Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Магний растворимость в ртути

    Кривые распределения ртути по глубине, снятые рентгеноспектральным методом на микроанализаторе МАР-1, показывают, что с увеличением продолжительности выдержки при температуре максимальной растворимости ртути в магнии ( 450°С) растет толщина диффузионного слоя и происходит выравнивание концентрации ртути по глубине (рис. 2) а кривая 3 отображает хорошую сходимость результатов, полученных различными методами. [c.156]


    Взаимодействие с металлами. Индий, как и галлий, не образует ни с одним металлом непрерывных твердых растворов. Большой растворимостью в индии в твердом состоянии обладают все металлы, окружающие его в периодической системе галлий, таллий, олово, свинец, висмут, кадмий, ртуть, в меньшей мере — цинк. Кроме того, большой растворимостью в индии обладают магний и литий. Сам индий образует твердые растворы на основе металлов подгруппы меди, а также никеля, марганца, палладия, титана, магния, олова, свинца и таллия. Ограниченная растворимость в жидком состоянии обнаружена в системах индия с алюминием, железом и бериллием. [c.297]

    Известны другие групповые реагенты. Например, сульфаты щелочноземельных металлов и свинца плохо растворимы, а сульфаты щелочных металлов, магния, марганца (И), железа (И и III), кобальта (И), никеля (II), меди (II), цинка, кадмия хорошо растворимы плохо растворимы хлориды серебра, ртути, свинца, золота (I), меди (I), таллия(1), а другие хлориды хорошо растворимы. [c.12]

    Основные научные работы относятся к химии и технологии платины, палладия и хрома. Первым в России исследовал платиновые металлы и получил (1797) ряд тройных комплексных солей платины — хлороплатинаты магния, бария и натрия. Изучал растворимость в воде хлороплатината аммония. Получил (1797) амальгаму платины восстановлением хлороплатината аммония ртутью. Разработал (1800) новый способ получения ковкой платины прокаливанием ее амальгамы. Предложил метод отделения платины от железа. Впервые получил (1797) и описал золь металлической ртути. Открыл (1800) хромовые квасцы, получил ряд окислов хрома. Исследовал сплавы платины с медью и серебром, сернистую платину, возглавлял (1799—1805) Закавказскую экспедицию, изучавшую минеральные богатства Кавказа и Закавказья, способствовал развитию горного дела в этом районе. [c.348]

    Растворимость металлов в ртути весьма различна. Наибольшей растворимостью при комнатной температуре обладают таллий и индий (около 50%) растворимостью от 1 до 10% обладают цезий, рубидий, кадмий, цинк, свинец, висмут, олово, галлий от 0,1 до % — натрий, калий, магний, кальций, стронций, барий от 0,01 до 0,1% — литий, серебро, золото, торий от 0,01 до 0,001% — медь, алюминий и марганец. Практически нерастворимы в ртути металлы семейства железа, а также бериллий, германий, титан, цирконий, мышьяк, сурьма, ванадий, тантал, хром, молибден, вольфрам и уран. Для некоторых металлов растворимость в ртути сильно увеличивается с увеличением температуры. Известны амальгамы нерастворимых в ртути металлов эти системы представляют собой коллоидные растворы или взвеси в ртути. В таких амальгамах можно, например, довести содержание железа до [c.306]


    Натрий и калий действуют на воду цри обыкновенной температуре, а некоторые из более тяжелых металлов — только при повышении температуры и уже не столь быстро и резко. Так, магний и кальций выделяют из воды водород только при кипении воды, а цинк и железо — только при накаливании до краснокалильного жара, целый же ряд тяжелых металлов, как медь, свинец, ртуть, серебро, золото и платина, вовсе не разлагают воды ни при какой температуре, не заступают в ней место водорода. Из этого ясно, что водород можно получить разложением водяного пара посредством металлического железа (или цинка), при возвышенной температуре. Опыт производится таким образом в фарфоровую трубку кладут куски железа (напр., стружки, гвозди), подвергают все действию сильного жара и пропускают водяной пар, который, приходя в прикосновение с железом, отдает ему кислород, чрез что водород его делается свободным и выходит из другого конца трубки вместе с неразложившимся водяным паром. Способ этот, исторически имеющий большое значение, практически мало удобен, требуя возвышенной температуры. Притом реакция эта, как обратимая (накаленная масса железа разлагает струю паров воды, образуя окалину и водород, а масса железной окалины, накаленная в струе водорода, образует железо и водяные пары), может служить для получения водорода только потому, что образующийся водород удаляется по своей упругости [98]. Если же кислородные соединения, т.-е. окислы, получающиеся из железа или цинка, будут иметь возможность переходить в раствор, то прибавляется сродство, действующее при растворении, и реакция может становиться необратимою, идущею сравнительно гораздо легче [99]. Так как окислы железа и цинка, сами по себе нерастворимые в воде, способны соединяться (имеют сродство) с кислотными окислами (как далее подробнее рассмотрим) и дают с кислотами или гидратами, обладающими кислотными свойствами, вещества солеобразные и растворимые, то, при действии таких кислотных гидратов или их водных растворов, т.-е. кислот, железо и циик способны выделять водород с большою легкостью, при обыкно- [c.93]

    При нагревании СгО образует осадок Сг(ОН)з. Нод действием солей аммония АЮ " разрушается с образованием осадка А1(ОН)з. Гидроксиды цинка, кадмия, никеля, кобальта, меди, серебра, ртути (111 под действием избыточного количества водного раствора аммиака образуют аммиакаты [2п(ЫНз)4Р+, [ d (NHs)4]2+, INi(NH3)6F+ [Со(ЫНз)бР+, [ u(NH3)4f+, (Ag(NH3)2]+ [Hg(NHa)2P+ Гидроксиды марганца, магния и железа (II) растворимы в солях аммония  [c.23]

    Растворимые карбонаты образуют с катионами магния, кальция, стронция, бария, марганца, железа (II), серебра, ртути (I) белые осадки карбонатов, например  [c.28]

    Некоторые металлы — калий, молибден, вольфрам, железо, осмий, иридий — горят в трифториде хлора [И]. Натрий, кальций, магний, алюминий, серебро, цинк, свинец и олово при взаимодействии с трифторидом хлора образуют фториды, не растворимые в жидком реагенте происходит пассивация металла. Однако при нагревании эти металлы бурно реагируют. Более медленно взаимодействует ртуть. При действии трифторида хлора на селен образуется тетрафторид селена [99]. [c.50]

    В системах вольфрама с гафнием, платиной, платиноидами и рядом других металлов имеются области растворимости. С молибденом, ниобием и танталом вольфрам дает непрерывные твердые растворы. С серебром, медью, свинцом, оловом, висмутом, ртутью, кальцием, магнием, марганцем вольфрам не сплавляется. Некоторые сплавы вольфрама имеют большое практическое значение в силу их прочности, твердости, жаропрочности. Так называемые псевдосплавы — смеси вольфрама с серебром и медью — обладают высокой электропроводностью [75, 8]. [c.322]

    Применение в качестве запирающих жидкостей насыщенных растворов различных солей натрия, магния и других уменьшает растворимость газов. При точных опреде.чениях в качестве запирающей жидкости вместо водных растворов применяют ртуть. [c.181]

    Растворение жидким металлом. Для растворения могут быть использованы расплавленные алюминий, цинк или магний при 800—1000°. Образовавшийся сплав может быть растворен в азотной кислоте таким образом устраняется необходимость применения более агрессивных реагентов. Однако применение высокотемпературных процессов к высокорадиоактивным материалам является весьма трудной проблемой (ср. часть III) кроме того, этот метод увеличивает количество инертных материалов в отходах. Однако в качестве растворителя может быть использована ртуть, которую можно удалять дистилляцией. Растворимость урана в ртути невелика, и для того, чтобы избежать употребления больших количеств ртути, необходимо применить систему оборотов. [c.127]

    На рис. 28 показана растворимость элементов в железе и его сплавах при комнатной температуре, а также граница, характеризующая возможность образования диффузионного покрытия тем или иным элементом. Элементы, расположенные справа от этой границы (щелочные и щелочноземельные металлы, а также кадмий, олово, сурьма, ртуть, цирконий, магний, свинец и др.), диффузионных покрытий не образуют образовывать диффузионные покрытия могут лишь элементы, расположенные слева от [c.70]


    Все остальные двойные системы с хлоридом индия относятся к эвтектическому типу. Для хлорида индия оказалось характерным образование областей твердых растворов с хлоридами ряда элементов, отличающихся от индия по валентности. Особенно большой растворимостью в хлориде индия в твердом состоянии, по данным термического анализа, обладают хлориды магния (около 33 мол. %), кобальта (45 мол. %), никеля (. 25 мол. %), цинка (18 мол. %), тетрахлорида теллура (г 15 мол. %). Растворимость хлорида олова в хлориде индия в твердом состоянии составляет 8 мол. %, хлорида марганца — 4 мол. %, хлорного железа — около 3%, хлоридов кадмия и свинца — не более 1—2%. Хлориды меди, серебра, ртути, таллия, висмута, кальция, бария и щелочных металлов твердых растворов на основе хлорида индия не образуют. [c.68]

    При температуре 1400 С структура тория из гранецентри-рованной кубической превращается в объемноцентрированную. В своей низкотемпературной модификации торий имеет атомный диаметр, равный 3,59 А, а в высокотемпературной форме 3,56 А. Атомные диаметры большинства металлов отличаются от атомного диаметра тория более чем на 15%, т. е. pasnni a атомных диамет-jPOB достаточна, чтобы существенно задерживать образование твердых растворов. Можно ожидать только ограниченной взаимной растворимости тория и других металлов в твердом состоянии. Вильгельмом и сотрудниками [25] были исследованы и описаны сплавы тория с алюминием, бериллием, висмутом, церием, лантаном, хромом, кобальтом, медью, золотом, гафнием, железом, свинцом, магнием, марганцем, ртутью, никелем, ниобием, серебром, танталом, титаном, вольфрамом, ураном, ванадием, цинком и циркснлем. [c.40]

    Ранее мы показали [14], что я-аллильные комплексы палладия легко восстанавливаются как электрохимически, так и различными восстановителями. С другой стороны, хорошо известно, что ртуть восстанавливает ионы палладия и платины при полярографических исследованиях без наложения потенциала. Однако в данном случае простой процесс переноса электрона не является движущей силой реакции. Прежде всего, об этом свидетельствует тот факт, что металлы (Мд, Zn, Сс1 и Оа) более сильные восстановители, чем ртуть, не взаимодействуют с я-аллилпалладийхлоридом в этих условиях. Опыты с жидким галлием и мелкодисперсными порошками цинка, кадмия и магния показали, что состояние поверхности металла в этих случаях не имеет значения. Однако, несомненно, что реакция с металлической ртутью протекает на поверхности последней, так как растворимость ртути в бензоле, как показали недавно Поллард и Вествуд [11], недостаточна для того, чтобы обеспечить гомогенный характер взаимодействия. [c.227]

    К труднорастворимым соединениям, образующимся на магниевых протекторах при обычной токовой нагрузке, относятся гидроксид, карбонат и фосфат магния. Впрочем, растворимость гидроксида и карбоната еще сравнительно высока. Очень низкую растворимость имеет только фосфат магния. Движущее напряжение у магниевых протекторов при защите стали при не слишком малой электропроводности и> >500 мкСм-см составляет около 0,65 В, т. е. в три раза выше, чем у цинка и алюминия. Магниевые протекторные сплавы применяются преимущественно там, где движущее напряжение цинковых и алюминиевых протекторов недостаточно или где опасность пассивации слишком велика. Магниевые протекторы используют при повышенном электросопротивлении среды и для получения большей плотности защитного тока. Объектами такой защиты могут быть стальные конструкции в пресной воде, балластные танки для пресной воды, водоподогреватели и резервуары для питьевой воды. В случае резервуаров для питьевой воды важное значение имеет физиологическая безвредность продуктов коррозии (см. раздел 21.4). Здесь нельзя, например, применять алюминиевые протекторы, активированные ртутью. В грунте магниевыми протекторами можно защищать небольшие сооружения при удельном сопротивлении грунта до 250 Ом-м и более крупные резервуары и трубопроводы при сопротивлении грунта до 100 Ом-м. На объектах, имеющих органические покрытия для защиты от коррозии, в средах со сравнительно хорошей проводимостью иногда может оказаться необходимым промежуточное включение омического сопротивления для ограничения тока, чтобы не допустить повреждения покрытия слишком большим защитным током, или чтобы предотвратить установление слишком низких потенциалов (см. раздел 6). [c.188]

    Окись ртути, нагретая с твердым хлоридом магния, превращает ло следний в окись, яе растворимую в воде. Окись ртути переходит при этом в хлорную ртуть, а избыток ее улетучивается. [c.304]

    Растворимость образующихся магний- и литийорганических соединений, характеризующихся высокой ионнос-тью связи С-Металл, объясняется образованием комплексов с участием диэтилового эфира (см выше) Менее активные металлы, например, ртуть, олово, реагируют только в виде сплавов с натрием (сплавы ртути называются амальгамы) [c.938]

    Хотя растворимость хлорида серебра в растворах ртути(II) была изучена еще в начале XX столетия [70], этот метод мало используется. Мани и Дэвис [67] рассчитали значение РгДляокса-лата марганца (II) по измерениям растворимости оксалата бария в растворах хлорида марганца (II). Присутствием первого оксалатного комплекса марганца и комплексов хлорида бария пренебрегали. Подобным образом для системы иодата магния [c.240]

    Как алифатические, так и ароматические изоцианаты могут образовывать тримеры. Эта реакция, как и димеризация, является особым примером взаимодействия изоцианата с ненасыщенным соединением. Такие катализаторы, как триэтилфосфин, которые ускоряют димеризацию ароматических изоцианатов, катализируют также триме-ризацию алифатических изоцианатов . Кроме того, тримеризация ароматических и алифатических изоцианатов происходит под действием ацетата кальция , ацетата ка-лия , формиата натрия , карбоната натрия , метилата натрия , триэтиламина , щавелевой кислоты , бензоата натрия в диметилформамиде , а также в присутствии большого количества растворимых соединений железа, натрия, калия, магния, ртути, никеля, меди, цинка, алюминия, олова, ванадия, титана и хрома , тетрабути-рата титана и кислорода ". Эффективными оказались также катализаторы Фриделя — Крафтса . Имеются данные, что тре/л-бутилизоцианат, возможно, вследствие стерических препятствий, не образует тримера даже в присутствии триэтилфосфииа . Наличие орто-заместителей у ароматических изоцианатов значительно понижает их способность к тримеризации. [c.108]

    Амины и аммиак, которые хотя и не относятся к высокоселективным реагентам, обычно используют в качестве маскирующих агентов с показателями маскирования в пределах 5—25 по отношению к таким ионам металлов, как ртуть(И), медь(П), серебро, цинк, никель и кадмий (см. рис. 11-4). Буферные растворы уксусной кислоты можно использовать для маскирования ионов свинца с целью предотвращения осаждения сульфата свинца (показатель маскирования составляет примерно 3 или 4). Цитраты в виде 0,5 раствора при pH = 13 характеризуются показателями маскирования 26 — для алюминия и 22 —для железа(1П). Образование растворимых комплексов оксалата, цитрата и тартрата может быть использовано для предотвращения выпадения осадков гидроксидов многих металлов. При более низком значении pH оксалат в качестве маскирующего агента для этих ионов лучше, чем цитрат. Цианиды в реакции с ЭДТА при высоком pH маскируют ионы таких металлов, как серебро, кадмий, кобальт, медь, железо, ртуть, никель и цинк, однако они не оказывают влияния на алюминий, висмут, магний, марганец, свинец и кальций. Следовательно, цианиды можно использовать при дифференцирующем титровании ЭДТА смесей этих металлов. Часто вместо цианидов для маскирования предлагаются тиолы, поскольку они менее токсичны при низком [c.233]

    Эти три металла дают, как магний, окислы RO, образую щие мало энергически основания, и, как Mg, они летучи Летучесть их возрастает с атомным весом. Магний перего няется при белокалильном жаре, цинк при температуре 930" кадмий около 770°, а ртуть около 357°. Окислы их RO восстанов ляются легче магнезии, всех легче HgO. Свойства их солей RX (растворимость, способность образовать двойные и основные соли и многие другие качества) во многом такие же, как у MgX . С возрастанием атомного веса возрастает трудность окисления, непрочность соединений, плотность металла и соединений, редкость в природе и множество других свойств. Особенности, сравнительно Mg, ожидаются уже потому, что Zn, d и Hg суть металлы тяжелые. [c.100]

    Бидный раствор аммиака образует с катионами магния, железа (II п III), алюминия, хрома, марганца, никеля, кобальта, цинка, меди, кадмия, висмута, олова (И и IV), сурьмы (III и V), серебра, ртути (I и II), свинца осадки гидроксидов (табл. 6). Ре(0Н)2, Мп(0Н)2, Mg (ОН) 2 осаждаются не полностью, так как они частично растворимы в солях аммония. Гидроксиды цинка, меди, никеля, кобальта, кадмия и серебра растворимы в избыточном количестве водного раствора аммиака с образованием комплексных катионов — аммиакатов. [c.23]

    Ртуть(1) при действии (NH4)2S04, Н2О2 и NH4OH окисляется перекисью водорода до ионов Hg +, которые в присутствии избытка аммонийных солей и аммиака образуют растворимые комплексные соединения, состав которых точно не установлен. Ионы меди (И) при действии аммиака перейдут в раствор в виде комплексных ионов [Си(ЫНз)4]2+ и окрасят его в синий цвет. Чтобы синяя окраска раствора не затемняла сине-фиолетовую окраску осадка, испытуемый раствор после осаждения гидроксида магния и добавления феназо сильно разбавляют водой. Реакцию магния с феназо можно выполнять в присутствии окислителей гипохлорита, перекиси водорода и др. [c.105]

    Взаимодействие с металлами. Индий, как и галлий, не образует ни с одним металлом непрерывных твердых растворов. Ранее предполагалось, что такие растворы индий образует с таллием и свинцом, но позднейшие работы обнаружили в этих системах узкие двухфазные области. Щнрокие области твердых растворов на основе индия образуют все металлы, окружающие его в периодической системе,— галлий, таллий, олово, свинец, висмут, кадмий, ртуть, в меньшей мере цинк. Кроме того, значительно растворяются в индии магний и литий. Сам индий легко образует твердые растворы в металлах группы меди, а также в никеле, марганце, палладии, титане, магнии, олове, свинце и таллии. Ограниченная растворимость в жидком состоянии до сих пор обнаружена только в системе индий—алюминий. [c.98]

    Для определения ряда ионов используют как осадители и титранты растворимые в воде нормальные вольфраматы калия, натрия, аммония и магния. Спеканием Li W О4 с LigO в атмосфере кислорода при 500° С и 600 мм. рт.ст. с последующим отжигом получен основной вольфрамат лития LijWgOg [799]. В аналитической химии вольфрама используют образование малорастворимых вольфраматов серебра, ртути, щелочноземельных элементов и свинца. [c.21]


Смотреть страницы где упоминается термин Магний растворимость в ртути: [c.17]    [c.551]    [c.178]    [c.164]    [c.240]    [c.2164]    [c.16]    [c.314]    [c.65]    [c.73]    [c.172]    [c.30]    [c.324]    [c.145]    [c.240]    [c.16]    [c.59]    [c.265]    [c.314]    [c.17]    [c.17]   
Основы общей химии Том 2 (1967) -- [ c.344 ]




ПОИСК





Смотрите так же термины и статьи:

Растворимость магния



© 2024 chem21.info Реклама на сайте