Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пол и изобутилен температурах

    Установка МТБЭ спроектирована таким образом, что конверсия изобутилена достигает 100%. Поскольку изобутилен практически полностью и избирательно извлекается из сырья, продуктовый бутен-1 высокой чистоты может быть получен при высокой степени извлечения путем применения обычного фракционирования. Изобутилен, температура кипения которого близка к температуре кипения бутена-1, больше не загрязняет продуктовый бутен-1. Такая схема используется в промышленном масштабе на нескольких заводах для производства бутена-1 высокой чистоты. [c.172]


    Дегидрогенизация углеводородов, например парафиновых углеводородов, в особенности изобутана в изобутилен температура выше 350°, обычно 480— 600 или 620° олефины, в особенности изобутилен, можно каталитически полимеризовать после того, как удалены соеди- [c.344]

    Полимеризация изобутилена и одновременное превращение н-бутилена в изобутилен, температура 300° Глина, сернокислый алюминий, силикаты и фосфорная кислота, фосфорная кислота и уголь (наиболее активна) 1423 [c.460]

    На одном заводе в производстве изобутилен-изобута-новой фракции в качестве исходного продукта применяется изобутан. В технологическом процессе он подвергается дегидрированию при температуре 600—620° С в псевдо-ожиженном слое катализатора, который одновременно служит теплоносителем. [c.21]

    Давно известно, что изобутилен даже при низких температурах дает в качестве основного продукта металлил-хлорид а не нродукт присоединения. В результате вторичной реакции с хлористым водородом, [c.364]

    Как отмечалось выше, третичные олефины очень легко реагируют с галоидводородами без катализаторов, но продукты реакции, как правило, не стойки, поэтому в некоторых случаях реакцию необходимо проводить при низкой температуро, например при —40°, чтобы образовался продукт присоединения [10]. Изобутилен легко реагирует с хлористым водородом при —78° [17]. При низких температурах олефины образуют комплексы 1 1, которые стойки только при низких температурах и, вероятно, предшествуют образованию более стойких продуктов присоединения, как реакции пропилепа и изобутилена с хлористым водородом [56]. [c.369]

    НОЙ температуре, дает высокие выходы сложных эфиров с камфеном и с некоторыми другими терпенами, а также дает хорошие выходы с третичными олефинами, как изобутилен и триметилэтилен. Бутилены и амилены нормального строения при нагревании с уксусной кислотой (содержащей 1% серной кислоты) при 100° дают 50—60% эфиров, однако этот процесс в промышленности успеха не имел. По-видимому, здесь сначала образуется алкилсульфат. Если сначала пропилен поглощается 88%-ной серной кислотой, а затем добавляется уксусная кислота, то при прибавлении воды можно получить изопропилацетат. Если же пропилен пропускается в смесь серной и уксусной кислот, то выход эфира может достигнуть 60%, но скорость поглощения значительно меньше, чем для одной серной кислоты [36]. [c.385]


    Изобутилен при определенных условиях (температура 25 — 40° С, давление 3,5 ат) связывается в изобутилсерную кислоту, которая легко отделяется от непрореагировавших бутенов и далее [c.107]

    Кроме полимеризации некоторых простых олефинов, разбавленная серная кислота каталитической гидратацией образует спирты. В случае изобутилена баланс между этими двумя реакциями представляет практический интерес. Абсорбированное количество является функцией водного содерн ания кислоты для наибольшей части олефина, присутствующего в растворе как третичный бутиловый спирт [385]. Однако этот раствор, если его оставить на несколько дней или тотчас же при нагревании до 80—100° С дает свободную кислоту и димер-тримерную смесь 1386] более короткое время реакции при более высокой температуре способствует образованию более летучих полимеров. Летучесть конечных полимеров можно контролировать, регулируя перед нагреванием кислотность раствора [387]. В открытой системе не весь абсорбированный изобутилен нолимеризуется часть его переходит в отходящий газ. Количество перешедшего в газ изобутилена опять-таки зависит от кислотности. Низкая кислотность способствует высокому газообразованию более высокие кислотности дают больше полимера, но он содержит меньше димеров. Это соотношение приведено на рис. П-5, который иллюстрирует взаимодействие в системе изобутилен — 63,5 %-пая серная кислота (кислота такой концентрации, полностью загруженная в изобутилен при комнатной температуре, титруется до получения 30 г НаЗО на 100 мл раствора). [c.113]

    В промышленности раствор серной кислоты применяется в так называемых холодных или горячих кислотных процессах для полимеризации изобутилена. Оба процесса основаны на описанных выше принципах. Холодный кислотный процесс включает в себя абсорбцию изобутилепа при нормальной температуре из нефтезаводских газовых фракций при помощи 60—65% серной кислоты, которая не абсорбирует нормальные бутены. Раствор, в большой степени содержит изобутилен в виде трет-бутиловых спиртов, нагреваемых примерно до 100° С. Получается смесь димера и тримера в отношении 3 1 [392, 393]. Вышеприведенный двухступенчатый процесс дает жидкие углеводороды в количествах, согласующихся только с имеющимся налицо изобутиленом. [c.115]

    Превращение фенола с полиизо-бутиленом в трет11чный октилфенол, разлагаемый затем на бутилфенол и изобутилен, температура 120° 1410 г фенола и 560 г диизобутилена превращаются в бутилфенол, температура 120°, продолжительность процесса 2 часа, выход 64,5% Хлористьп алюминий Хлористый алюминий (45 г) 787 [c.460]

    Полимеризацию 100%-ного изобутилена проводили в трубчатых контактных аппаратах. Аппарат состоял из 211 трубок, в каждую из которых загружали по 4 л фосфорнокислотного катализатора. Такая особая конструкция аппарата определялась трудностью отвода тепла, выделяющегося при полимеризации, поскольку исходным продуктом являлся неразбавленный изобутилен. Температуру в контактных трубках поддерживали постоянной, охлаждая их горячей водой, циркулирующей в межтрубном пространстве под давлепием. Повышение температуры в контактном аппарате сверх нормы влекло за собой одновременное увеличение давления, которое передавалось на автоматически действующий вентиль, выпускающий пар из межтрубпого пространства (сравните с регулировкой температуры в процессе Фишера-Тропша). При понижении давления в межтрубном пространстве нагретая вода испарялась и температура в трубках понижалась до требуемого уровня. [c.312]

    Известно, что олефины можно олигомеризовать термически — нагреванием до повышенных температур под давлением, а также каталитически — при мягких условиях. Термически легче всего олигомеризуется этилен, а каталитически — изобутилен. Однако термическая олигомеризация до сих пор не приобрела значения в нефтехимической промышленности, этот метод применяется в небольшом объеме только для получения полимер-бензина. [c.241]

    Основы управления процессом О-алкилирования метанола изобутиленом. Важными оперативными параметрами, влияющими на выход и качество МТБЭ, являются температура, давление, объемная скорость подачи сырья и соотношение метанол изобутен. Закокомерность влияния этих параметров на синтез МТБЭ примерно идентичны влиянию их на процесс С— алкилирования изо — [c.151]

    Алюминийтриалкилы при нагревании малоустойчивы. Даже низшие алюминийтриалкилы при атмосферном давлении перегоняются с разложением. Триэтилалюминий, перегнанный при 80— 100°С в вакууме, уже содержит до 5% продуктов разложения (ди-метилалюминийгидрида). При температуре более 200°С происходит полное разложение триэтилалюминия. Особой неустойчивостью отличаются алюминийтриалкилы, содержащие разветвленные органические радикалы. Например, триизобутилалюминий при 100 °С в течение часа разлагается на 50%, выделяя изобутилен. Триме-тилалюминий разлагается при температуре выше 300 °С с выделением метана, этана и водорода. [c.148]


    Основное направление реакции термического разложения алюминийалкилов в интервале 50—180 °С — это диссоциация на диал-килалюминийгидрид и олефин. При температурах в пределах 180— 300 °С триизобутилалюминий разлагается на водород, алюминий и изобутилен, а продуктами разложения триэтилалюминия являются сложные смеси алюминийалкилов и углеводородов. Термическое разложение триэтил- и триизобутилалюминия в замкнутом объеме начинается соответственно при 150 и 50 °С. [c.148]

    Процесс конденсации формальдегида и изобутилен протекает с участием катализатора — серной кислоть при температуре около 100 °С. В соответствии с перво начальной ре <омендацией были смонтированы трубо проводы из стали марки Х18Н10Т. При пуске произ водства выявилось, что нержавеющая сталь этой мари нестойка в указанной среде. [c.98]

    При пиролизе изобутана не образуется значительного количества этана и этилена как первичных продуктов основными продуктами являются изобутилен и водород, метан и пропилен. Этилен получается при разложении пропилена и изобутилена. Последний, разлагаясь при температурах до 925° С, дает в качестве первичного продукта метилаце- [c.89]

    Каталитическая макрополимеризация изобутилена. Полимеризация изобутилена при температурах ниже —70° С в присутствии катализаторов Фриделя-Крафтса, таких как хлористый алюминий, фтористый бор и четыреххлористый титан, приводит к образованию высокомолекулярных полимеров, обладающих эластическими свойствами [63]. Внесение, например, фтористого бора в жидкий изобутилен при —80° С вызывает мгновенную, почти взрывную реакцию в противоположность этому полимеризация при температуре кипения изобутилена (—6° С) требует индукционного периода и продуктом такой полимеризации являются лшдкие масла. Увеличение температуры от —90 до —10° С вызывает уменьшение молекулярного веса полимера от 200 ООО до 10 ООО. [c.227]

    Отличительной особенностью некоторых реакций карбоний-ионной полимеризации является то, что они идут при низких температурах и имеют значительные отрицательные температурные коэффициенты. Например, изобутилен [143] дает димеры и низкомолекулярный полимер при комнатной температуре, но полимеризуется весьма бурно, образуя высокополимер, при температурах от —80° до —100°. Дейнтой и Ивин предположили, что для этих систем наблюдаются предельные температуры (обсуждавшиеся выше), но возможно также, что с возрастанием темпе- [c.158]

    В других опытах [39] изобутилен пропускался в 67 %-ную серную кислоту при температуре ниже 20°. При этой температуре изобутилен поглощался с образованием т/гет-бутилового спирта, но образования полимера не наблюдалось. Полученная смесь затем нагревалась до 70—100° и реакция полимеризации происходила как в неразбавленной смеси, так и в разбавленном водой растворе серной кислоты с концентрацией последней, равной соответственно 66 и 58%. Во время нагревания часть изобутилена регенерировалась, причем количество регенерированного изобутилена было больше при большем насыщении им серной кислоты. При применении перемешивания или при добавлении к раствору твердого пористого материала количество регенерированного изобутилена увеличивалось. При разбавлении серной кислоты полимеризация тормозилась, но увеличивалось содержание диизобутилена в продукте полимеризации, а также повышалась степень регенерации изобутилена. Содержание диизобутилена увеличивалось также с повышением температуры реакции. Если раствор полимеризовался при комнатной температуре в течение длительного времени, то образовывались небольшие количества диизобутилена и большие количества триизобутилена. При исследовании продукта полимеризации в ходе этой реакции было замечено, что количество образовавшегося диизобутилена было значительно большим в начале реакции, т. е. когда раствор содержал больше 7ирет-бутилового спирта. [c.193]

    Полимеризация изобутилена шла быстро даже ири 28° с образованием полимеров, в которых 21 % водорода был замещен дейтерием. В незаполи-меризовавшемся изобутилене 8% водорода было замещено дейтерием. При аналогичных условиях полимеризация и дейтерообмен н-бутилена шли значительно медленнее, чем в реакциях изобутилена, а пропилена и этилена еще медленнее. По-видимому, полимеризация изобутилена в температурных пределах 125—206° и дейтерообмен незаполимеризо-вавшегося изобутилена не зависят в какой-либо степени от температуры. При начальном давлении 289 мм и при температуре 120° образовавшийся полимер периодически отбирался и анализировался. Результаты показывают, что содержание дейтерия во фракции полимера со временем возрастало. Содерн<ание дейтерия в остаточном изобутилене составляло 34 %, а в полимере оно возросло от 22 до 40 % при увеличении продолжительности реакции от 25 до 265 мин. В опыте с пропиленом температура поддерживалась в течение 1,5 часа при 102°, а затем в течение следующих [c.195]

    Пропилен-бутиленовые смеси. При изучении полимеризации олефинов отмечалось, что пропилен [22с] в присутствии бутиленов (содержащих изобутилен) начинает нолимеризоваться при значительно более низкой температуре, чем сам пропилен. При полимеризации смеси пропилепа и бутилена в присутствии фосфорной кцслоты при 150° и давлении 10 ат (условия полимеризации самого пропилена) получался жидкий углеводородный нродукт, который не соответствовал смеси полимеров, образовавшихся при раздельной полимеризации каждого из олефинов при тех же условиях. Несмотря иа то, что исходная смесь олефинов содержала значительно больше пропилена, чем бутилена, кривая перегонки показывала наличие лпшь небольшого количества фракции продукта, соответствующего понену, которьп был основным продуктом полимеризации самого пропилена. [c.197]

    Бутилены и бутиленовые смеси. Полимеризация изобутилена, к-бутиленов и смесв изобутилена и к-бутилена [34] под давлением 7,8 ат при температурах от 95 до 120°, 177 и 120° соответственно давала жидкие полимеры, содержавшие соответственно 70, 55 и 74 до 80% октенов (кипящих от 100 до 120°), которые гидрировались до октанов с октановыми числами 98—100, 83—85 и 95—97 соответственно. При давлении 42 ат и температуре 149° изобутилен — к -бутиленовые смеси давали полимеры, содержавшие 88% объемн. октенов, которые после гидрирования давали октановую фракцию с октановым числом 95. При полимеризации фракций нефтезаводских газов в аналогичных условиях образовывались полимеры, содержавшие от 85 до 95% октенов, которые при гидрировании давали октановые фракции с октановым числом 96. [c.198]

    О до 40° при перемешивании в автоклаве, охлаждаемом водой. Однако при добавлении таких более реакционноснособных олефинов, как изобутилен и изопентены, пропилен легко реагировал с олефинами изостроения с большим выходом гептеновой и октеновой фракций. Диоксифторборная кислота, таким образом, использовалась в качестве катализатора для сополимеризации пропилена с изопентеном, пропена с изобутиленом, бутена-1 с изобутиленом, бутена-2 с изобутиленом и смеси -бутиленов с изобутиленом при температурах от О до 40° и давлении от 3,4 до 8,5 ат. Полимеры гидрировались, подвергались фракционированной перегонке, а полученные фракции анализировались методом инфракрасной спектроскопии. Гидрирование сополимера пропилена и изобутилена давало продукт, содержавший 67 % гептановой фракции, состоявшей на 95 % из 2,3-диметилпентана. [c.201]

    Изобутилен легко полимеризовался в присутствии флоридина при —80° и значительно легче при комнатной температуре [48, 49]. Флоридии [c.203]

    При контакте с окисью алюминия, отложенной на силикагеле [73], изобутилен полимеризовался также и в паровой фазе при температуре ниже 40° с образованием продукта, содержавшего ди-, три-, тетра- и нонтаизобутилены. Все эти фракции рассматриваются как алифатические моноолефины. [c.204]

    Диизобутилев холодной сернокислотной полимеризации. Олефины Се, получаемые при сернокислотной полимеризации изобутилена, могут применяться для получения нонилового спирта. Фталевые эфиры этого спирта хотя и придают пластика-там из полихлорвинила низкую морозостойкость, но обеспечивают им высокие диэлектрические свойства. В качестве сырья для получения нонилового спирта используется фракция диизобутилена, выкипающая в пределах 95—115° С и получаемая при обработке 65%-ной серной кислотой сырой бутан-бутиленовой фракции нефтезаводских газов. При соответствующих температурах серная кислота абсорбирует практически исключительно изобутилен, не затрагивая к-бутиленов. Извлечение изобутилена может осу-ществляться двумя способами с использованием системы смесительный насос-отстойник или в реакторе с мешалкой, оборудованной электромагнитным приводом. [c.107]

    Данные свидетельствуют, что при 175 °С в присутствии других катализаторов (активированная алюминиевая фольга, фенолят алюминия) дифенилолпропан и продукты его алкилирования претерпевают расщепление. Нестойкость трет-бутилированного дифенилолпропана при высокой температуре отмечалась и другими авторами . Однако при алкилировании изобутиленом в присутствии (СвН50)зА1 в среде толуола при более низкой температуре (135—145°С) был получен с достаточно хорошим выходом тетразамещенный дифенилолпропан — 2,2-бис-(3, 5 -ди-трет-бутил-4 -оксифенил)-пропан [c.20]

    Как сообщают, пропилен димеризуется в 4-метил-1-пентен 1369] при комнатной температзфе при помощи 90—92% серной кислоты более сильная кислота дает более высококипящие комбинированные полимеры. При смешении с изобутиленом или с изоамиленом в присутствии серной кислоты пропилен сополи-меризуется с получением гептенов и октенов [370]. При помощи фосфорной кислоты при температурах ниже 300° С получаются правильные полимеры, а свыше этой температуры — комбинированные полимеры. С фтористым водородом при любых условиях получаются комбинированные полимеры [371]. Сложный полимер образуется также при термической полимеризации, которая имеет место при несколько более высокой температуре. Сравнение высокотемпературной термической полимеризации п 1олиыеризации, инищшрованной фосфорной кислотой, приведено в табл. И-17. Данные таблицы показывают, в каких размерах олефиновые полимеры превращаются в парафины, нафтены и ароматику. [c.110]

    В горячем кислотном процессе применяется какая-либо сильная кислота, но абсорбция проводится при температуре, примерно соответствующей температуре второй ступени в холодном процессе. Абсорбция и полимеризация заканчиваются в одну ступень. Одновременно имеет место сополимеризации между нормальными бутенами и изобутиленами 3,4,4-, 2,3,3- и 2,3,4-триметил-пентены обнаружены наряду с двумя диизобутиленовыми изомерами [394]. Октановое число около 86 и при гидрировании достигает 97. [c.115]


Смотреть страницы где упоминается термин Пол и изобутилен температурах: [c.312]    [c.356]    [c.132]    [c.17]    [c.17]    [c.356]    [c.547]    [c.413]    [c.228]    [c.106]    [c.137]    [c.191]    [c.204]    [c.344]    [c.346]    [c.348]    [c.365]    [c.379]    [c.307]    [c.115]   
Термическое разложение органических полимеров (1967) -- [ c.131 ]




ПОИСК





Смотрите так же термины и статьи:

Изобутилен

Изобутилен влияние температуры

Изобутилен оптимум температуры

Изобутилен поглощение, оптимальные температуры

Изобутилен полимеризация при низких температурах

Изобутилен при комнатной температур

Изобутилен при низких температурах

Изобутилен при умеренно низких температурах

Изобутилен температура кипения

О полимеризации изобутилена флоридином при низких температурах

Пол и изобутилен температура полураспада

Полимеризация изобутилена влияние температуры



© 2025 chem21.info Реклама на сайте