Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сода, синтез

    Как ясно из изложенного, гидролиз хлорпроизводных с замещением атома хлора осуществляют в избытке воды при помощи соды (получение спиртов) или едкого натра (синтез фенолов). В зависимости от реакционной способности хлорпроизводных процесс проводят при температуре от 120—125°С (гидролиз хлористого аллила) до 300—350°С (гидролиз хлорбензола). Очевидно, что для поддержания смеси в жидком состоянии требуется давление от 0,5—1 до 10 МПа. В этих условиях время контакта изменяется от нескольких минут до 20—30 мин. [c.178]


    В связи с ростом производства каустической соды и хлора, в перспективе намечается широкое развитие производства хлорорганического синтеза с получением таких важнейших продуктов, как глицерин, четыреххлористый углерод, хлористый метил, полихлорвиниловые смолы, трихлорэтилен и др. [c.282]

    В последнее время производство хлора и каустической соды электролитическим способом развивается быстрыми темпами. Если ранее основным продуктом производства была каустическая сода, то с развитием нефтехимической промышленности важным продуктом становится хлор, который находит все более широкое применение для синтеза хлорорганических полупродуктов, растворителей и химических средств защиты растений. [c.258]

    В настоящее время промышленность органического синтеза использует следующие основные виды сырья природные и попутные газы газообразные и жидкие углеводороды, получаемые при перегонке нефти, крекинге и пиролизе нефтепродуктов твердые парафиновые углеводороды и тяжелые нефтяные остатки коксовый и сланцевый газы смолу коксования, а также сланцевую и древесную смолу и торфяной деготь. Наша страна располагает громадными запасами нефти, природного и попутного нефтяного газа, представляющих собой наиболее экономичные виды сырья для химического синтеза. Использование нефтяного сырья для получения разнообразных продуктов представлено на рис. 63. Кроме того, для органического синтеза в больших количествах используются и неорганические соединения кислоты, щелочи, сода, хлор и т. п., без которых невозможно осуществление многих процессов. Как правило, любое сырье необходимо предварительно очистить от влаги, механических примесей, сернистых соединений и других п])имесей и разделить, выделив индивидуальные углеводороды. Таким образом получают очищенное сырье, из которого дальнейшей переработкой можно получить те или иные полупродукты и целевые продукты. [c.161]

    Одним из основных промьппленных методов синтеза глицерина является гидролиз эпихлоргидрина раствором щелочи или 15 %-ным раствором соды  [c.67]

    Широкое развитие по,пучил ме сод синтеза циклич. [c.181]


    Производство аммиака и карбамида. Как уже указывалось выше, в нефтехимическом комплексе на базе синтез-газа, получаемого при термоокислительном пиролизе метана, будет создано производство аммиака и Мочевины—карбамида. В республике имеются благоприятные условия для наращивания этого производства наличие больших количеств водородсодержащих газов от процессов каталитического риформинга, дегидрирования и пиролиза углеводородного сырья, а также ют производства хлора и каустической соды методом электролиза поваренной соли. [c.377]

    Разделение продуктов реакции может быть осуществлено так же (см. гл. IV), как в случае синтеза дифенилолпропана конденсацией фенола с ацетоном. При использовании катализаторной системы фтористый бор -ь ортофосфорная кислота сначала реакционную смесь нейтрализуют содой или гидроокисью кальция, а затем с паром отгоняют фенол . Соединения фтористого бора с уксусной кислотой и с диэтиловым эфиром можно отогнать вместе с фенолом в вакууме . Применим также способ выделения дифенилолпропана из реакционной массы в виде кристаллического аддукта с фенолом, который разрушают методами, описанными в гл. IV. Иногда реакционную массу разбавляют водой и отделяют водный слой, содержащий катализатор, от органического, который состоит из фенола, дифенилолпропана и побочных продуктов. Затем из органического слоя отгоняют фенол. [c.97]

    Смесь водорода и окиси углерода с установки окислительного пиролиза поступает на установку конверсии окиси углерода с водяным паром. Углекислота отмывается водой и содой. Окончательная очистка водорода осуществляется промывкой его жидким азотом. Азото-водородная смесь поступает на синтез аммиака, который перерабатывается далее в удобрения. [c.163]

    Особый интерес представляет синтез акриловой кислоты, являющейся основой различных высокомолекулярных соединений. Пары этилового спирта с добавкой Oj сначала дегидратируют над А1,0.., а затем к полученной смеси этилена с СОд добавляют небольшие количества SO2 или NOj и пропускают ее под высоким давление.м через катализаторы из кислых солей или окислов. В результате получается акриловая кислота  [c.738]

    В природе А. образуется при разложении органических веществ, содержащих азот. В промышленности А. получают прямым синтезом его из азота и водорода при температуре около 550° С и под давлением 35 10 Па на железном катализаторе. С воздухом и кислородом А. образует взрывоопасные смеси. Жидкий А. вызывает на коже тяжелые ожоги, очень опасен для глаз. А. используют для производства азотной кислоты, солей аммония, карбамида (мочевины), цианистоводородной кислоты, кальцинированной соды, в органическом синтезе, для приготовления нашатырного спирта, в холодильных установках, для азотирования стали и др. А. и соединения аммония применяют как удобрения. Жидкий А. растворяет щелочные и щелочноземельные металлы, образующие в нем темно-синие растворы с металлическим блеском. [c.23]

    Диоксид углерода используют в производстве соды, для тушения пожаров, приготовления минеральной воды, как инертную атмосферу при проведении различных синтезов. [c.455]

    Так как эфирный раствор н-бутиллития неустойчив при комнатной температуре, сразу же приступают к последующему синтезу. Колбу с раствором н-бутиллития охлаждают (водой со льдом) и прибавляют к нему при перемешивании по каплям в течение 30—40 мин раствор 10 г метилизопропилкетона в 50 мл абсолютного эфира. Затем, не прекращая перемешивания, охлаждение снимают, доводят реакционную массу до комнатной температуры, после чего нагревают при кипении эфира 30 мин. Реакционную смесь выливают в смесь льда и разбавленной уксусной кислоты. Эфирный раствор отделяют, водный экстрагируют эфиром. Объединенные эфирный слой и вытяжку промывают раствором соды, тиосульфата натрия и сушат сульфатом магния. После отгонки эфира остаток перегоняют в вакууме водоструйного насоса. [c.233]

    Диоксид углерода при обычных условиях — бесцветный газ, примерно в 1,5 раза тяжелее воздуха, благодаря чему его можно переливать, как жидкость, из одного сосуда в другой. Масса 1 л СО2 при нормальных условиях составляет 1,98 г. Растворимость диоксида углерода в воде невелика 1 объем воды при 20 ° С растворяет 0,88 объема СО2, а при 0°С — 1,7 объема. Применяется диоксид углерода при получении соды по аммиачно-хлоридному способу, для синтеза [c.409]

    Применение. Серная кислота находит широкое применение. Ее считают хлебом химической промышленности, так как ис-пользуют-для получения других кислот, очистки нефтяных продуктов, сахара, растительных масел, для осушки газов, производства соды, красок, искусственного волокна, в органическом синтезе и т. д. [c.195]


    Для проведения синтеза в фарфоровой чашке смешивают тщательно растертые 5 г глины, 3 г соды и 5 г мела. Смесь переносят в фарфоровый тигель, ставят в предварительно нагретую до 800—1000° (ярко-красное каление) муфельную печь и прокаливают в течение часа. Затем тигель вынимают пз печи, охлаждают до комнатной температуры и содержимое его переносят в стакан со 150 мл дистиллированной воды. Смесь перемешивают стеклянной палочкой 5—10 мин, после чего фильтруют на воронке Бюхнера с небольшой (250 мл) колбой Бунзена. [c.95]

    Потребовалось семнадцать лет упорной работы, пока в июле 1897 г. после многих попыток, на которые была затрачена большая сумма денег, синтетическое индиго было выпущено на рынок и могло конкурировать с естественным продуктом индийских плантаций. Промышленное производство синтетических анилиновых красок (ализарина, индиго) оказало огромное влияние па производство каменноугольного дегтя, каустической соды, хлорноватокислого калия. Все это, вместе взятое, содействовало небывалому росту химической промышленности, развитие которой во многом предопределилось успехами органического синтеза. [c.247]

    Синтез ароматического углеводорода 1-метил-4-изопропилбен ола (п-цимола)из с-пинена хорошо известен. В недавно опубликованной работе [16] описывается, например, приготовление /г-цимола с 92%-ным выходом припусканием а-пинена в атмосфере азота через трубку из нержавеющей стали, наполненную кварцем, нагретую до 300", или катализатором 10% СОд на окиси алюминия, нагретым до 450°. [c.492]

    Диоксид углерода при обычных условиях — бесцветный газ, примерно в 1,5 раза тяжелее воздуха, благодаря чему его можно переливать, как жидкость, из одного сосуда в дру1ой. Масса 1 л СО2 при нормальных условиях составляет 1,98 г. Растворимость диоксида углерода в воде невелика 1 объем воды при 20 °С растворяет 0,88 объема СО2, а при О °С—1,7 объема. Применяется диоксид углерода прн получении соды по аммиачно-хлорндному способу (см. стр. 441), для синтеза карбамида (стр, 442), для получения солей угольной кислоты, а также для газирования фрук-T0B1.1X и минеральных вод и других напитков. [c.438]

    Схема синтеза глицерина из эпихлоргидрина (рнс. 60). Эпихлоргидрин и 5—6%-ный раствор соды эмульгируют в насосе 1, где смесь сжимают до 0,6—1 МПа, и закачивают ее через подогреватель 2 в трубчатый реактор 3. В нем протекают описанные ранее реакции и образуются глицерин и его простые эфиры. Реакционную смесь дросселируют в клапане -4 до атмосферного давления, а в сепараторе 5 отделяют газо-паровую фазу (СО2 и водяные пары) от жидкой (водные растворы глицерина, его эфиров, Na l и непревра- [c.181]

    В 1913 г. А. Митташ с сотрудниками получил из монооксида углерода и водорода на железных катализаторах кислородсодержащие соединения, в том числе метанол. Этот синтез описал в 1921 г. М.. Патар. Промышленный синтез метанола впервые осуществила фирма Бадише анилин-унд сода-фабрик (БАСФ) на основании испытаний, выполненных в период с 1920 по 1923 г. группой ученых, которую возглавлял М. Пиер. [c.209]

    Насыщение исходных и циркулирующих растворов растворением в них твердых или газообразных компонентов широко распространено в химических производствах. Например, в содовом производстве донасыщается природный рассол за счет растворения твердой поваренной соли. Доиасыщение производится во многих производствах с циркулирующими раство-рам1г, например при электролизе раствора поваренной соли, в производстве глинозема и др. Для осаждения из жидкостей вредных и балластных примесей к ним добавляют такие вещества, которые реагируют с примесями с образованием кристаллических осадков затем осадки отделяют. Иногда добавки вызывают коагуляцию и осаждение коллоидных примесей или полимеров. Осаждение примесей из раствора применяется во многих производствах органического синтеза, минеральных солей, соды и т. п. В других случаях из раствора кристаллизуют (осаждают) основной компонент, оставляя примеси в растворе. Так получают в концентрированном виде многие соли этот метод часто применяется в гидрометаллургии для выделения концентратов цветных металлов из полиметаллических руд. [c.18]

    При получении солей синтетическими способами в качестве исходных материалов используются главным образом полупродукты основной химической промышленности или отходы различных гфоизводств. Синтез солей основан на реакциях нейтрализации. Таким образом получают, например, важнейшие азотные удобрения из кислот и щелочей. Большое количество солей получается в качестве побочных продуктов других производств. Например, в производстве глинозема из нефелина в качестве побочных продуктов получают поташ К2СО3 и соду ЫагСОз. Из отходящих газов цветной металлургии и производства серной кислоты, содержащих 50г, получают сульфиты. Нитрат кальция, применяемый как удобрение, можно получить из отбросных нитрозных газов производ- [c.142]

    Синтез-газ необходимо тщательно очищать. Первой ступенью его очистки является обычный. метод удаления НаЗ с помощью окиси железа. Затем газ освобождают от органичес1<ой серы путем пропускания его через башни, заполненные окисью железа и содой. В очищенном газе сера содержится в пределах [c.194]

    В эту книгу включены расчеты но всем разделам курса технологии неорганических веществ (серная кислота, синтез аммиака и азотная кислота, минеральные удобрения, соли, кальцинированная и каустическая сода). Расчеты составлены в соответствии с действующей программой курса технологии неорганических веществ. Основой приводимых примеров послужили проектные и производственные материалы Гипрохима, Ленниигипрохима, ГИАП, Ново-московского, Винницкого, Воскресенского и Актюбинского химических комбинатов. Невского химического завода и др. С любезного разрешения авторов с частичной переработкой использованы также некоторые расчеты, помещенные в следующих учебных пособиях А. Г. Амелин, Технология серной килосты . Изд. Химия , 1964  [c.4]

    Основной реакции - синтезу ксантогената целлюлозы - сопутствует большое число побочных реакций между гидроксидом натрия и сероуглеродом, приводящих к образованию тиокарбо-натов (в основном тритиокарбоната), сульфидов, полисульфидов натрия и соды  [c.315]

    Синтез а- и 3-иоионов осуществлен Химаном. При конденсации цитраля (стр. 215) с ацетоном в присутствии слг1бых щелочей (барита, соды или алкоголята) получается псевдоиоион (т. кип. 143— 145712 мм), который путем нагревания с разбавленной серной или иными кислотами можно превратить в смесь а- и -иононов возможно, в качестве промежуточных продуктов при этом синтезе образуются гидраты (которые во второй стадии реакции отщепляют воду) или, более вероятно, ионы карбония  [c.830]

    Эфир 4-оксистирола и лауриновой кислоты получают по методике, предложенной [125] для синтеза эфира 4-оксистирола и уксусной кислоты (см. стр. 98). После декарбоксилирования содержимое реакционной колбы фильтруют и прибавляют к фильтрату эфир эфирный раствор промывают разбавленной серной кислотой, разбавленным раствором соды и водой, сушат безводным сернокислым кальцием и отгоняют эфир. Остаток перекристаллизовывают из 95%-ного метилового спирта выход составляет 77% от теорет. Для получения аналитически чистого вещества необходимо провести 4—5 перекристаллизаций [125]. [c.100]

    Промежуточным продуктом в производстве хлора и каустика по ртутному методу является амальгама натрия. Обычно амальгаму натрия разлагают водой с целью получения каустической соды, но амальгама сама является прекрасным восстановителем и может использоваться в синтезе неорганических и органических преператов [3], например, для получения хлорита, гидросульфита и сульфида натрия, перекиси натрия и перекиси водорода. [c.133]

    Бесцветные зерна неправильной формы положительный Пе = = 1,640, По =1.620. Под электронным микроскопом — округлые сферолитоподобные образования или тонкозернистая масса, в которой наблюдаются отдельные призматические кристаллы. ИКС (рис. 69). ДТА главный эффект, соответствующий дегидратации при (—) 727—800°С, по другим данным при (—) 740—750 или (—) 600— 800°С. Потеря массы (по статическому методу) в интервале температур 650—700°С. Плотность 2,67 г/смз. Разлагается кислотами и содой. Образуется при автоклавной обработке - 2S, y- aS или известково-кремнеземистых смесей с отношением Са Si = 2 1 насыщенным паром при температуре 160— 130°С или в результате гидратации Сз5 при 180°С. Легче синтез протекает при гидротермальной обработке Y- 2S при 250—300°С в течение 5—10 суток. Природный аналог у-гидратата 2S не известен. [c.298]

    Металлический натрий применяется в качестве катализатора процесса полимеризации бутадиена в каучук, для изго-товления сплавов, синтеза красителей, фармацевтических препаратов и др. Металлический калий используется лишь для получения сплавов. Со ртутью калий и натрий образуют амальгамы — твердые сплавы, используемые в качестве восстановителя вместо чистых металлов. Широкое применение находят соедине1у1Я калия и натрия. Наибольшую ценность представляют их гидроксиды, которые получаются при электролизе водных растворов хлоридов (гл. V, И). Едкий натр (каустическая сода) в больших количествах используется для очистки нефтепродуктов, в мыловаренной, бумажной, текстильной промышленности (для производства искусственного волокна) и в других производствах. Солн калия служат хорошими удобрениями (см. гл. X, 4). [c.264]

    Магнийорганические соединения реагируют с неалкилированпыми у азота производными пиррола, образуя С-пиррилмагниевые соли. Эти соли, подобно другим гриньяровским соединениям, пригодны для различных синтезов. Например, пиррилмагниевая соль при дейстии СОд дает пиррол-а-карбоновую кислоту, а с хлорангидридами кислот — кетоны  [c.113]


Смотреть страницы где упоминается термин Сода, синтез: [c.35]    [c.35]    [c.165]    [c.444]    [c.324]    [c.260]    [c.129]    [c.265]    [c.501]    [c.719]    [c.122]    [c.123]    [c.170]    [c.193]    [c.316]    [c.543]   
Метод физико-химического анализа в неорганическом синтезе (1975) -- [ c.142 ]




ПОИСК





Смотрите так же термины и статьи:

Аммиачный метод синтеза кальцинированной соды

Производства хлора и продуктов органического и хлорорганического синтеза Производство хлора и каустической соды диафрагменным методом

Сода сода



© 2025 chem21.info Реклама на сайте