Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полипропилен механические

    Новейшей конструкцией реактора полимеризации пропилена является реактор с кипящим слоем, в котором катализатор взвешен в потоке газообразного пропилена. Кипящий слой можно освободить от газовых пузырей механическими средствами. Растворитель не применяют, но катализатор вводят в виде суспензии в углеводороде. Нередко катализатор наносят на инертный носитель — полипропилен. Экономические преимущества этого способа полимеризации связаны с отказом от растворителя и непрерывным производством полимера, не требующего центрифуг и другого оборудования для выделения из раствора. Для возвращения пропилена в цикл дистилляция не нужна. Выделяющееся тепло отводится за счет испарения пропилена, который подают в виде жидкости, однако имеются трудности, обусловленные регулированием температуры и слипанием частиц катализатора. [c.204]


Рис. 5.11. Скорость распространения звука в атактическом (/), стерео-блочном (2) и изотак-тическом (3) полипропилене и коэффициент механических потерь в зависимости от температуры [22]. Рис. 5.11. <a href="/info/320968">Скорость распространения звука</a> в атактическом (/), стерео-блочном (2) и изотак-тическом (3) полипропилене и <a href="/info/189900">коэффициент механических потерь</a> в зависимости от температуры [22].
    Полипропилен имеет высокие физико-механические и диэлектрические показатели (молекулярная масса 60 000—200 000, темп, пл. 164—170 °С, плотность 920 кг/м ). Он стоек к действию кислот, оснований и масел даже при повышенной температуре. При обычной температуре он ни в чем не растворяется, при температуре выше 80 °С растворяется в ароматических углеводородах и хлорированных парафинах. [c.305]

    Ценными физико-механическими показателями свойств обладает изотактический полипропилен, получаемый на катализаторах Циглера — Натта, состоящих из алкилов алюминия, чаще диэтилалюминийхлорида, и треххлористого титана. [c.11]

    Полипропилен [—СНз — СН=СНг—] получают полимеризацией пропилена СНз—СН=СНг в присутствии смеси триэтилалюминия с треххлористым титаном. В промышленности его выпускают в виде окрашенных и неокрашенных гранул. Изделия из полипропилена обладают высокой теплостойкостью, твердостью и прочностью. По химической стойкости полипропилен аналогичен полиэтилену, но отличается от него значительно большей механической прочностью и твердостью при повышенных температурах. [c.202]

    Стереорегулярный полипропилен (стр. 454) — кристаллически полимер с очень высокими физико-механическими показателями и хорошими диэлектрическими свойствами. Температура плавления полипропилена значительно выше, чем у полиэтилена 164—170° С, а молекулярная масса 60000—200 000. Полипропилен кислото-и маслостоек даже при повышенных температурах. При обычной температуре он не растворяется ни в одном растворителе, при 80° С растворяется в ароматических углеводородах и хлорированных парафинах. Благодаря исключительным свойствам полипропилен — весьма перспективный полимер. Имеются указания о том, что синтетическое волокно из полипропилена по прочности превосходит все известные природные и синтетические волокна. [c.469]

    Фильтровальные ткани нз натуральных волокон (сукно, диагональ, бельтинг) имеют малую механическую прочность и низкую стойкость к агрессивным средам. Синтетические ткани (лавсан, полипропилен и др.) превосходят натуральные по химической стойкости и механической прочности. Регенерация их (очистка от осадка) осуществляется проще и качественнее — промывкой струей воды нз шланга. Какой показатель — долговечность или ремонтопригодность — повышается ири замене натуральных тканей на синтетические  [c.74]


    Химическая природа полимеров, как видно из рассмотрения способов их получения и строения макромолекул (см. ч. 1), принципиально не отличается от химической природы их низкомолекулярных аналогов (например, полиэтилен, полипропилен и другие производные этиленовых углеводородов и этан, пропан и другие парафины и их производные). Основная разница состоит в огромной длине макромолекул полимеров по сравнению даже с большими молекулами низкомолекулярных аналогов. Это придает по-ли.мерам тот особый комплекс физико-механических свойств (см. [c.214]

    Благодаря специфичности свойств стереорегулярных полимеров они нашли свои особые области применения. Так, из них получают волокна высокой прочности. В частности, хорошим сочетанием механических и других свойств обладает изотактический полипропилен. Стереорегулярные полимеры, построенные из закономерно чередующихся звеньев нескольких мономеров, играют большую роль также и в биологических процессах. Так. в некоторых белках цепи [c.565]

    Стереорегулярные полимеры обычно получают методом ионной полимеризации с использованием комплексных катализаторов. Стереорегулярной структурой обладают натуральный каучук, а также некоторые синтетические полимеры, например полиизобутилен, полиэтилен, полипропилен. Стереорегулярность структуры изменяет тепловые и механические свойства полимеров. [c.358]

    Полипропилен [—СН(СНз)—СН2—]п — кристаллический термопласт, получаемый методом стереоспецифической полимеризации. Обладает более высокой термостойкостью (до 120—140 °С), чем полиэтилен. Имеет высокую механическую прочность (см. табл. Х1П.1), стойкость к многократным изгибам и истиранию, эластичен. Применяется для изготовления труб, пленок, аккумуляторных баков и др. [c.365]

    Возможно соединение физико-химических и механических способов очистки, когда поглотительный материал (например, полипропилен с высокой сорбционной емкостью) изготавливают в виде планок (или других конструкционных элементов), при соединении которых образуется защитный барьер любой длины, препятствующий дальнейшему растеканию масла. [c.383]

    В зависимости от условий полимеризации и термической обработки большая или меньшая часть полимерного вещества переходит в кристаллическое состояние, поэтому обычно наряду с аморфной в полимере представлена в той или иной степени кристаллическая структура. К распространенным кристаллизующимся полимерам относятся полиолефины (полиэтилен, полипропилен), полиамиды (капрон) и полиэфиры (лавсан). При нагревании кристаллическая структура полимера нарушается, и он переходит в аморфное состояние. Механическая прочность кристаллических полимеров значительно больше, чем аморфных. Например, прочность на разрыв аморфного полиэтилена 20—30, а кристаллического до 700 —1000 MH/м Волоконце полиэтилена длиной 7—10 см и толщиной 0,03—0,04 мм обладает прочностью до 4 ГН/м , в то время как прочность лучших сортов легированной стали около 2 ГН/м . Полиэтилен легче стали в 7—8 раз, поэтому при равной массе полимерное волокно окажется в 15—20 раз прочнее стали. [c.337]

    Стереорегулярность полимера определяет его механические, физические и другие свойства. Например, высококристаллический полипропилен обладает высокопрочными механическими свойствами и прекрасной теплостойкостью. Он может применяться в качестве конструкционного материала. В то же время полипропилен с неупорядоченным строением (атактический) представляет собой мягкий материал, напоминающий каучук. Такой полипропилен не нашел до сих пор существенного практического применения, если не считать его использования в качестве дешевой добавки к дорожному асфальту. [c.377]

    ПОЛИПРОПИЛЕН - полимер с высокой механической прочностью, применяется для изготовления синтетических волокон [c.14]

    Во всех случаях полимер склеивает стеклянные волокна, связывая их в единый монолитный материал, что должно приводить к лучшему сочетанию механических и других свойств по сравнению со свойствами составных частей. Хорошему сцеплению, сильной адгезии благоприятствует развитие хемосорбционного взаимодействия, что может проявляться в хорошей смачиваемости стеклянного волокна данным полимером. Естественно, что в этом отношении различные полимеры могут вести себя далеко не одинаково. Углеводороды, в особенности не содержащие кратных связей (полиэтилен, полипропилен), обладают такой способностью в минимальной степени, а некоторые кислородсодержащие полимеры хорошо связываются с поверхностью стекла, К ним относятся полиэфиры, эпоксидные смолы, соответствую- [c.227]

    Полипропилен (отдельные его виды) отличается от полиэтилена более высокой температурой плавления (плавится при температуре 160—180 °С) и большей механической прочностью. [c.27]

    Применение. Полиэтилен и полипропилен химически устойчивы, механически прочны, поэтому их широко применяют при изготовлении оборудования в различных отраслях промышленности (аппараты, трубы, сосуды и т, д,). Они обладают высокими электроизоляционными свойствами. Полиэтилен и полипропилен в тонком слое хорошо пропускают ультрафиолетовые лучи. Пленки из этих материалов используются вместо стекла в парниках и теплицах. Их применяют также для упаковки разных продуктов. [c.27]


    Весьма перспективным и сравнительно новым направлением переработки пропилена является получение из него полипропилена. По сравнению с полиэтиленом полипропилен имеет более высокие температуру плавления, механическую прочность и сопротивление разрыву. Он используется для изготовления прозрачных пленок и синтетических волокон, имеющих такую же прочность, как найлон. Фирма Монтекатини изготовляет из полипропилена теплостойкий (до 150°) термопласт моплен, который обладает хорошим сопротивлением действию кислот и масел. [c.77]

    Резина, полиэтилен и полипро- пилен для герметизирующих колец 0,8 должны быть щелочестойкими и со- 0,7 хранять свои механические свойст- в,5 ва в течение всего срока хранения элементов. Полипропилен менее I- эластичен, чем резина и полиэтилен, и мало деформируется в узле герметизации. [c.233]

    Полипропилен имеет низкую адгезию к металлу. Крепление полипропилена, армированного стеклотканью, к стенкам аппаратов производится с помощью эпоксидного клея, а швы провариваются. Так как тепловое расширение пластмасс выше, чем стали, пластмассовая футеровка после нескольких температурных циклов вспучивается и разрывается. В пластмассовых воздуховодах (из винипласта, полипропилена) под действием агрессивной среды разрушаются места сварки стыков. При ремонте швы защищаются двумя слоями стеклоткани, укладываемой с промазкой эпоксидной смолой. Фторопласт для защиты рабочих поверхностей оборудования от налипания продуктов наносится методом напыления в электростатическом поле. Клейка стеклопластика осуществляется смолой ПН-1, смешанной с отходами сте-кхожгута. Например, приклейка к трубе кольца под накидной фланец осуществляется следующим образом. Труба ставится торцом на гладкую поверхность, покрытую целлофаном. Кольцо устанавливается на этой же поверхности соосно с трубой. В зазор между трубой и кольцом заливается смола. Через 1,5—2,0 ч борт готов и не требует механической обработки. Пластмассовые (чаще всего фторопластовые) манжеты изготавливаются в пресс-форме. Пластмассовые детали машин и аппаратов при сборке (монтаже) иногда ломаются. Для исключения поломок детали целесообразно нагревать в горячей воде с температурой 90 °С. После нагрева детали становятся эластичными и легко монтируются. [c.179]

    Такой полипропилен обладает следующими преимуществами по сравнению с полиэтиленом, имеющим линейную структуру. Ои размягчается при 164—165° и проявляет более высокую химическую стойкость и механическую прочность однако он менее светоустойчив и более легко окисляется, [c.309]

    Анизотропные полимеры линейной структуры, включая и полипропилен, по своим физико-механическим свойствам отличаются от изотропных. Это различие фиксируется при помощи физических методов исследования, таких, как рентгенография, инфракрасная [c.81]

    Помимо активации полипропилена излучением высокой энергии, для модификации его свойств можно использовать и другие физические факторы. Так, при действии ультразвука на высокомолекулярный атактический полипропилен в растворе, содержащем, в частности, стирол [64], образуется блоксополимер, одну часть макромолекулы которого составляет полипропиленовая цепочка, а другую — сегмент полистирола. Точно так же можно модифицировать полипропиленовую пленку другим полимером (в виде эмульсии) в электрической дуге [65]. Деструкция связей С—С может быть вызвана также и механическими воздействиями в процессе смешения полипропилена с другим, по крайней мере частично совместимым полимером, причем при соответствующих условиях не исключена возможность образования блоксополимера. [c.153]

    Способ формования волокна из раствора дает возможность использовать полипропилен более высокого молекулярного веса и соответственно получать волокна с лучшими механическими свойствами. [c.237]

    Согласно данным работы [46] впервые хроматографический метод был специально применен для изучения фазовых переходов в полимерах в работе [7]. В этой работе в качестве объектов исследования были выбраны стереорегулярные полимеры высокой степени кристалличности полиэтилен и полипропилен. Механическую смесь порошка исследуемого полимера со стеклянными шариками (1 вес.%) загружали в колонку (100x0,4 см), которую подключали к хроматографу и нагревали со скоростью [c.273]

    В целом влияние добавок на степень деструкции невелико. Из исследованных соединений наиболее эффективное действие на деструкцию полипропилена при облучении оказывают алкилпроизводные фенолов. Так, необлученный полипропилен плавится при 155° С, облученный дозой 160 Мр — при 123° С, облученный с добавкой ионола 0,1 ммолъ1г полимера при 132° С. Методом ЭПР изучали образование свободных радикалов в стабилизованном полипропилене. Было установлено количество свободных радикалов, образующееся при облучении в стабилизованном полипропилене в зависимости от способа введения стабилизатора в полипропилен (механическое растирание компонентов в ступке, высаживание стабилизатора на полимер из раствора, сплавление). Различия в концентрации свободных радикалов невелики. [c.272]

    Этот материал был выбран из-за хорошей коррозионной устойчивости. Тот факт, что полипропилен механически связывается со стеклянной тканью во время пропитки, гарантирует прочность стенки. Вся емкость снаружи представляет собой волокнонамоточную конструкцию на основе полиэфирной смолы и стеклянных нитей  [c.115]

    Применение ряда современных методов исследования, например метода электронного парамагнитного резонанса, позволяющего определять структуру и концентрацию свободных радикалов, образующихся при окислении, термическом, фотохимическом, радиационном, механическом распаде полимеров, метода ядерного магнитного резонанса и других дало возможность изучить механизм старения и стабилизации полимеров н разработать эффективные методы стабилизации различных классов полимеров. Для многих из них предложены меры комплексной защиты от теплового, термоокислительного, светоозонного, радиационного старения. При этом оценка эффективности противостарителей осуществляется не только по активности в химических реакциях, но и по растворимости в полимере, летучести, термостабильности и другим факторам. Полиэтилен, например, хорошо защищается от термоокислительной деструкции в присутствии небольших количеств (0,01 /о) фенольных или аминных антиоксидантов, что важно для его переработки. При эксплуатации полиэтилен достаточно стабилен, тогда как полипропилен нуждагтся в защите от старения при эксплуатации. Здесь более эффективны такие антиоксиданты, как производные фенилендиаминов. Для защиты полиэтиленовых пленок от действия ультрафиолетового света применяют <5г < -фенолы. Весьма важна проблема стабилизации ненасыщенных полимеров (каучуков), где достаточно эффективны аминные про-тивостарители или их сочетание с превентивными антиоксидантами. [c.273]

    При обычной температуре полипропилен обладает незначительной хладотекучестью и может длительное время работать под нагрузкой при 100° С. С повышением температуры прочностные его показатели падают столь же резко, как и полиэтилена. Основные физико-механические свойства полипропилена следующие плотность 0,907 Мг/м , предел прочности при растял ении 32,0 Mu m , при сжатии 60—70 Mh m , при изгибе 80—110 Мн/м относительное удлинение при разрыве до 650% температура размягчения 160—170° С теплостойкость по Мартенсу 110—120°С морозостойкость — 30—35°С. [c.424]

    Полипропилен обладает целым комплексом великолепных эксплуатационных свойств высокой механической прочностью, устойчивостью к действию кислот, щелочей, масел и органических растворителей. Из полипропилена изготавливают вьюокопрочную пленку, волокна, трубы, упаковочные материалы, арматуру, сосуды, корпуса аппаратуры, бытовые изделия от посуды до чемоданов. [c.70]

    Кристаллический полипропилен можно подвергнул, ориентации, растягивая образец полипропилена на хо- юду, при этом механические свойства его улучшаются пропорционально степени ориентации. Газо- и паронепропицаемость стереорегуляриого полипропилена в 3 —4 раза превосходит газо- и наронепронииае мость полиэтилена высокого давления. [c.216]

    Полипропилен [—СНг—СНСНз—] и полиизобутилен [—СНг—С (СНэ) 2—]п получают соответственно ионной полимеризацией пропилена и изобутилена, используя в качестве катализатора в первом случае комплекс Циглера — Натта, а во втором — различные соединения галогена (А1С1з, ВРз, А1Вгз). В химическом отношении полипропилен аналогичен полиэтилену, но отличается значительно большей механической прочностью, что позволяет применять его для изготовления водопроводных труб различного диаметра, а также в качестве облицовочного материала с антикоррозионными и декоративными целями. Особое значение для строительства приобрела полипропиленовая пленка, употребляемая в качестве гидроизоляционного материала. Для некоторых работ иногда готовят специальные асфальты с добавлением в них полипропилена в виде порошка, что значительно улучшает его свойства, повышает стойкость к старению и воздействию высоких температур. Полипропилен может идти на армирование цемента. Полученный при этом строительный материал близок к асбестоцементу, но технология его изготовления и проще и безвреднее нет контакта с асбестовой пылью. [c.415]

    В соответствии со строением полимера полипропилен имеет хорошие диэлектрические свойства. Они не хуже, чем у полиэтилена, и практически не зависят от частоты тока и от изменения йлажности. Сочетание хороших диэлектрических свойств с высокими физико-механическими показателями открывает широкую область применения полипропилена для радио и электротехнических деталей и в качестве кабельной изоляции. При этом важно принять во внимание дешевизну и доступность сырья — пропилена, находящегося в больших количествах в пропан-пропиленовой фракции крекинг-газа. [c.107]

    Синтезированный таким путем полиэтилен плавится при более высокой температуре и обладает большей механической прочностью, так как имеет большую молекулярную массу и меньше ответвлений. Подобным образом получают полипропилен, поливинилхлорид, полистирол, полиметилме-такрилат и некоторые другие полимеры (табл. 4, с. 30). [c.27]

    Если использовать в качестве катализатора ТхСЦ-А1(Е1)з, то такой алкен, как МеСН = СН2, может быть легко подвергнут полимеризации в очень мягких условиях образующийся при этом регулярный (изотактический) полипропилен имеет кристаллическую форму и обладает высокой механической прочностью, что связано с упорядоченной ориентацией метильных групп относительно атомов углерода, образующих полимерную цепь — все метильные группы полимера направлены в одну сторону. Механизм такой упорядоченной полимеризации, в результате которой образуются изотактическне полимеры, в настоящее время еще недостаточно ясен не исключено, что при этом осуществляется ориентированный перенос молекул мономера к растущей цепи, обусловленный тем, что и мономеры, и растущая цепь связаны при этом с атомом титана. [c.295]

    Полипропилен относится к группе полиолефинов. Получают его полимеризацией пропилена в присутствии металлсодержащих катализаторов. Полипропилен характеризуется высокой кристалличностью и изотак-тическпм строением молекул, что и обусловливает его хорошую механическую прочность и высокую термостойкость. Морозостойкость немодифицирован ного полипропилена изменяется от —10 до -—15 С, а модифицированного — от —10 до —30 С. Полипропилен по механической прочности, химической стойкости, водостойкости и стойкости к воздействию нефти и нефтепродуктов превосходит полиэтилены. Хорошо поддается механической обработке, а также сварке нагретым воздухом или азотом при температуре 220—240 °С. При температуре 18—23 °С и при условии, что воздействие прямых солнечных лучей исключается, полипропилен устойчив к старению. Для предотвращения теплового старения в полипропилен вводят до 0,2 7о ароматических аминов, а для замедления светового старения — 0,3% технического углерода. [c.92]

    Полипропилен листовой, а также футерованное покрытие на его o HOiBe были исследованы в лабораторных условиях с различными средами (нефтепродукты, вода, водяной пар, кислоты, растворители и т. д.) в течение 2 лет и в натурных условиях в течение 5 лет. Благодаря проведенным последованиям и натурным испытаниям было установлено, что полипропилен обладает высоки ми. антикоррозионными свойствами и стойкостью к воздействию нефтепродуктов, к действию холодной и горячей воды, водяного пара, 80%-ной серной кислоты, меланжев, 40%-ной щелочи, органических растворителей. Физико-механические свойства полипропилена после длительного (до 5 лет) воздействия различных сред практически не изменяются. [c.93]

    Стереоизомеры полипропилена (изотактические, синдиотакти-ческие, атактические и стереоблочные) существенно различаются ио механическим, физическим и химическим свойствам. Атактический полипропилен представляет собой каучукоподобный продукт с высокой текучестью, температура плавления 80° С, плотность 0,85 г см [2], хорошо растворяется в диэтиловом эфире и в холодном н-геитане. Изотактический полипропилен по своим свойствам выгодно отличается от атактического в частности, он обладает более высоким модулем упругости, большей плотностью (0,90—0,91 г см ), высокой температурой плавления (165—170° С) [5], лучшей стойкостью к действию химических реагентов и т. п. В отличие от атактического полимера он растворим лишь в некоторых органических растворителях (тетралине, декалине, ксилоле, толуоле), причем только при температурах выше 100° С. Стереоблок-полимер иолиироиилена прн исследованиях с помощью рентгеновских лучей обнаруживает определенную кристалличность, которая не может быть такой же полной, как у чисто изотактических фракций, поскольку атактические участки вызывают нарушения в кристаллической решетке [4]. [c.64]

    Для промышленности пластмасс и синтетических волокон наибольший интерес представляет изотактический полипропилен. Поэтому молекулярная структура и ее влияние на физико-механические свойства полимера рассматриваются ни ке, в основном, применительно к данному стереоизомеру иолиироиилена. [c.67]

    Из данных табл. 5.6 видно, что при нормальной температуре под действием большинства неорганических и органических соединений физико-механические свойства полипропилена изменяются в ничтожной степени. Помимо органических растворителей, о которых упоминалось выше, на иолипроиилен неблагоприятно действуют прежде всего окислители, например концентрированные азотная и серная кислоты и хромовая смесь, особенно при высоких температурах. Вода (даже ири иовышенной температуре) не оказывает на полипропилен сколько-нибудь значительного влияния, так что изделия из него можно кипятить и стерилизовать при температурах до 130° С. [c.121]

    Хорошо известно, что вредное влияние на механические свойства полипропилена оказывает ультрафиолетовая часть спектра солнечного света с диапазоном волн 2800—4000 А. Под действием кислорода полипропилен подвергается фотохимической деструкции, поэтому его необходимо стабилизировать. При облучении полипропилена УФ-светом в вакууме или инертной атмосфере одновременно со сшиванием протекает деструкция [40]. В присутствии сенсибилизаторов, например бензофенонов, полихлорированных бензолов, нафталинов и монохлористой серы (для пропилена она наиболее эффективна), доля сшитого продукта возрастает [41] так, при применении монохлористой серы выход геля достигает 80%> от веса облученного полипропилена [40]. [c.129]


Смотреть страницы где упоминается термин Полипропилен механические: [c.242]    [c.192]    [c.193]    [c.105]    [c.288]    [c.37]    [c.99]    [c.133]   
Синтетические полимеры и пластические массы на их основе Издание 2 1966 (1966) -- [ c.70 , c.71 ]




ПОИСК





Смотрите так же термины и статьи:

Полипропилен



© 2025 chem21.info Реклама на сайте