Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Обрастание покрытий

    Свинец- и оловоорганические соединения в последнее время находят применение в качестве инсектицидов и фунгицидов. Например, на основе этих соединений можно получать полимерные вещества, обладающие высокой активностью по отношению к плесневым грибкам и микробам. Поэтому они могут использоваться как защитные покрытия для металлов, древесины, бетона, текстильных и других материалов. Краски и лаки на их основе применяются для защиты подводных частей судов от обрастания морскими организмами. Стекло, металл, дерево и другие строительные материалы, по1 рытые такими веществами, приобретают высокую стойкость к действию плесневых грибков в тропических условиях. [c.178]


    Краски, содержащие биологические яды, широко применяются при окраске подводной части корпусов судов, предназначенных для плавания в соленой (морской) воде. В этом случае, кроме разрушения красочной пленки и следующей за этим коррозии металла, происходит сильное обрастание покрытий морскими организмами. Эти обрастания делают поверхность подводной [c.15]

    Покрытия для морских судов должны предотвращать электрохимическую коррозию и обрастание корпусов морскими организмами, а также снижать шероховатость поверхности и не быть электро- [c.202]

    В теплой морской воде, богатой растительными и животными организмами, наблюдается обрастание покрытий. На поверхности образуется бактериальная слизистая пленка, состоящая из бактерий, простейших микроорганизмов и диатомовых водорослей, которая, увеличиваясь, достигает большой толщины (количество отлагающейся биомассы нередко доходит до 40 кг/м в год и более). Обрастание вызывает ускоренное разрушение покрытий и преждевременную коррозию металла. Одновременно резко ухудшаются эксплуатационные характеристики объектов, находящихся в воде скорость движения судов уменьшается на 50—100%, выходят из строя судовые и океанологические приборы, возрастает волновая нагрузка на гидротехнические сооружения. Все это вызывает необходимость борьбы с неблагоприятным воздействием биологической сферы. [c.189]

    Обрастание покрытий. От обрастания морскими организмами в наибольшей степени страдает морской флот. Подсчитано, что годовой ущерб, который причиняет обрастание флоту Англии, составляет 50 млн. фунтов стерлингов, США — 500—700 млн. долларов. [c.191]

    В некоторых случаях обрастание может оказать полезное действие, например, для свайных оснований, шпунтовых морских стенок и др. Стальные образцы без покрытий в Черном море корродировали со ско- ростью 0,09- ДЗ мм/год, а скорость коррозии тех же образцов в состоянии обрастания составляла только 0,03 ,06 мм/год. [c.18]

    Основной предпосылкой пригодности покрытий является их химическая стойкость в окружающей среде, например в случае подземных или морских трубопроводов в грунтах различных видов, встречающихся на трассе, в пресной и соленой воде, а также стойкость против обрастания микроорганизмами. Такая стойкость для обычных рассмотренных здесь материалов покрытия полностью обеспечивается. Некоторые подробности могут быть получены из публикаций изготовителей сырья. [c.158]

    Для судов без покрытия катодная защита от коррозии практически невозможна или неэкономична ввиду большого требуемого защитного тока и неблагоприятного его распределения. К тому же между стальной стенкой корпуса и противообрастающим покрытием должен иметься электроизолирующий слой, чтобы не допустить электрохимического восстановления токсичных соединений металлов. Катодные продукты электролиза сами по себе не могут предотвратить обрастания. Наоборот, медь, инертная против обрастания при свободной коррозии, при катодной защите может подвергнуться обрастанию [20]. [c.357]


    Методы защиты от биоповреждений еще далеко не совершенны. В некоторых отраслях промышленности обнаружено, что многие из используемых материалов и покрытий не обладают достаточной стойкостью к биоповреждениям бактериями и грибами. Обрастание плавсредств и сооружений водными микро- и макроорганизмами в морских и речных условиях представляет самостоятельную проблему. То же можно сказать и в отношении повреждений техники термитами, грызунами, а летательных аппаратов — птицами. [c.4]

    Металл подложки Покрытие Обрастание, балл Наличие коррозии [c.35]

    Под морским обрастанием понимают поселение растительных и животных организмов на подводных поверхностях кораблей, портовых сооружений, трубопроводах и т. п. В результате обрастания повреждаются защитные покрытия конструкций, усиливаются процессы электрохимической коррозии. Кроме этого, снижаются скоростные характеристики и растут энергозатраты для поддержания требуемых ходовых качеств судов. Большой материальный ущерб наносят обрастатели системам водоснабжения, гидроаппаратам, охлаждающим установкам, гидротехническим сооружениям [191. [c.44]

    Погружаемые в морскую воду алюминиевые конструкции окрашивают в основном с целью предотвращения обрастания. Безопасны и эффективно предохраняют алюминий от биологического обрастания составы на основе оловоорганических соединений. Не следует применять краски, содержащие соединения меди, так как выделившиеся из краски и осевшие на открытых участках поверхности алюминия ионы меди могут вызывать ускоренный питтинг. Нанесение предварительного антикоррозийного покрытия позволяет в какой-то мере уменьшить такую опасность, одпако с появлением оловоорганических составов применение более сложных систем, содержащих соединения меди, нельзя считать оправданным. Ни в коем случае нельзя также использовать для получения необрастающих покрытий краски, содержащие соединения ртути. Ртуть образует с алюминием амальгамы и делает его склонным к растрескиванию при наличии растягивающих напряжений. [c.156]

    В условиях эксплуатации устанавливают характер обрастания микроорганизмами материалов, степень повреждаемости материалов и покрытий, осуществляют отбор проб для идентификации бактерий, грибов, актиномицетов и т. п. Обнаружение скоплений микроорганизмов обычно осуществляется визуально или при увеличении и по изменению внещнего вида материала и покрытия. [c.61]

    Пробы для идентификации микроорганизмов рекомендуется отбирать следующими способами [16] взятием пробы металлической петлей или тампоном и переносом ее в пробирку с питательной средой снятием отпечатков на полиэтиленовую липкую ленту (метод реплик) отбором обрастаний с частицами поврежденного материала и покрытий скальпелем. Срок хранения и транспортирования проб при температуре 2...30°С — до 1 мес. [c.61]

    Предотвращение обрастания микроорганизмами и биокоррозии в водных и органических растворах достигается обработкой поверхности изделий радиоактивным технецием Тс или его соединениями. Толщина покрытий от моноатомного до 0,127 мм. Способ нанесения электрохимический, катодный, распылением, осаждением из газовой фазы, металлизацией, осаждением в вакууме [Пат. 608249 (Швейцария)]. [c.90]

    Механизм биоповреждений имеет специфические особенности, связанные с попаданием микроорганизмов на поверхность конс1рук-ций, адсорбцией их и загрязнением поверхностей, образованием микроколоний, накоплением продуктов метаболизма, стимулированием старения полимерных материалов и покрытий, эффектами синергизма. Установлена закономерность обрастания полимерных материалов и покрытий одними и теми же грибами в идентичных условиях [c.121]

    В некоторых специфических случаях, как, например, в судостроении, при прокладке подземных коммуникаций и др., важно, чтобы покрытия были устойчивыми к действию микроорганизмов и обрастанию, что достигается путем добавления специальных веществ — фунгицидов. [c.35]

    Зависимость коррозионных потерь от времени экспозиции для образцов, испытывавшихся на среднем уровне прилива, имеет интересные особенности, являющиеся серьезным аргументом в пользу изложенной выше теории биологического контроля скорости коррозии в морской воде. Эта кривая представлена на рис. 122. Видно, что в течение первого года экспозиции скорость коррозии стали была очень велика (примерно 250 мкм/год), почти вдвое выше, чем при экспозиции в условия> постоянного погружения. Образцы в зоне прилива также подвергались обрастанию (в основном усоногими раками), но оно происходило значительно медленнее, чем при постоянном погружении в том же месте, и только через год на металле образовался слой, обладающий высокими защитными свойствами. После этого (в интервале от 1 до 2 года испытаний) скорость коррозии упала до очень малого значения (менее 10 мкм/год). Медленное обрастание и больший доступ кислорода к поверхности металла в зоне прилива (по сравнению с погруженными образцами) задержали возникновение полностью анаэробных условий на металлической поверхности, что, очевидно, и проявилось в увеличении периода защиты металла вследствие обрастания. Если бы рост бактерий на этой стадии можно было затормозить, то скорость коррозии осталась бы на очень низком уровне, сделав возможной длительную эксплуатацию углеродистой конструкционной стали без защитных покрытий. Это было бы аналогично случаю атмосферной коррозии стареющих (низколегированных) сталей, при многолетней эксплуатации которых практически не требуется никакого ухода. [c.444]


    С целью использования защитных свойств естественных покрытий, возникающих вследствие обрастания, иеобходимо разработать методы привлечения морских организмов к поверхности металла и способы поддержания сохранности таких покрытий. [c.453]

    Наряду с исследованиями обрастания следует изучить способы регулирования популяций анаэробных сульфатвосстанавливающих бактерий. Селективное подавление бактерий при условии сохранности защитного покрытия, возникшего вследствие обрастания, позволило бы получить очень низкие скорости коррозии углеродистой стали в условиях погружения без принятия дополнительных мер защиты. [c.453]

    Еще не так давно в процессе перетира пигментов и наполнителей в связующем встречались различные трудности и требовалась затрата значительного времени. В настоящее время использование многих смачиваюш.их веществ, обладающих способностью видоизменять химическое строение соединения, позволило улучшить и ускорить этот процесс, а также способствовало созданию эффективных и иногда совсем необычных краскотерок. В результате уменьшения продолжительности перетира повысилась производительность оборудования и снизилась себестоимость продукции. Изучается также влияние смачивающих веществ на такие свойства, как укрывистость и блеск. Поверхностно-активные (или смачивающие) вещества используют также для облегчения эмульгирования и сохранения стабильности красок, регулирования их реологических свойств и предотвращения вспенивания лакокрасочного материала, коррозии металла, обрастания покрытия ракушками и накопления на нем электрических зарядов, а также для сообщения покрытию бактерицидных свет ютв. [c.12]

    Содержащиеся в оборотной воде соли и другие примеси вызывают коррозию оборудования. Хлориды ускоряют коррозию вследствие увеличения кислотности воды и их разрущающего действия на пассивирующие пленки сульфаты агрессивно действуют на бетон. Диоксид углерода замедляет образование защитных пленок. Для защиты от коррозии в оборотных системах применяют различные ингибиторы. Процесс коррозии приостанавливают хромат и бихромат калия. Они же замедляют биологические обрастания. Для снижения коррозии воду обрабатывают также фосфатами, которые образуют пленку, изолирующую металл от воды. В отличие от хроматов фосфаты благоприятствуют развитию биологических обрастаний, поэтому эти химикаты иногда применяют совместно. Один из способов защиты металла от коррозии — защитные покрытия смолами, красками, лаками и эмалями, однако они недолговечны и восстановить их можно только во время ремонта. [c.86]

    Биологический фактор (обрастание подводной части конструкции различными морскими растительными и животными организмами мшанками, балянусами, диатомеями, кораллами) значительно ускоряет коррозию металлов в морской воде, вызывая разрушение защитных покрытий (что наблюдается в присутствии ба-лянусов), неравномерную аэрацию и щелевую коррозию. Кроме того, некоторые организмы (например, диатомеи) в результате фотосинтеза выделяют кислород, что ускоряет коррозию, так как [c.400]

    Биокоррозия (обрастание подводных сооружений морскими растительными и животными организмами - мшанками, балянусами, диатомеями, кораллами) разрушает защитные покрытия и ускоряет разрушение металлов. Некоторые живые организмы (например, мидии) замедляют коррозионный процесс, так как потребляют много кислорода. [c.43]

    Щелевая коррозия происходит не только в конструктивных зазорах и щелях, но и во вновь возникающих в процессе эксплуатации изделиях, например, при обрастании конструкций микроорганизмами, при отс лаивании покрытий, осаждении песка и ила, при неудовлетворительной сварке и т.п. [c.203]

    Цементные покрытия обладают высокими эксплуатационнымп свойствами (малочувствительны к перепаду температур, обладают высокой прочностью на истирание, стойкостью в агрессивных средах, предотвращают обрастание карбонатными отложениями). Цементные покрытия повышают коррозионную стой- [c.72]

    Это общее утверждение впрочем не означает, что сплавы со сте-хиометрической потерей материала от коррозии совершенно непригодны для изготовления заземлителей на станциях катодной защиты. Иногда в качестве материала для анодных заземлителей применяют даже железный лом кроме того, при электролитической обработке воды используют алюминиевые аноды (см. раздел 21.3). Цинковые сплавы находят применение как материал для анодов лри электролитическом травлении для удаления ржавчины, чтобы предотвратить образование гремучего хлорного газа на аноде. Для внутренней защиты резервуаров при очень низкой электропроводности содержащейся в них воды на магниевые протекторы иногда накладывают ток от внешнего источника с целью увеличить токоотдачу (в амперах) (см. раздел 21.1). По так называемому способу Кателько наряду с алюминиевыми анодами (протекторами) намеренно устанавливают медные, чтобы наряду с защитой от коррозии обеспечить также и предотвращение обрастания благодаря внедрению токсичных соединений меди в поверхностный слой. Впрочем, все такие области применения являются сугубо специальными. На практике число материалов, пригодных для изготовления анодных заземлителей, сравнительно ограничено. В основном могут применяться следующие материалы графит, магнетит, ферросилид с различными добавками, сплавы свинца с серебром, а также так называемые вентильные металлы с покрытиями из благородных металлов, например платины. Вентильными называют металлы с пассивными поверхностными слоями, не имеющими электронной проводимости и сохраняющими стойкость даже при очень положительных потенциалах, например титан, ниобий, тантал и вольфрам. [c.198]

    Плотность защитного тока существенно зависит от состояния покрытия поверхности. При использовании эффективных лакокрасочных материалов требуемый защитный ток обычно существенно уменьшается. Особенно благоприятны реактивные (отверждающиеся) смолы, например покрытия типа каменноугольный пек — эпоксидная смола, которые и применяются в настоящее время на большинстве портовых сооружений. Они обладают химической стойкостью в водах различного состава и не разрушаются даже при обрастании. Прн толщине 0,4— 0,6 мм электрическое сопротивление таких покрытий получается довольно высоким обеспечивается также высокая стойкость против катодного образования пузырьков и очень хорошая механическая износостойкость. [c.345]

    Из числа твердых примесей в воде, которыми могут ощутимо разрушать покрытия и образующиеся покрывные слои, следует назвать песок, шлам (ил) и лед. В соответствии с этим катодная защита судов, которые могут подвергаться таким нагружающим воздействиям, должна проектироваться более мощной. Напротив, обрастание не оказывает влияния ни на коррозию, ни на катодную защиту от нее. С одной стороны, при обрастании повышается сопротивление диффузии, определяющее доступ кислорода, но с другой стороны, оно может разрушить защитные покрытия. Высококачественные реакционнотвердеющие смолы при их обрастании (моллюсками и т. п.) не разрушаются [9]. [c.353]

    В противоположность толстослойным покрытиям для трубопроводов тонкослойные покрытия для судов и морских сооружений могут обеспечивать защиту в сочетании с мероприятиями катодной защиты лишь с некоторым риском. В результате электроосмотических процессов следует принимать в расчет возмол<ность образования пузырей, зависящую от концентрации щелочных ионов, потенциала, температуры и свойств системы покрытия эти пузыри заполняются высокощелочными жидкостями (см. раздел 6.2.2). Для предотвращения образования пузырей может быть целесообразным ограничение катодной защиты в сторону отрицательных потенциалов например, рекомендуется принимать —0,8 В. Однако опытных данных по этому вопросу пока мало. В отличие от морских сооружений, для судов и закрытые пузыри тоже нежелательны, поскольку они повышают сопротивление движению. Между тем одной из задач катодной защиты судов является поддержание низкого сопротивления движению путем предотвращения образования скоплений ржавчины. Сопротивление движению обычно складывается на 70% из сопротивления трению и на 30 % из сопротивления формы и волнового. Вторая составляющая для конкретного судна постоянна, а сопротивление трению под влиянием коррозии может повыситься примерно до 20 %. Кроме того, это сопротивление решающим образом уменьшается при наличии возможно более гладкой поверхности корпуса судна, не поврежденной местной коррозией. Еще одним фактором, увеличивающим сопротивление движению, является обрастание, бороться с которым можно соответствующими мероприятиями — применением противообрастающих покрытий. Потеря скорости, обусловленная шероховатостью, может привести к перерасходу до [c.356]

    Обрастание — сложное биологическое явление, в нем принимают участие около 2500 разных микро- и макроорганизмов. Отмечены случаи обрастания подводных частей судов весом до 30 кг/м [73]. Подсчитано, что за одно доковаиие с корпуса корабля среднего водоизмещения может быть снято до 200 т обрастателей. Обрастатели увеличивают трение между корпусом и слоями воды. Вследствие обрастания судно теряет первоначальную обтекаемость, а в связи с этим — скорость и маневренность. Обрастание приводит к перерасходу топлива, ухудшению эксплуатационных показателей, разрушению защитного лакокрасочного покрытия, усилению коррозии. В США потери судоходных компаний, связанные с обрастанием, составляют более 100 млн. долл. в год. [c.71]

    В морской воде скорость коррозии во многом зависит от деятельности и взаимодействия морских микроорганизмов. В условиях постоянного воздействия морской воды сталь сначала корродирует с очень большой скоростью, но быстро обрастает микроорганизмами, и в дальнейшем этот слой оказывает защитное действие. Покрытие на металле в виде продуктов коррозии и обрастания становится достаточно толсткм, и диффузия кислорода к поверхности прекращается. Часть этого кислорода поглощают аэробные бактерии. Однако низкая скорость коррозии сохраняется недолго, так как в отсутствие кислорода начинают действовать анаэробные бактерии. Условия для их роста возникают под образовавшейся пленкой, где возникает анаэробная среда. Кроме того, росту анаэробных бактерий способствует присутствие ионов железа, сульфатов и органических веществ. Как только начинают развиваться анаэробные бактерии, коррозия, замедленная защитной пленкой, усиливается и достигает постоянной скорости, уже не зависящей от толщины защитной пленки. [c.20]

    Бактерии также оказывают влияние на скорость коррозии. Суль-фатвосстанавливающие бактерии, встречающиеся в донных отложениях и в иле, вырабатывают сульфиды, агрессивные по отношению к таким металлам, как сталь и медь. В то же время биологическое обрастание может способствовать защите металла от коррозии. Сплошное покрытие из морских организмов на стали может уменьшать скорость ее коррозии, препятствуя доставке кислорода к поверхности металла. При наличии продуктов обмена веществ, например маннита, образующегося при воздействии бактерий на водоросли, коррозия некоторых металлов может усиливаться. [c.9]

    В теченпе периода актив ной жизнедеятельности на погруженной в воду поверхности можпо обнаружить множество различных организ- мов. С точки зрения коррозии наибольшее значение имеют сидячие организмы. Они попадают на покрытые биологической слизью поверхности в виде крошечных зародышей и прочно закрепляются, а затем быстро достигают зрелости и теряют подвижность. Клапп [4] перечисляет наиболее распространенные формы сидячих организмов, с которыми связано биологическое обрастание. [c.21]

    БЧ — большое число (питтингов) В — вспучивание Г — глубокая ИЦ — изменение цвета ИЦО — изменение цвета вследствие обрастания К —кромочная КР — коррозионное растрескивание КРН —коррозионное растрескивание под напряжением КПП —нет нарушений красочного покрытия Л — линейная М — межкристаллитная Н — начальная стадия Нр — неравномерная НЧ — небольшое число О — общая ОА — обезалюминирование Обш — обширная ОВУД—общая коррозия выше уровня донных отложений ОНУД —общая коррозия ниже уровня донных отложений Отд — отдельные (питтинги) ОТП — [c.221]

    Результаты длительных и краткосрочных коррозионных испытаний конструкционной углеродистой стали в естественных водных средах свидетельствуют о существенном влиянии морских организмов на скорости коррозии сплавов на основе железа в морской воде. В начальный период экспозиции, пока обрастание макроорганизмами не привело к образованию сплошного покрытия, наблюдались очень высокие скорости коррозии (до 400 мкм/год). Продолжительность этого начального периода, тип и интенсивность обрастания, а также коррозионные потери в течение первого года экспозиции в разных местах могут значительно отличаться. К концу первых 1—1,5 лег экспозиции большинство исследованных образцов было покрыто толстым слоем морских организмов, участвующих в обрастании. Хотя состав этих естественных покрытий сильно изменялся в зависимости от географического положения места испытаний, все они оказывали существенное защитное влияние на стальные пластины. Защитные свойства естественных покрытий, образующихся при обрастании, значительно уменьшаются, когда они становятся достаточно толстыми (биологически активными) и препятствуют проникновению кислорода к поверхности металла. В этих условиях процесс коррозии контролируется сульфатвосстанавливающими бактериями, активными в анаэробной среде на поверхности металла, сохраняющейся благодаря самозалечивающемуся покрытию, возникшему при обрастании. Скорость коррозии стали приобретает стационарное значение, причем для различных мест эти значения очень близки. [c.453]

    В морской воде зависимость коррозионных потерь массы от времени, показанная на рис. 121, становится линейной пактически уже после 1 года экспозиции, что было бы невозможно, если бы коррозия определялась диффузией кислорода через постоянно растущий слой продуктов коррозии и морских организмов. Следовательно, необходимо искать другое объяснение. Полученные данные позволили предположить, что еще до первого измерения (1 год) покрытие, возникающее на металле одновременно в результате коррозии и обрастания, становится достаточно толстым и образует эффективный барьер для диффузии кислорода к корродирующей поверхности. Возможно, что прекращение доступа кислорода к поверхности металла связано не только с непроницаемостью образовавшегося слоя. Дышащие аэробные сапрофитные бактерии, присутствующие во внешнем слое, также могут частично или полностью поглощать направляющийся к металлу кислород. Возможность такого защитного действия названных организмов обсуждалась в литературе [65, 66]. [c.443]

    В результате продолжительных коррозионных испытаний, проведенных на острове Наос, было установлено, что в этом месте на металле в результате обрастания возникает препятствующее диффузии кислорода самоизлечивающееся покрытие и что сульфатвосстанавливающие бактерии активны на всей поверхности металлической пластины. Однако при этом не было выяснено, в каких условиях диффузионный барьер эффективен, в каком случае анаэробные бактерии начинают контролировать процесс коррозии и каким образом эти факторы связаны с конечной линейной зависимостью потерь массы от времени. Кроме того, все данные были получены в одном месте, где. основным морским организмом, участвовавшим в обрастании, была корковая мшанка. Было неизвестно, как протекает коррозия в других местах и могут ли анаэробные бактерии адаптироваться и играть определяющую роль при других формах обрастания в морской воде с другой температурой и соленостью. Представляло интерес также установить, как другие формы обрастания влияют на скорости коррозии. [c.446]

    Сопоставление только что рассмотренных результатов и данных, полученных в долговременном коррозионном эксперименте, показывает, что образование сплошного покрытия в результате обрастания морскими организмами уменьшает коррозию стали в морской воде. Тот факт, что анаэробные условия развивались на всех металлических поверхностях, свидетельствует, что при любой форме обрастания металла на нем возникает эффективный диффузионный барьер, препятствующий доставке кислорода к поверхности и удалению с нее водорода. Поэтому разработка мероприятий, способствующих сплошному и сильному обрастанию стационарных морских конструкций, заслуживает внимания. Крисп и Мидоуз [72] показали, что усоногих можпо привлечь к поверхности, обработав ее ракушечными экстрактами. В одном случае заселенность возросла на порядок. Подобные методы могут пайти приме- [c.448]

    Большинство предшествующих исследований коррозии, вызванной суль-фатвосстанавливающими бактериями, было посвящено почвенной коррозии или влиянию лабораторных культур бактерий. Очень мало внимания уделялось важной роли сульфатвосстанавливающих бактерий в морских средах. Рассмотренные выше результаты натурных коррозионных испытаний, проведенных Научно-исследовательской лабораторией ВМС США, показывают, что эти анаэробные бактерии оказывают определяющее влияние на коррозию конструкционных сплавав на основе железа в океане. Во всех местах, включая полусоленые воды бухты Чисапик, сульфатвосстанавливающие бактерии оказывали воздействие на металл. К концу первого года экспозиции коррозионные продукты, содержащие сульфид железа, были обнаружены на большинстве образцов. Питтинг на всех пластинах был умеренным. Отдельные раковины или участки с толстым слоем отложений не приводили к образованию более глубоких питтингов. В результате деятельности анаэробных бактерий на всех металлических поверхностях под образовавшимся слоем продуктов коррозии и приросших морских организмов возникал мягкий, плохо сцепленный с металлом слой, состоявший в основном из сульфида железа. При наличии такого слоя расположенные над ним продукты коррозии и обрастания легко удаляются большими целыми кусками. Проведенные испытания показали, что при образовании на металле в процессе обрастания достаточно толстого сплошного покрытия создаются анаэробные условия. При этом процесс коррозии определяется бактериальной активностью. [c.450]


Смотреть страницы где упоминается термин Обрастание покрытий: [c.153]    [c.153]    [c.1138]    [c.486]    [c.10]    [c.17]    [c.168]   
Химия и технология лакокрасочных покрытий Изд 2 (1989) -- [ c.189 , c.191 ]

Химия и технология лакокрасочных покрытий (1981) -- [ c.183 , c.185 , c.186 ]




ПОИСК





Смотрите так же термины и статьи:

Обрастание



© 2025 chem21.info Реклама на сайте