Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Политетрафторэтилен температурах

    Политетрафторэтилен Температура кипения Устойчив [c.202]

    Один из наиболее термостойких фторированных полимеров, известных в настоящее время, — это политетрафторэтилен (— F2— F2—)п, который устойчив к действию кислорода до сравнительно высоких температур. Например, при 300°С и выше он может быть использован в контакте с кислородом. Однако из-за высокого потенциального барьера вращения вокруг связей С—С и регулярного строения полимерной цепи этот полимер, молекулы которого представляют собой закрученные спирали с 16-ю атомами углерода в витке, является высокоплавким кристаллическим материалом и размягчается лишь при температурах, близких к температуре разложения [7]. [c.502]


    Насколько известно, единственной пластмассой, обладающей наибольшей пластичностью при низких температурах, вплоть до температуры жидкого гелия, является политетрафторэтилен (фторопласт-4). Указывалось также [115] о возможности герметизации арматуры низкотемпературного оборудования при применении пластмассы Кель-эф (политрифторхлорэтилен), аморфная [c.154]

    Политетрафторэтилен нерастворим и не набухает ни в одном из применяемых в настоящее время растворителей набухания даже при высокой температуре (выше температуры плавления) не наблюдается. Установлено, что политетрафторэтилен может растворяться лишь во фторированном керосине при 300°. Не менее важным свойством является исключительно высокая стойкость полимера к действию различных агрессивных сред. Он не изменяется даже при высокой температуре под действием концентрированных кислот (в том числе плавиковой кислоты, царской водки и т. п.), окислителей (азотной кислоты, озона и т. д.), щелочей. [c.258]

    Из твердых носителей на органической основе следует назвать политетрафторэтилен (тефлон). Его можно применять в хроматографических колонках при рабочей температуре примерно до 180° С. Большое преимущество этого носителя заключается в его минимальной химической активности и практическом отсутствии адсорбционной активности. Тефлон — лучший носитель для разделения смесей сильно полярных и реакционноспособных веществ. [c.74]

    Политетрафторэтилен является одним из наиболее высокоплавких кристаллических полимеров Вместе с тем температура, при которой он становится хрупким, очень низка. В результате этого изделия из политетрафторэтилена могут [c.420]

    Все более широкое применение находят твердые смазочные полимерные материалы на основе тетрафторэтилена. Политетрафторэтилен добавляют в горячее свежее масло работающего двигателя в соотношении 1/5. При этом образуется суспензия, которая со временем при эксплуатации обволакивает все детали двигателя, проникает в микронеровности и образует прочно сцепляющееся полимерное покрытие. Обычно толщина пленочного покрытия 1—2 мкм. Пленка не разрушается от воздействия химических реактивов, не растворяется в масле и бензине. Полимерная пленка снижает трение (до 10%), понижает температуру деталей и масла. Она оказывает уплотняющее действие, что обеспечивает повышение мощности и снижение расхода топлива (на 5—7%). Износ деталей снижается на 15—20%. [c.671]

    При понижении температуры политетрафторэтилена, нагретого выше температуры фазового перехода, происходит обратный процесс —кристаллизация полимера, причем скорость кристаллизации наибольшая около 300° С. Если образец охладить быстро, он не успеет закристаллизоваться. Такой полимер, который называется закаленным , мало содержит кристаллической фазы и более растяжим при низких температурах. Закаленный образец постепенно переходит в кристаллическое твердое состояние. Скорость этого перехода возрастает при приближении к 300° С. Поэтому с точки зрения стабильности механических свойств полимера температура в пределах 300°С для эксплуатации нежелательна. При температуре до 250° С этого явления ввиду малой скорости кристаллизации не наблюдается, поэтому до 250° С политетрафторэтилен можно длительно применять, не опасаясь изменения его физических свойств, связанного с изменением кристалличности. [c.145]


    Политетрафторэтилен, тефлон (4) плавится при 320—327 °С. Ни в чем не растворим и обладает чрезвычайно высокой химической стойкостью к действию сильных кислот, щелочей и органических растворителей даже при повышенных температурах. Используется для производства химически стойких труб, кранов, вентилей, подшипников. [c.243]

    Политетрафторэтилен (фторопласт-4) по химической стойкости превосходит все другие синтетические полимеры, благородные металлы, специальные сплавы, керамику и другие материалы. Изделия из фторопласта-4 изготовляют методом вальцевания или прессования при температуре около 400 °С. [c.126]

    Политетрафторэтилен (тефлон)-полимер мол. м. 20-30 тыс. т. пл. 300-320 С имеет низкий коэф. трення, весьма стабилен к агрессивным средам. Работоспособен в диапазоне температур от —200 до 300 °С. Недостатки плохая теплопроводность, низкая износостойкость и неспособность выдерживать нагрузки из-за высокой пластичности. [c.508]

    Шлифы обычно смазывают вазелином такой вязкости, чтобы при нормальной температуре его легко можно было нанести в виде тонкого равномерного слоя. Смазанные поверхности прижимают друг к другу. Если шлифы сферические или конические, то их одновременно проворачивают. При этом между притертыми поверхностями возникает тонкая пленка и поверхности шлифов становятся совершенно прозрачными. Правильно смазанное и притертое соединение на шлифах выглядит оптически гомогенным. Неплотное прилегание шлифов проявляется в образовании заметных простым глазом каналов. В особых случаях применяют специальные смазки. Так, работа в высоком вакууме требует применения более вязкой смазки. Хорошие результаты дает смазка, приготовляемая растворением каучука в вазелине (смазка Рамзая для шлифов). Исключительно хорошей смазкой является силиконовый вазелин, который в отличие от обычного вазелина лишь незначительно растворяется в органических растворителях. При работе с углеводородами, растворяющими обычные смазки типа вазелина, хорошо себя зарекомендовали вязкие вещества гидрофильного характера, типа этиленгликоля, глицерина, различных полигликолей или мыла. Хорошо уплотняет шлифы мелкодисперсный политетрафторэтилен. [c.20]

    В последнее время в лабораториях стали применять и политетрафторэтилен тефлон, фторопласт). Это самая устойчивая пластмасса, которая выдерживает повышение температуры до 300 . При более высокой температуре тефлон начинает разлагаться с выделением ядовитого дыма. Поэтому нельзя допускать непосредственного контакта политетрафторэтилена с пламенем. Из химических агентов только фтор и расплавленный натрий разрушают тефлон. Тефлон пригоден для изготовления уплотнений и лабораторной посуды, например чашек и стаканов. Краны из тефлона (стр. 24 и 25) не требуют смазки, не заедают, герметичны и не бьются. [c.41]

    Температура стеклования аморфной фазы политетрафторэтилена 120°С, однако эластичность полимера сохраняется и при температурах, близких к абсолютному нулю. Изделия из политетрафторэтилена могут применяться в пределах от - -250 до —270 °С. Выше 415 °С политетрафторэтилен разлагается с частичным получением тетрафторэтилена. [c.117]

    Совершенно исключительной является химическая стойкость политетрафторэтилена, превосходящая стойкость всех других синтетических материалов, специальных сплавов, керамики и даже благородных металлов — золота и платины. Все разбавленные и концентрированные кислоты, в том числе, царская водка , расплавленные щелочи и окислители не действуют на политетрафторэтилен даже при высоких температурах. Только расплавленные щелочные металлы, трехфтористый хлор и фтор оказывают некоторое действие, проявляющееся лишь при высокой температуре. Полимер нерастворим и даже не набухает ни в одном из известных растворителей или пластификаторов за исключением фторированного керосина. Физико-механические и диэлектрические свойства фторопласта-4 приведены на стр. 121. [c.117]

    Политетрафторэтилен — новый пластик, производимый в экспериментальном заводском масштабе. Он не растворяется во всех испытанных растворителях и ниже своей точки плавления не подвергается действию любых обычных корродирующих агентов, исключая расплавленные щелочные металлы. Он выдерживает температуры до 300°С в течение длительного времени без заметного разложения и не хрупок при низких температурах. Сочетание низкого коэфициента мощности с низкой диэлектрической постоянной делает его выдающимся электроизоляционным материалом. Основным путем использования политетрафторэтилена в настоящее время является применение его в качестве прокладок и уплотнений в оборудовании для обработки горячих корродирующих жидкостей, а также в качестве электрической изоляции, особенно при высоких частотах и больших напряжениях. Пластик продается в небольших количествах для указанных целей в форме простых фигур, таких, как ленты, листы, стержни, трубки, прокладки и изолированная проволока. [c.345]

    Термостабильные соединеиия при пагревапии ие переходят в пластичное состояние н мало изменяют физические свойст1 а вплоть до температуры п> термического разложения. 1 таким соединениям относятся вещества с высокоорненифоваииой структурой линейных мак[)омолекул и вещества, имеющие сетчатую или пространственную структуру макромолекул, например политетрафторэтилен, полиэфирные смолы и др. [c.390]


    Линейные полимеры образуют саь ую большую группу полимерных материалов Так ак связь меяду молекулярными цепями обусловлена силами Ван-дер-Ваальса, которые невелики, прч повышении температуры полимеры этого вида легко размягчаются и превращаются в жидкость. Линейные полимеры являются основой термопластических материалов (термопластов). Типичными представителями линейных полимеров являются полиэтилен, полипропилен, политетрафторэтилен и др. Воледствие цепной стрз ктуры полимеры можно легко вытянуть в высокопрочные волокна. [c.18]

    При обычной температуре политетрафторэтилен отличается высокой упругостью, которая сохраняется и при очень низких температурах. Изделия из этого полимера ен[е достаточно упруги и при —269°. Тонкие пленки по.литетрафторэтилена эластичны и прочны. Выше 360° полимер пр юбретает некоторую пластичность, однако даже при 400°, с началом деструкции, полимер еще не переходит в текучее состояние, Небольшая деструкция полимера наблюдается уже при 350—360" и сопровождается выделением некоторого количества фтора. С повышением температуры интенсивность деструкции возрастает. [c.258]

    Тефлон (политетрафторэтилен) может применяться при температурах до 300°. Он устойчив при высокой температуре к воздействию растворов серной, азотной и фтористоводородной кислот и инертен по отношению к растворителям. Благодаря высокой устойчивости тефлона к действию различных агрессивных сред при высокой температуре он является чрезвычайно пер-спектииным конструкционным материалом. Отсутствие клеев для склеивания тефлона с металлами пока затрудняет его применение в качестве защитного покрытия. [c.90]

    Из твердых носителей на органической основе следует назвать политетрафторэтилен (тефлон). Его можно применять в хроматографических колонках при рабочей температуре примерно до 180° С. Большое преимущество этого носителя заключается в его минимальной химической активности и практическом отсутствии адсорбционной активности. Тефлон — лучший носитель для разделения смесей сильно полярных и реакционноспособных веществ. Однако по последним данным он способен адсорбировать парафины. Аналогичен тефлону политрифторхлорэтилен (экафлуфин, кель-Р, хостафлон-С2, галопорт-К). [c.182]

    Термическая деструкция протекает при нагревании полимеров и в значительной степени зависит от их химического строения. Этот процесс идет по радикальному механизму и сопровождается разрывом химических связей и снижением молекулярной массы полимера. Термическая деструкция ускоряется в присутствии соединений, легко распадающихся на свободные радикалы. Однако эта деструкция может идти и по ионному (ионно-радикальному) механизму. При повышенной температуре скорость деструкции возрастает. Для различных полимеров существует свой порог термической устойчивости. Большинство из них разрушается уже при 200— 300 С, но имеются и термостойкие пйлимеры, как, например, политетрафторэтилен, который выдерживает нагревание свыше 400 С. [c.410]

    Исследование диэлектрических свойств полимеров — один из наиболее эффективных способов установления особенностей их строения. Диэлектрический метод оказывается пригодным как для полярных, так и неполярных полимеров (полиэтилен, полистирол, политетрафторэтилен и т. д.), поскольку полимеров, абсолютно лишенных полярных групп, практически не существует. В соответствии с корреляциями, рассмотренными в гл. I и И, для всех полимеров установлено два типа диэлектрических потерь ди-польно-сегментальные, связанные с подвижностью звеньев или большой совокупности их (кинетических сегментов) в электрическом поле, и дипольно-групповые, обусловленные движением, например, боковых полярных групп. Если в боковой цепи полимера содержатся полярные группы, способные ориентироваться в электрическом поле независимо друг от друга и имеющие разные времена релаксации, то наблюдается сложный пик дипольно-групповых потерь. Сегментальное движение в полимерах при температурах выше температуры стеклования кооперативно, так как подвижности сегментов данной цепи и сегментов соседних макромолекул взаимосвязаны. По этой причине в процесс ориентации вовлекаются области довольно больших размеров, чем и объясняются высокие значения кажущейся энергии активации сегментального движения. Ниже температуры стеклования Тс переход сегмента из одного равновесного положения в другое требует практически беС конечно большого времени, превышающего доступную продолжительность наблюдения. [c.243]

    Поскольку отрезки разнородных по химическому составу звеньев в блок- и привитых сополимерах достаточно велики, то эти сополимеры проявляют свойства обоих исходных компонентов. Например, прививка поливинилацетата к политетрафторэтилену придает последнему адгезионные свойства и опоообность к окрашиваиию (свойства, характерные для поливинилацетата), сохраняя при этом высокую температуру плавления исходного полимера. Химическое соединение аморфных и кристаллических полимеров, гидрофильных и гидрофобных полимеров и т. п. позволяет получать материалы с новыми свойствами, которыми не обладают механические смеси гомополимеров. [c.90]

    Тефлон ЮОХ (США) размягчается при 285 С и выдавливается на червячном прессе при 340—390 С, благодаря чему изоляция из этого материала может накладываться по обычно принятой технологии. Его предел прочности при растяжении 210 кгс1см , относительное удлинение при разрыве 370%, температура хрупкости минус 90° С. По электроизоляционным свойствам он несколько уступает политетрафторэтилену. [c.151]

    Политетрафторэтилен (фторопласт-4) (—СРг- Р2—) упругий полимер белого цвета. Эксплуатируется в широком д1Гапазоне температур — от — 269 до +250° С. При 320° С становится прозрачным и пластичным, а выще 400° С начинает разлагаться с выделением фтора (1). Получают его полимеризацией газообразного тетрафтор-этилена в водной эмульсионной среде при 70—80° С и 40—100 атм. Политетрафторэтилен — лучший диэлектрик удельное объемное сопротивление достигает 10 ом-см, диэлектрическая проницаемость 2,0—2,2, тангенс угла потерь 0,0002. Применяется в производстве радиочастотной аппаратуры. [c.384]

    Известны также твердые носители на органической основе, из которых важнейшим является политетрафторэтилен. Этот материал превосходит другие органические полимеры по термостойкости. Его можно применять в газовой хроматографии примерно до 180°. Однако при температуре выше этой частицы носителя постепенно изменяют свою форму и разделительная способность ухудшается. Начиная приблизительно с 350° продукт разлагается следует обратить внимание на то, что при этом образуется перфторизо-бутилен (GF i)2 = GF2, который еще более ядовит, чем фосген. Поэтому необходимо избегать нагревания пластмассы до таких температур. Большое преимущество этого носителя заключается в его минимальной химической реакционноснособности он реагирует только с расплавленными щелочными металлами и с элементарным фтором и совершенно не обладает каталитической и адсорбционной активностью. Таким образом, он является лучшим носителем для разделения сильно полярных и реакционноснособных соединений, при его использовании образуются симметричные пики (см. рис. 4—6). [c.89]

    Кристаллическая структура полимера. Кристаллические полимеры растворяются значительно хуже, чем аморфные. Это объясняется наличием большого межмолекулярного взаимодействия глава VI). В этом с,пучае для отрыва цепей друг от друга необходимо одновременно нарушить большое число связей, что требует значительной затраты энергии, Поэтому при комнатных температурах кристаллические полимеры, как правило, не растворяются даже в жидкостях, сходных по полярпости. Папример, при 20 С полиэтилен ограниченно набухает в к-гексаяе и растворяется в нем только при нагревании изотактический кристаллический полистирол не растворяется при комнатной температуре в растворителях, пригодных Для атактического полистирола—-для растворения его также необходимо нагреть, Политетрафторэтилен не растворяется ни в одном иэ известных растворителей пи при каких температурах. [c.324]

    При нижеперечисленных затрудненных условиях эксплуатации должны применяться особостойкие изоляционные материалы в особо агрессивных средах, при высоких температурах и высоких давлениях. Среди органических изоляционных материалов, выдерживающих очень высокие химические нагрузки, можно назвать фторированные пластмассы (полимеры), например политетрафторэтилен (тефлон). При по-выщенных температурах и давлениях применяют керамические изоляционные материалы, например фарфоровые изоляторы или стеклянные проводки для ввинчиваемых анодных заземлителей, рассчитанных на высокие давления. У керамических материалов необходимо принимать во внимание хрупкость и различие в коэффициентах линейного термического расширения. [c.207]

    Потребность в полимерах, обладающих стойкостью к растворителям при высоких температурах, стимулировала исследовательские работы в области фтористых каучуков, примером которых может служить витон (фирма Дюпон ) [17, 32, 33, 112, 122, 129, 176, 209] и флуорел (фирма Миннесота майнинг энд менюфекчуринг ) [229]. Эти материалы представляют собой сополимеры фторвинплидена и гексафторпропилена, содержащие около 65% фтора. По строению они близки к политетрафторэтилену (тефлон, фирма Дюпон ), но их модифицируют введением метиленовых групп для повышения гибкости полимерной цепи и трифторметильных групп — для придания неоднородности. [c.211]

    Наконец, даже при падежной герметизации мест соединения различных частей аппаратуры неизбежна диффузия примесей из окружающей среды через стенку аппарата. В технологии особо чистых неорганических веществ в подавляюн1ем большинстве случаев используются полимерные материалы. Оказалось, что изделия из полимерных материалов (листы, трубы) имеют мельчайшие поры и тонкие канальцы [2]. Помимо этого поздушш,1е загрязнения могут диффундировать через пустоты, образующиеся в результате беспрерывного колебательного движения отдельных элементов макромолекул. Полимеры с линейной структурой, вс имеющие полярных групп (полиэтилен, политетрафторэтилен, поливинилхлорид и другие), как более гибкие, являются и более проницаемыми для газа, чем высокомолекулярные соединения с пространственной структурой [2]. Необходимо отметить, что скорость диффузии газа резко возрастает с повышением температуры, и особенно в тот момент, когда полимер переходит из стеклообразного в эластичное состояние [3], Пластические материалы подвержены также микробиологической коррозии. Жизнедеятельность микроорганизмов, поселяющихся на полимерных материалах, может привести к тонкому перфорированию стенок аппаратуры и деструкции самого полимера [2]. В некоторых случаях плесень может прорастать [c.31]

    Политетрафторэтилен (-Ср2-Ср2-) полу ают полимеризацией тетрафторэтилена, который легко полимеризуется под действием пероксидов и гидропероксидов. Процесс полимеризации сильно экзотермичен, поэтому его проводят в водной среде и в растворителях, при давлении до 5,1 МПа, в автоклавах. Из реакционной среды полимер выделяется в виде белых частиц, которые практически ни в чем не растворяются до 300°С, выше этой температуры - в фторированных углеводородах. Полимер обладает самой высокой стойкостью к агрессивным средам, на него не действуют даже ппавиковая, серная и другие кислоты. Полимер имеет темпера- [c.56]

    Химическая стойкость политрифторхлорэтилена очень высока, хотя по этому свойству он несколько уступает политетрафторэтилену. Он стоек к действию серной, азотной и соляной кислот, царской водки , щелочей и многих других веществ, но при повышенной температуре поддается воздействию хлорсульфоновой кислоты и расплавов щелочей. Фторопласт-3 набухает в тетра-хлорэтилене, этилацетате и ксилоле, растворяется в некоторых галогенпроизводных бензола при температурах выше их температур кипения. Способность к набуханию, растворению и размягчению значительно упрощает по сравнению с фторопластом-4 его переработку. [c.120]


Смотреть страницы где упоминается термин Политетрафторэтилен температурах: [c.593]    [c.359]    [c.260]    [c.62]    [c.421]    [c.63]    [c.310]    [c.804]    [c.503]    [c.421]    [c.146]    [c.659]    [c.315]    [c.48]    [c.136]   
Термическое разложение органических полимеров (1967) -- [ c.151 , c.182 , c.183 ]




ПОИСК





Смотрите так же термины и статьи:

Политетрафторэтилен

Политетрафторэтилен стеклования температура

Политетрафторэтилен температура деструкции

Политетрафторэтилен температура полураспада

Политетрафторэтилен умеренных температурах



© 2025 chem21.info Реклама на сайте