Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Железные катализаторы энергия связи

    ЭНЕРГИИ СВЯЗИ НИКЕЛЕВЫХ, ЖЕЛЕЗНЫХ, ПЛАТИНОВЫХ И ПАЛЛАДИЕВЫХ КАТАЛИЗАТОРОВ С ЭЛЕМЕНТАМИ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ [c.344]

    Текстурные промоторы присутствуют в катализаторе, как правило, в виде мелких частичек и оказывают тормозящее действие на спекание активной фазы. Эффективность промотора связана с его дисперсностью, которая должна быть значительно выше, нежели таковая активной составляющей. Текстурные промоторы должны иметь высокую температуру плавления, например У А12О3 пл = 2027 °С, у ЗЮг — 1700 °С, у Сг Оз — 2435 °С, у М 0—2802 °С и т. д. Текстурные промоторы не изменяют энергии активации реакции. Примером текстурного промотора может быть оксид алюминия, вводимый в малых количествах в железный катализатор синтеза аммиака [44], или же оксид хрома в цинк-хромовом катализаторе синтеза метанола. Оксид хрома уменьшает спекание оксида цинка, который в чистом виде является хорошим катализатором, но очень быстро теряет свою активность из-за образования больших кристаллов [19, 45—47]. [c.54]


    Отсутствие общей теории приготовления катализаторов на протяжении многих десятилетий вынуждало пользоваться эмпирическими правилами. Крупным вкладом в катализ, заполнившим этот пробел, явилась теория пересыщения, предложенная С. 3. Рогинским в 1935—1941 гг. и представляющая собой общую теорию каталитически активной поверхности твердой фазы, теорию, которая учитывает кинетические и термодинамические условия образования катализатора. С. 3. Рогинский показал, что активный катализатор представляет собой вещество, имеющее избыток свободной энергии, который можно определить по теплоте растворения, упругости пара или иным путем. Из сказанного следует, что активный катализатор можно получить только из систем, в свою очередь обладающих избытком свободной энергии. Таким образом, для приготовления вещества в метастабильном состоянии и для получения наибольшего пересыщения в твердом теле необходимо выделение твердой фазы производить из мета-стабильной системы, отстоящей как можно дальше от состояния термодинамического равновесия. Выводы теории С. 3. Рогинского хорошо подтвердились на большом числе специально изученных систем. Следствием теории является утверждение о целесообразности применения повышенной скорости пропускания водорода при приготовлении металлических катализаторов восстановлением окислов металлов (получение железных катализаторов для синтеза аммиака <С, С. Лачинов), никеля для гидрогенизации органических веществ (С. 3. Рогинский, Д. П. Добычин), молибденового катализатора для деструктивной гидрогенизации нефтяных продуктов (Г. Н. Маслянский, Ф. С. Шендерович и др.). Поверхность катализатора почти всегда имеет активные центры различной структуры, этим объясняется разнообразие направлений одновременно протекающих на катализаторе реакций. Получение катализаторов с активными центрами определенной структуры могло бы позволить селективно ускорять лишь одну из нескольких термодинамически возможных реакций. Теория пересыщения, являясь общей теорией приготовления каталитически активных поверхностей, не позволяет предвидеть условия образования специфических структур избирательно действующих катализаторов, т. е. не связана с определенной моделью активной поверхности. [c.7]


    В табл. 2 представлены величины и энергии связей, вычисленные непосредственно из адсорбционно-химических данных для образцов железного катализатора № 1, аналогичного использованному в кинетических опытах, и № 2 — дополнительно обработанного На при 600 С, с расчетом предельных значений 9(Ч=в) и g(0=i) по уравнениям (8) и (9). [c.456]

    Рассмотренные концепции согласуются с наблюдаемыми изменениями в теплотах адсорбции оксида углерода и водорода на железных катализаторах, промотированных оксидом калия. Промотирование увеличивает энергию адсорбции оксида углерода и уменьшает ее для водорода [38, 40]. В некоторых случаях промотирование оксидом калия увеличивает энергию связи оксида углерода до такой степени, что происходит образование углерода [38]. [c.77]

    Исходя ИЗ результатов, полученных с помощью ионного проектора, Брилль, Рихтер и Рух [67] пришли к заключению, что азот адсорбируется преимущественно на грани (111) железа. Согласно представлению Руха, основанного на теории химической связи, хемосорбция молекулярного азота обусловлена перекрыванием заполненной л -орбитали N2 и незаполненной низко-энергетической поверхностной орбитали Fe. При этом связь в молекуле N2 ослабляется. Особенно благоприятные условия для этого имеются на грани (111). Однако грань (111) не является равновесной гранью железа, к которым принадлежат грани (100J и (110). Благодаря адсорбции N2 поверхностная энергия грани (111) уменьшается, и эта грань становится равновесной. Промышленный железный катализатор восстанавливают в потоке азото-водородной смеси, что создает условия для образования граней (111) на поверхности кристаллов. Цвитеринг и Вестрик [68] установили, что железный катализатор, полученный восстановлением магнетита, имеет главным образом грани (111). Таубе [69] провел синтез аммиака на усах железа, которые были огранены только гранями (100) и (ПО). Выход аммиака не составил и 1% получаемого на обычных железных катализаторах. Мольер и Берндт [70] исследовали эти усы методом ДМЭ и не смогли обнаружить адсорбции азота на них. Шмидт [71] методом масс-спектрометрии с эмиссией ионов полем показал, что первым промежуточным продуктом на поверхности катализатора, вероятно, является N2H. Соответствующий поверхностный комплекс может иметь строение, показанное на рис. 63. [c.138]

    Ниже рассмотрены и сопоставлены величины энергий связи поверхности никелевых, железных, платиновых и палладиевых катализаторов с основными элементами органических соединений — углеродом, водородом, кислородом и азотом. [c.344]

    Энергии связи никелевых, железных, платиновых и палладиевых катализаторов с элементами органических соединений. [c.12]

    Каталитическим действием на эту реакцию обладают многие вещества животный уголь при 120° [13], хлорное железо, хлорная медь, пятихлористая сурьма при 30—120°, бром, свинец я т. д. Добрянский считает, что в его опытах железная поверхность колонны также играла роль катализатора. Влага играет роль положительного катализатора и способствует реакции присоединения. Стюарт и Смис [10] полагают, что реакции замещения возбуждаются за счет теплоты присоединения активированных молекул дихлорэтана, способных реагировать с новыми количествами хлора и давать полихлорпроизводные. Наличие кислорода в реакционной среде приводит к дезактивации таких молекул дихлорэтана с повышенным запасом энергии и к переходу этой энергии в теплоту. Таким образом, кислород также можно рассматривать как своеобразный катализатор реакции присоединения хлора по двойной связи. [c.272]

    Рассмотрим для примера реакцию синтеза аммиака на железном катализаторе, сопровождающуюся выделением энергии порядка 70 ккал1моль (с учетом энергии активации теплового эффекта реакции). Энергия активации процесса полиморфного превращения железа весьма невелика и составляет, по данным К. Н. Курдюмова и О. П. Максимовой [12], лишь около 1 ккал/моль. В связи с этим энергия, выделяющаяся при элементарном акте реакции синтеза аммиака, достаточна для осуществления полиморфного превращения в зародыше, содержащем примерно 70 атомов железа. [c.421]

    Природой адсорбированного водорода определяются не только активность и стабильность металлических катализаторов, но и избирательность их действия. Влияние этих факторов можно проследить на реакции гидрирования диметилэтинилкарбинола. Хроматографический анализ продуктов гидрирования в процессе реакции показывает, что на никелевых катализаторах избирательность процесса повышается с увеличением доли прочноадсорбированного на поверхности водорода (табл. 3). На никель-кизельгуровом катализаторе, адсорбирующем в основном слабосвязанный водород, реакция протекает по механизму одновременного присоединения водорода к исходному и промежуточному соединению, и избирательность процесса низка. С увеличением энергии связи Н—К и доли прочносвязанного водорода в представленном ряду катализаторов начинает преобладать стадийный механизм гидрирования. Максимальное образование диметилвинилкарбинола (87,6 %) после поглощения одного моля водорода наблюдается в присутствии никель-медь-железного катализатора на глине, адсорбирующего однородный прочносвязанный водород. [c.56]


    При исследовании образцов катализатора разной степени восстановления, проведенном автором совместно с Ю. Н. Симулиным, И. Н. Конюховой, 3. Н. Бардик, А. Л. Клячко-Гурвич и другими, было показано, что удельная активность катализатора в несколько раз выше в начале восстановления она проходит через минимум при степени восстановления —96%. Комплексные исследования эfиx образцов катализатора показали наличие активных участков двух видов дефектные места в окисленной и металлической частях. Следует указать, что железо относится к группе металлов, растворяющих свои окислы, и поэтому полного восстановления не происходит, так как свободная энергия связи с кислородом к концу восстановления стремится к бесконечности [91. Исследуя растворы на основе железа, И. С. Куликов [10] показал, что при растворении РеО в железе кислород находится в нем в виде двухзарядного иона О , т. е. в растворенной РеО связи чисто ионные. При растворении Ре5 наибольший статистический вес имеют ковалентные связи, что уменьшает концентрацию Ре" . Возможно, что одна из причин сильного отравляющего действия сульфидной серы на железные и другие металлические катализаторы связана именно с этим обстоятельством. По-видимому, для увеличения активности металлического катализатора необходимо увеличивать статистический вес ионных связей растворенных металлоидов (О, М, С и др.). На железных катализаторах, как мы предполагаем, аммиачный катализ осуществляется благодаря контакту металла с его ионами, находящимися в твердом растворе. Определяющими стадиями, по-видимому, являются  [c.102]

    Бромирование ускоряется добавлением катализаторов — железных опилок, амальгамированного алюминия, кристаллического иода. Легче всего галогенируются углеводороды с третичным атомом углерода в молекуле, труднее всего замещаются атомы водорода при первичном атоме углерода. Энергия связи водорода с третичным атомом углерода равна 90 ккал моль, у вторичного — 94 ккал/моль, а у первичного 99 ккал1моль. Разница в скорости реакции галогенирования особенно сказывается при действии брома. [c.21]

    Особого рассмотрения заслуживают опыты с железным катализатором. Железный катализатор представ.лял собой спиральки диаметром 2 мм из нержавеющей стали марки 18/8. Этот катализатор был принят нами в связи с нашими прежними наблюдениями относительно каталитического действия стенок железной реакционной трубки при исследовании термического хлорирования бутана. Указанный катализатор оказался весьма активным, и реакция хлорирования бутаиа в его присутствии протекала практически нацело уже при комнатной температуре. Высокая активность катализатора не позволи.ла снять ки1гетическую кривую и определить энергию активации обычным путем. [c.390]

    Первые попытки определить роль работы выхода электрона в поверхностных реакциях на металлах относятся к 30-м годам. Позднее было установлено, что величины работ выхода, найденные в то время, отличаются от истинных, поэтому более интересны работы последних 10—15 лет. Ч. Кембел [1], изучая обмен аммиака с дейтерием на различных металлических пленках, обнаружил линейную связь энергии активации реакции Е с работой выхода электрона ф для соответствующего металла. Исключение составляли вольфрам и родий, причем предполагается, что значение ф для родия могло быть ошибочным. К. Хейс [2] нашел корреляцию между энергией активации реакции разложения закиси азота и ф для серебра с добавками кальция. Л. Я- Марголис и др. [3] наблюдали линейную связь между логарифмом скорости реакции глубокого окисления этилена и работой выхода для серебряного катализатора, модифицированного различными примесями. В литературе неоднократно указывалось на возможную роль электронных свойств поверхности железных катализаторов в синтезе аммиака. Так, К. Брюэр [4] исследовал фотоэлектрическую эмиссию железа и нашел, что в широком интервале температур (50—600°С) эмиссия не зависела от температуры при проведении опытов в вакууме, водороде и азоте, но изменялась в атмосфере аммиака. Работа выхода в случае железа понижалась при адсорбции ионов калия, причем тем больше, чем выше была концентрация К ". [c.185]


Смотреть страницы где упоминается термин Железные катализаторы энергия связи: [c.295]    [c.305]    [c.101]    [c.209]    [c.44]    [c.276]   
Гетерогенный катализ в органической химии (1962) -- [ c.128 , c.129 ]




ПОИСК





Смотрите так же термины и статьи:

Железные катализаторы

Связь связь с энергией

Связь энергия Энергия связи

Энергия связи



© 2025 chem21.info Реклама на сайте