Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теплота адсорбции химических реакций

    В первой части этого курса были рассмотрены различные по химической природе и геометрической структуре адсорбенты, применяемые в молекулярной газовой и жидкостной хроматографии от одноатомного адсорбента с однородной плоской поверхностью графитированная термическая сажа) до непористых и микропористых солей, кристаллических микропористых и аморфных оксидов (на примере кремнезема) и органических пористых полимеров, а также способы адсорбционного и химического модифицирования адсорбентов. При этом были рассмотрены химия поверхности и адсорбционные свойства этих адсорбентов — поверхностные химические реакции, газовая хроматография, изотермы и теплоты адсорбции и происходящие при модифицировании поверхности и адсорбции изменения в ИК спектрах. Уже из этой описательной части курса видно, что свойства системы газ — адсорбент в сильной степени зависят как от химии поверхности и структуры адсорбента, так и от природы и строения адсорбируемых молекул, а также от их концентрации и температуры системы. Приведенные экспериментальные данные позволили рассмотреть и классифицировать проявле- [c.126]


    Влияние поверхности. Для физической адсорбции имеет значение лишь величина поверхности, но химическая адсорбция— весьма специфичный процесс. Так, например, водород хемосорби-руется не окисью алюминия, а никелем, и кислород не окисью магния, а углеродом. Такое поведение согласуется с предположением, что хемосорбция сходна в общем с химической реакцией. На хемосорбцию оказывают влияние физическое состояние поверхности и ее химический состав. Неоднородность поверхности катализаторов доказывается, например, тем, что теплота процесса постепенно снижается по мере протекания хемосорбции. Поверхность состоит из атомов различной степени насыщенности. Атомы у краев кристаллов, трещин и выступов, вероятно, менее насыщены и, следовательно, более активны. [c.206]

    Теплота активированной адсорбции значительно больше теплоты физической адсорбции, приближаясь по величине к теплоте обычной химической реакции. Ориентировочное значение теплоты активированной адсорбции достигает порядка нескольких сотен килоджоулей на моль поглощенного вещества. [c.7]

    Пусть имеются данные о равновесии адсорбции газа XY на поверхности [К] при различных степенях ее заполнения. Комбинируя эти данные с теплотой подходящей химической реакции, можно найти величину — (АЯ )"° , представляющую [c.124]

    Численные значения теплот адсорбции газов по порядку величины в общем близки к теплотам их конденсации, но в большинстве случаев превышают их, значительно уступая, однако, теплотам хемосорбции и теплотам типичных химических реакций. [c.95]

    Несомненно, что процессы гетерогенной кристаллизации с участием химической реакции должны быть весьма чувствительны к энергетической неоднородности поверхности, так как такие стадии процесса, как адсорбция, химическая реакция и зародышеобразование, являются сами по себе чрезвычайно чувствительными к неоднородности поверхности. Рассмотрение процесса химической кристаллизации с этих позиций наталкивается на ряд трудностей, связанных с тем, что разработка теоретических основ таких процессов находится лишь на начальной стадии. Отсутствуют данные по теплотам адсорбции многих химических веществ, участвующих в реакции, в большинстве случаев неизвестен механизм собственно химической реакции. Вполне сознавая эти трудности, авторы все же рискнули провести такое рассмотрение в первом приближении для одного типа химической кристаллизации, а именно водородного восстановления летучих галогенидов тугоплавких металлов. Этот выбор связан со спецификой кристаллизации тугоплавких металлов (в основном они имеют низкую диффузионную подвижность при температурах газофазной кристаллизации), с особенностями адсорбции водорода на переходных металлах (наблюдается сильная зависимость теплот адсорбции от степени заполнения), а также с лучшей изученностью многих физических свойств тугоплавких металлов. [c.8]


    Тем не менее в большинстве случаев природу явления можно тан ить, исследовав величину теплового эффекта процесса. При уменьшении свободной поверхностной энергии в процессе адсорбции выделяется теплота адсорбции . Очевидно, что в процессе хемосорбции выделяется значительно большее количество тепла, чем в процессе физической адсорбции. В первом случае теплота адсорбции по порядку величины близка к теплоте химических реакций, во втором — к теплоте конденсации. Существуют и другие, менее общие признаки различия, например характер изотерм, кинетика процесса, его обратимость и др. [c.106]

    Температурная зависимость константы скорости реакции остается, таким образом, аррениусовой, причем кажущаяся энергия активации Е равна Е — При больших теплотах адсорбции кажущаяся энергия активации может даже стать отрицательной мы встречаемся при этом с весьма редким случаем замедления химической реакции с ростом температуры, причиной которого является уменьшение равновесных степеней заполнения поверхности, не компенсируемое ускорением самого химического взаимодействия. [c.81]

    В работе [331 показано, что реакция дегидратации ряда насыш ен-ных алифатических спиртов С5—С, на окислах А1, Zr и Si хорошо описывается простейшим уравнением Тафта с сохранением литературных значений о. В то же время коэффициент чувствительности р для различных окислов меняется симбатно с теплотой адсорбции органических кислородсодержаш,их соединений, таких как диэтило-вый эфир, а также линейно связан с чувствительностью катализатора по отношению к отравлению пиридином. Это указывает на связь р с сорбционной характеристикой катализатора. Авторы работы подчеркивают, что при подборе катализаторов необходимо раздельно оценивать интенсивные (химические) и экстенсивные (число активных центров) свойства катализаторов. [c.160]

    Зависимость хемосорбции от концентрации или давления часто описывается уравнениями типа уравнения Лэнгмюра (227.6) или (221.6а). Как и при физической адсорбции, тепловой э( х )ект хемосорбции зависит от степени заполнения поверхности. Он значительно превышает тепловой эффект физической адсорбции и соответствует по порядку величины тепловому эффекту химической реакции. В табл. 34 приведены начальные теплоты хемосорбции на различных катализаторах. [c.643]

    При составлении энергетического (теплового) баланса надо учитывать возможность перехода в рассматриваемом процессе одного вида энергии в другой, а также иметь в виду возможное выделение или поглощение тепла в результате химических реакций и изменения агрегатного состояния (теплоты испарения, плавления, адсорбции, абсорбции и т. д.). [c.10]

    Из табл. 10 следует, что теплота адсорбции может достигать величин теплот химических реакций. [c.95]

    В 1908 году Джэксон (см. ссылку 69) сделал вывод, что отделение пятнообразующего вещества от белья посредством мыла, вероятно, представляет собой самопроизвольный процесс. Если это соответствует действительности, то приходится принять во внимание энергию, требуемую для дробления и дисперсии твердых частиц. В тех случаях, когда мы имеем дело с углеродными частицами, ни химическая реакция, ни растворение не могут служить источниками указанной энергии. В таких случаях правдоподобным источником этой энергии может быть теплота, образуемая адсорбцией. [c.69]

    В этом случае АР и А5 отрицательны, значит АН имеет также отрицательное значение. Отсюда следует, что адсорбционные процессы являются экзотермическими, что подтверждается экспериментально. Уменьшение энтальпии в этих процессах называют теплотой адсорбции. Для физической адсорбции теплота адсорбции имеет порядок теплоты конденсации паров, для хемосорбции — порядок тепловых эффектов химических реакций, т. е. значительно превышает теплоту физической [c.96]

    Термодинамика включает следующие разделы общую или физическую термодинамику, изучающую наиболее общие законы превращения энергии техническую термодинамику, рассматривающую взаимопревращения теплоты и механической работы в тепловых машинах химическую термодинамику, предметом которой являются превращения различных видов энергии при химических реакциях, процессах растворения, испарения, кристаллизации, адсорбции. [c.47]

    Интересно, что теплота поверхностных реакций обычно значительно больше, чем теплота образования химического соединения. Так, теплота адсорбции кислорода на угле примерно в два раза больше теплоты сгорания твердого углерода. [c.105]

    Другие рассмотренные ниже виды адсорбции относят к физической адсорбции, которая протекает под действием сил Ван-дер-Ваальса адгезионного характера. Физическая адсорбция является обратимым экзотермическим процессом при повышении температуры адсорбция уменьшается, а десорбция усиливается. Теплоты физической адсорбции невелики и обычно составляют 8— 20 кДж/моль. Физическая адсорбция не носит специфического избирательного характера. Хемосорбция, напротив, специфична. Она зависит как от природы адсорбента, так и от природы адсорбата. Энергия связи адсорбент — адсорбат достаточно велика и примерно равна теплоте образования химических соединений (80—800 кДж/моль). С повышением температуры хемосорбция возрастает, подчиняясь законам химической кинетики и равновесия гетерогенных реакций. Хемосорбция часто необратима и приводит к образованию прочных поверхностных соединений между адсорбентом и адсорбатом. [c.328]


    На рис. 5.1 изображена энергетическая диаграмма реакции,, проходящей с участием гетерогенного катализатора (/) и без него (2). От аналогичной энергетической диаграммы с участием гомогенного катализатора данная диаграмма отличается теплотами адсорбции и десорбции. Адсорбция молекул реагирующих веществ на поверхности катализатора обычно сопровождается выделением теплоты ( //адс<0). Чем прочнее связи исходных молекул с атомами на поверхности катализатора, тем больше теплота адсорбции. Очень сильное адсорбционное взаимодействие может препятствовать прохождению основного химического процесса. [c.236]

    Термодинамика как научная дисциплина сложилась в начале XIX в. на основании данных по изучению перехода теплоты в механическую работу (с греческого Легте и dynamis — теплота и движение). В настоящее время термодинамика как одна из дисциплин с наиболее общим подходом в характеристике физико-химических явлений, устанавливает взаимосвязь между различными видами энергии, изучает возможность, направленность и пределы самопроизвольно текущих процессов. Раздел этой науки, изучающий химические реакции, фазовые переходы (кристаллизация, растворение, испарение), адсорбцию, взаимосвязь химической и других видов энергии, а также переход энергии от одной части системы к другой в различных химических процессах называется химической термодинамикой. Изучение происходящих в природе явлений с позиций термодинамики не требует знания причин и механизмов идущих процессов, представлений о строении вещества и т. п. Теоретическо базой этого раздела физической химии являются основные законы — первое и второе начало термодинамики. Первое начало, характеризующее общий запас энергии в изолированной системе, носит всеобщий характер и является отражением закона сохранения энергии второй закон термодинамики устанавливает понятие энтропии и выполняется при определенных ограничениях. В настоящей главе представляется возможным только кратко остановиться на основных положениях. [c.10]

    Хемосорбция должна протекать практически мгновенно. Однако хемосорбция на окисных и металлических катализаторах (к ним относится большая часть реальных катализаторов) является процессом, идущим во времени с измеримой скоростью. Иногда состояние насыщения поверхности при данных температуре и давлении достигается в течение многих часов и даже дней. Замедленность реальных процессов адсорбции объясняется представлением об активированной адсорбции, требующей, как и химические реакции, некоторой энергии активации. Поэтому хемосорбция с измеримой скоростью может осуществляться в определенном температурном интервале. Гипотеза об активированной адсорбции позволила дать удовлетворительное объяснение многим аномалиям, установленным при изучении процессов адсорбции. Так, например, теплоты адсорбции часто малы при низких температурах и большие при высоких. Это обусловлено тем, что при низких температурах преобладает физическая адсорбция. [c.35]

    В зависимости от природы действующих сил различают физическую адсорбцию и хемосорбцию. Последняя — это двумерная химическая реакция, не выходящая за пределы поверхностного слоя, например, взаимодействие Fe с Оа или Ag с СЬ-В этих случаях продукты реакции образуют пленку, непроницаемую для реагирующего газа. Как было показано ранее (раздел VI. 5), физическая адсорбция и хемосорбция термодинамически неразличимы, однако практически в большинстве случаев они характеризуются различными значениями дифференциальной молярной теплоты адсорбции qa = dQa/dx. Значения qa лежат в пределах 4—40 кДж/моль (1 — 10 ккал/моль) для физической адсорбции (характерных для теплот конденсации) и 40—400 кДж/моль (10—100 ккал/моль) (характерных для теплот химических реакций) для хемосорбции. [c.110]

    Таким образом, кажущаяся энергия активации включает, кроме истинной энергии активации химической реакции ( ист), и теплоты адсорбции исходных веществ А и В. [c.529]

    Теплоты физической адсорбции всегда малы и близки к теплотам конденсации (10 — 50 кДж/моль). Теплоты же хемосорбции близки к теплотам химических реакций (80—400 кДжУмоль и более). [c.86]

    СКОЛЬКО СОТ калорий на 1 люль. При хемосорбции тепловые эффекты по величине приближаются к тепловым эффектам химических реакций и составляют41 900—419000 кдж/кмоль (10—100 ккал/моль). Так, например, теплота адсорбции кислорода на углероде равна 335 200 кдж/кмоль (около 80 ккал/моль), а теплота сгорания углерода составляет 393860 кдж/моль ккал/моль). В этом случае действительно образуется стабильное соединение и при попытках удалить адсорбат с поверхности путем вакуумирования вместе с кислородом выделяется некоторое количество окиси углерода. [c.205]

    При физической адсорбции газов тепловые эффекты имеют тот же порядок, что и теплоты конденсации (от —2 до —10 ккал1молъ), а при хемосорбции они приближаются к тепловым эффектам химических реакций и составляют от —10 до —100 ккал/моль. [c.220]

    Различают физическую адсорбцию, обусловленную межмолеку-лярными взаимодействиями, и хемосорбцию, обусловленную химическими реакциями, не выходящими за пределы поверхностного слоя. Между физической адсорбцией, хемосорбцпей 11 типгппюй химической реакцией очень трудно провести четкие границы. Их можно отличить по значениям удельной теплоты процессов. [c.43]

    Как видно из рис. 22, при 132° скорость и величина адсорбции больше, чем при 100°. Это непонятное явление было объяснено Г. Тейлором. Он предложил для дифференциации между первичной и вторичной адсорбцией принять обратимость процесса и количество выделенного тепла. Вторичная, или обратимая, адсорбция имеет обычно малую теплоту адсорбции, т. е является физической, или вандерваальсовой, адсорбцией. Первичная, или необратимая, адсорбция показывает высокие теплоты адсорбции и большие значения энергии активации. Необратимая адсорбция, или хемосорбция, ускоряется с повышением температуры так же, как и обычные химические реакции. Поэтому она была названа активированной адсорбцией. Величину энергии активации Е для последней легко можно вычислить по скоростям адсорбции при разных температурах, т. е. по температурному коэффициенту. Если принять, что при температурах и Та скорости адсорбции будут соответственно и, и v. , то Е находят по обычной формуле  [c.117]

    Адсорбцию, вызванную химическим взаимодействием молекул контактирующих фаз, называют хемосорбцией, а адсорбцию в результате действия вандерваальсовых сил (ориентационных, индукционных и дисперсионных)—физической адсорбцией. Эти разновидности адсорбции сопровождаются различными по величине тепловыми эффектами теплота, выделяемая при физической адсорбции, близка к теплотам конденсации (порядка 40 кДж/моль), а при хемосорбции она имеет порядок теплоты химических реакций (около 400 кДж/моль). [c.38]

    Физическая и химическая адсорбция различаются по следующим признакам. Физическая адсорбция вполне обратима и малоспецифична. Теплота физической адсорбции составляет обычно всего 2—8 ккал/моль и соизмерима с теплотой конденсации. Теплота химической адсорбции может достигать 200 ккал/моль, т. е, имеет порядок теплот химических реакций. Химическая адсорбция обычно необратима. [c.103]

    Естественно, что и до этого времени был получен целый ряд выдающихся результатов, на базе которых развивались те или иные разделы физической химии. Можно перечислить некоторые из них открытие адсорбции газов (К. Шееле — в Швеции, 1773 г., Ф. Фонтана — во Франции, 1777 г.), адсорбции из растворов (Т. Е. Ловиц — в России, 1785 г.) открытие каталитических реакций и установление представлений о катализе (Г. Дэви и Л. Тенар — в Англии, И. Берцелиус — в Швеции, начало XIX в.) открытие гальванических элементов и исследование переноса тока в электролитах, открытие электролиза (Л. Гальвани, А. Вольта — в Италии, В. В. Петров, К. Грот-гус — в России, Г. Дэви, М. Фарадей — в Англии, конец XVIII в. — начало XIX в.) исследование теплоты химических реакций (А. Лавуазье, П. Лаплас — во Франции, 1779—1784 гг., Г. Гесс — в России, 1836—1840 гг.) открытие первого и второго законов термодинамики (С. Карно — во Франции, Р. Майер, Г. Гельмгольц, Р. Клаузиус — в Германии, Дж. Джоуль, В. Томсон— в Англии, середина XIX в.) и последующее развитие тер-модинамического учения о химическом равновесии (К. Гуль-берг и П. Вааге —в Норвегии, Гиббс —в США). [c.7]

    Силы, действующие на поверхности твердого тела, ненасыщены. Поэтому всякий раз, когда свежая поверхность подвергается действию газа, на ней создается более высокая концентрация молекул газа, чем в объеме собственно газовой фазы. Такое преимущественное концентрирование молекул на поверхности называется адсорбцией. Прочность связи молекул адсорбата с поверхностью адсорбента, а также величина адсорбции могут сильно меняться от системы к системе. Процессы адсорбции можно разделить на два основных типа физическую адсорбцию и хемосорбцию. Физическая адсорбция вызывается силами молекулярного взаимодействия, к которым относятся силы взаимодействия постоянных и индуцированных диполей, а также силы квадрупольного притяжения. Хемосорбция обусловлена перераспределением электронов взаимодействующих между собой газа и твердого тела с последующим образованием химических связей. Физическая адсорбция подобна конденсации паров с образованием жидкости или процессу сжижения газов, а хемосорбция может рассматриваться как химическая реакция, протекание которой ограничено поверхностным слоем адсорбента, Типы адсорбции различают по нескольким критериям 1) по теплотам адсорбции. Количество выделившейся в процессе физической адсорбции теплоты, отнесенное к одному молю адсорбированного вещества, обычно изменяется в пределах 8—40 кДж. Как правило, теплота хемосорбции превышает 80 кДж/моль 2) по скорости протекания процесса. Поскольку физическая адсорбция подобна процессу сжижения газа, то она не требует активации и протекает очень быстро. Хемосорбция же, аналогично большинству хи- [c.425]

    Так же как и для химических реакций, теплоты химической адсорбции могут быть весьма значительными — намного больше теплот конденсации. Еще одним принципиальным отличием химической адсорбции от физической является то, что в результате образования более прочных связей хемосорбированное вещество с трудом удаляется с поверхности адсорбента, причем десорбция может сопровождаться химическими превращениями. Так, например, при адсорбции кислорода на поверхности угля образуется настолько прочная связь, что при десорбции в газовую фазу выделяются оксиды углерода СО и СО2. Во многих случаях на поверхности адсорбента могут одновременно находиться физически и химически адсорбированные молекулы газа (например, при адсорбции СО2 на ЛЬОз). [c.318]


Смотреть страницы где упоминается термин Теплота адсорбции химических реакций: [c.14]    [c.111]    [c.122]    [c.11]    [c.125]    [c.65]    [c.116]    [c.426]    [c.115]    [c.332]    [c.312]    [c.76]    [c.126]    [c.37]   
Физическая химия Книга 2 (1962) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Адсорбции теплота

Адсорбция теплота теплота адсорбции

Адсорбция химическая

Теплота реакции

Теплота химический

Теплота химической реакции



© 2025 chem21.info Реклама на сайте