эти адсорбенты-носители обладают разной удельной поверхностью и крупными порами разных размеров. На рис. 18.10 представлен пример биоспецифической хроматографии химотрипсина на сфероне с иммобилизованным химической прививкой белком — ингибитором трипсина (являющегося также ингибитором химотрипсина). Из колонны, заполненной обычным макропористым сфероном без иммобилизованного ингибитора, химотрипсин выходит вместе с остальными белками, а из колонны, заполненной сфероном с привитым ингибитором, сопутствующие белки выходят приблизительно за то же время, а химотрипсин прочно удерживается. Это позволяет отделить [c.342]

    На кафедре проводятся исследования по синтезу и изучению свойств синтетических неионных водорастворимых полимеров. Такие полимеры и гидрогели на их основе находят широкое применение в качестве флоку-лянтов для очистки сточных вод, для концентрирования и извлечения металлов, в качестве структурообразователей почв, в качестве плазмозаме-нителей, для стабилизации и очистки ферментов. Методом радикальной полимеризации синтезированы термоосаждаемые водорастворимые полимеры на основе винилкапролактама. Показано, что меняя природу со-мономера можно получать сополимеры с различной температурой фазового разделения., с различным конформационном состоянием макромолекул. При этом большое значение приобретает химическая природа растворителя. Способность к комплексообазованию таких полимеров позволило разработать способ получения гранулярного носителя и иммобилизации в него широкого спектра соединений, от пигментов до живых клеточных [c.115]

    Выделение и очистка ферментов, даже из доступного источника — работа весьма трудоемкая и требующая высокой квалификации, а изутсние их специфичности (знание которой, собственно, и обеспечивает столь высокую информативность ферментативного гидролиза) составляет сложную самостоятельную исследовательскую работу. Что же касается высоко очищенных ферментных препаратов, выпускаемых промышленностью, то многие из них исключительно дороги. [c.107]

    Еще в 1966 г. Бернарди и соавторы [Bernardi et al., 1966] продемонстрировали возможность использования хроматографии на оксиапатите для очистки ферментов иа примере разделения различных нуклеаз селезенки (рис. 102). Элюцию вели линейным градиентом концентрации фосфатного буфера (0,05—0,5 М), pH 6,8. [c.233]

    Очистка препарата тяжелого меромиозина с помощью ионообменной хроматографии. Для очистки фермента можно также воспользоваться методом колоночной хроматографии. Для этого супернатант после осаждения миозина и легкого меромиозина (15—30 мл) наносят на колонку (2x11 см) с ДЭАЭ-целлюлозой (ДЭАЭ-52, ватман), уравновешенную 50 мМ трис-НС1 буфером pH 7,9. После нанесения белка колонку промывают двумя объемами того же буфера. Белок элюируют линейным градиентом КС1 от О до 0,5 М (2x250 мл). [c.395]

    Вьщеление и очистка фермента как из культуры микроорганизма (выращенного любьпл способом), так и из других природных источников весьма трудоемкая и дорогостоящая процедура, поэтому, если фермент можно использовать в виде неочищенно- [c.78]

    Раздел Энзимология рассчитан на студентов, уже иознакомиз-" шихся с некоторыми современными методами химии белка определением концентрации белка, хроматографией, электрофорезом и др. Основная цель его состоит в том, чтобы дать возможность студентам приобрести навыки экспериментальной работы, необходимые для начинающего энзимолога. В ходе практикума студенты осваивают методы выделения и очистки какого-либо фермента, а также изучают свойства полученного препарата. В связи с этим приводятся общие указания по работе с ферментами, способам их очистки, правилам определения каталитической активности и кинетических свойств. Во второй части раздела описываются методы выделения ферментов из пекарских дрожжей и животных тканей (скелетных мышц, печени). Поскольку современные методы очистки ферментов включают большое разнообразие приемов, в ряде случаев для получения одного и того же фермента дается описание 2—3 методик, которые могут быть использованы в соответствии с уровнем оснащенности лаборатории. Кроме того, для ферментов из разных источников приводятся различные методы выделения. [c.196]

    Фракционирование сульфатом аммония. К полученному экстракту, (рН 7,0) добавляют при постоянном перемешивании небольшими порциями мелкоизмельченный сульфат аммония (50,5 г на 100 мл раствора). Доводят pH до 7,0—7,5 добавлением концентрированного аммиака. Через 30 мин выпавший осадок удаляют центрифугированием (60 мин при 30 ОООg). Доводят pH раствора до 7,8—8,0 и оставляют на ночь. Кристаллизация начинается сразу и продолжается в течение нескольких дней. Кристаллы отделяют центрифугированием (60 мин при 30 000g ) и суспендируют в растворе сульфата аммония насыщения 0,5, содержащем 5 мМ ЭДТА и 10 мМ дитиотреитол. Дальнейшая очистка фермента может проводиться следующими методами. [c.255]

    Тепловая обработка. Около 1/4 всего количества осадка растворяют в 0,05 М триэтаноламиновом буфере, pH 7,6, содержащем 2,0 М сульфат аммония и 1 мМ дитиотреитол, до достижения концентрации белка 40 мг/мл и инкубируют в водяной бане при 50°С в течение 5 мин Затем быстро охлаждают в ледяной бане и денатурировавшие белки удаляют центрифугированием при 15 000 в течение 40 мин. Белок из раствора осаждают добавлением сульфата аммония до 3,2 М концентрации, центрифугируют (40 мин при 15 000 ) и осадок растворяют в 10 мМ ЭДТА, содержащем 1 мМ дитиотреитол (pH 7,6). Проводят диализ против того же раствора. После диализа концентрация белка должна составлять 50—60 мг/мл. Этот раствор используют для дальнейшей очистки фермента. [c.262]


Смотреть страницы где упоминается термин Очистка ферментов: [c.149]    [c.139]    [c.160]    [c.161]    [c.233]    [c.302]    [c.364]    [c.401]    [c.404]    [c.418]    [c.435]    [c.199]    [c.218]    [c.226]   
Адсорбционная газовая и жидкостная хроматография (1979) -- [ c.250 ]

Биохимия Издание 2 (1962) -- [ c.176 ]

Ферменты Т.3 (1982) -- [ c.14 , c.16 , c.45 , c.81 ]

Основы ферментативной кинетики (1979) -- [ c.78 ]




ПОИСК





Смотрите так же термины и статьи:

Выделение, очистка и определение активности ферментов

Выделение, очистка, субстратная специфичность и методы определения активности целлюлолитических ферментов

Гумми углеводы дрожжей, влияние очистки ферментов

Лаборатория очистки ферментов

Методы, используемые при очистке ферментов, ассоциированных с частицами

Очистка фермента пример использования многих хроматографических методик

Очистка ферментов клеточного метаболизма

Разделение и очистка ферментов

Свинец, очистка ферментов с помощью солей

Тяжелые металлы как ингибиторы очистке ферментов

Фермент степень очистки

Ферменты выделение и очистка

Ферменты методы выделения и очистки

Ферменты очистка древесным углем

Ферменты очистка и изолирование

Ферменты очистка, метод адсорбционный

Ферменты сорбционная очистка

Физико-химические основы очистки и фракционирования ферментов Фракционирование белков

Фракционирование при очистке ферментов

Электрофоретические методы очистки ферментов



© 2025 chem21.info Реклама на сайте