Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Молекулярная масса относительная органических соединени

    Выведите молекулярную формулу органического соединения, содержащего 40% углерода, 6,7% водорода, 53,3% кислорода. Относительная молекулярная масса этого вещества равна 180. [c.13]

    Анализ области молекулярного иона. Обнаружение в спектре пика молекулярного иона является важнейшей предпосылкой успешной интерпретации масс-спектра. Поэтому для более надежной регистрации слабых пиков М+- иногда повторно записывают масс спектры при относительно малой энергии ионизирующих электронов (10— 15 эВ), незначительно превышающей потенциалы ионизации большинства органических соединений (7—12 эВ), когда глубина фрагментации меньше, чем при 70 эВ. [c.182]


    Известно несколько способов классификации органических соединений. Один из них — классификация в соответствии с величиной молекул при этом различают низкомолекулярные и высокомолекулярные макромолекулярные) соединения. Для первых относительная молекулярная масса достигает десятков, сотен, в крайнем случае тысяч, а для макромолекул — от десятков тысяч до миллионов. У данного низкомолекулярного соединения все молекулы одинаковы и имеют одинаковую относительную молекулярную массу, а молекулы данного макромо-лекулярного соединения могут немного отличаться друг от друга, прежде всего по относительной молекулярной массе. Поэтому в случае макромолекулярных соединений говорят о примерной относительной молекулярной массе. Низкомолекулярные соединения при нагревании в большинстве случаев плавятся, обычно уже при температурах до 200 С, а высокомолекуляр- [c.7]

    Все известные ферменты представляют собой длинные цепи из а-амино-кислот (относительная молекулярная масса порядка 0,5 млн), свернутые в компактную форму, в которых имеется несколько реакционноспособных участков. Изучение природы ферментов показало, что, помимо белка, многие из них содержат и другие соединения. Так, например, в составе окислительных ферментов были обнаружены органические соединения железа. Эти соединения у различных окислительных ферментов оказались одинаковыми по составу. Кроме того, было выяснено, что такие же соединения железа входят и в гемоглобин крови, переносящий кислород в организме человека и животных. Комплексное соединение железа (гем) можно отделить от белка. Однако после этого ни белок, ни гем не проявляют ферментативных свойств. Отсюда следует, что высокая активность и специфичность свойственны только сложной системе, состоящей из белка и гема. В состав различных ферментов входят и комплексные соединения других металлов. В некоторых ферментах обнаружены медь, цинк, марганец, хром и другие элементы. Для некоторых ферментов уже известна первичная структура, т. е. последовательность аминокислот в длинной цепи. Вторичная структура — общий характер спирали, образуемый цепью, приближенно установлена для нескольких ферментов. О третичной структуре, т. е. природе реакционноспособных поверхностных участков молекулы, известно очень мало. [c.149]

    Для соединений фтора и кислорода характерно образование за счет водородной связи группировок из одинаковых молекул — ассоциаций (НаО) и (HF)m. Это сказывается на целом ряде свойств соединений и, в частности, на таких параметрах, как температуры кипения и замерзания. По относительной величине молекулярных масс НаО и H S для воды и /3 должны быть ниже, чем для сульфида водорода (—60,75 и —85,60 °С). В действительности они много выше (100 и О °С), что связано с увеличением молекулярной массы воды за счет ассоциаций ее молекул. Карбоновые кислоты в жидкой и газовой фазах существуют в основном в виде димеров. В белках, нуклеиновых кислотах и других органических соединениях, имеющих большое биологическое значение, водородная связь обеспечивает поперечное сшивание цепочечных молекул. Для некоторых соединений возможно также образование внутримолекулярной водородной связи, например в нитрофеноле. [c.122]


    Гуминовые кислоты представляют собой сложные карбоновые соединения с фенольными радикалами, ассоциированными, вероятно, водородными связями. Их молекулярная масса колеблется от 300 до 4000. Термин гуминовая кислота часто применяется в широком смысле для обозначения содержащихся в почве органических веществ, которые растворимы в щелочах и не растворимы в неорганических кислотах и спиртах. Гуминовые кислоты изучаются как важный компонент почв и как промежуточное вещество в процессе превращения растительности в уголь. Вследствие сложного состава гуминовой кислоты относительно ее детального строения существуют разногласия. Одна из возможных моделей основана на структуре гидрохинона. [c.484]

    Масс-спектр состоит из отдельных полос, высота которых соответствует относительному содержанию определенных ионов анализируемого соединения как функции массы [13, 14]. Эти ионы несут информацию о молекулярной массе и наиболее электронно-стабильных фрагментах исходной молекулы. По таким специфическим фрагментам можно, основываясь на атомной структуре, охарактеризовать молекулу анализируемого соединения. Па рис. 5-6 представлен масс-спектр ацетона, полученный при ионизации электронным ударом. В масс-спектре имеются полосы, соответствующие Отношениям масса/заряд (т/г) 15 и 43. Эти ионные осколки представляют собой осколки исходной молекулы ацетона (т/г 58). Показано [14-16], что спектры, получаемые посредством электронного удара, воспроизводимы и специфичны для большинства органических соединений. [c.82]

    По-видимому, необходимо провести некоторые дополнительные исследования адсорбции на кремнеземе водорастворимых органических соединений с низкой молекулярной массой из относительно концентрированных солевых растворов при pH 2—4, [c.911]

    Общий недостаток метода применения тяжелых изотопов и их масс-спектрометрического определения заключается в его невысокой чувствительности, обусловленной, главным образом, относительно большим содержанием (около 1 %) природного С. По этой причине в масс-спектре любого органического соединения с десятью атомами углерода уже содержится изотопный пик , имеющий на одну единицу массы больше, чем молекулярный ион интенсивность этого пика составляет 11 % от интенсивности [М]+. В этих условиях присутствие 2 % меченого соединения с одним атомом или С, увеличивающее интенсивность пика иона [М+1]+ до 13%, заметить практически невозможно. Положение облегчается при введении нескольких меченых атомов в том же самом спектре природная интенсивность пика иона [М + 2] + составит только 1 % от интенсивности пика [М]+, так что добавление 2 % метки 2Н2 или можно обнаружить без труда. Однако и в этом случае точность определения невелика. Если такая точность удовлетворяет требованиям эксперимента, то масс-спектрометрия может служить очень удобным методом исследования. Таким образом, этот метод имеет хотя и ограниченные, но очень полезные сферы применения. Например, чувствительности метода масс-спектрометрии достаточно, чтобы вполне надежно определить число введенных в соединение меченых атомов, если полностью меченный в одном или нескольких положениях предшественник удается включить с разбавлением метки не более, чем в 50 раз, Масс-спектрометрия особенно удобна при работе с соединениями, меченными Н, когда полное дейтерирование предшественника обычно не представляет трудностей и когда желательно избежать проявления изотопных эффектов наглядным примером является широкое использование [Ме 2Нз] метионина для изучения процессов С-метилирования. [c.475]

    При сжигании 36 г органического соединения образовалось 52,8 г оксида углерода (IV) и 21,6 г воды. Относительная молекулярная масса этого вещества равна 180. Выведите молекулярную формулу этого вещества. [c.4]

    Применение органических соединений в качестве покрытий объясняется их особыми свойствами, обусловленными строением и структурой. Высокомолекулярные органические соединения представляют собой смесь различных по молекулярной массе макромолекул. Каждая макромолекула образована из многократно повторяющихся относительно коротких структурных химических групп (мономеров). Количество повторяющихся групп в макромолекуле определяет степень полимеризации. В зависимости от содержания функциональных групп, их молекулярной массы, размеров макромолекул и их взаимного расположения полимер имеет те или иные свойства — прочность, эластичность, термостойкость, адгезию, растворимость и т. д. [c.160]

    В четырех пронумерованных сосудах находится по одному из органических веществ А, Б, В, Г, принадлежащих к алифатическому ряду и имеющих общую формулу X—СНг—V. Часть из исследуемых веществ находится в водном растворе. Известно процентное содержание углерода и водорода в этих веществах, а именно, для А 15,4% С и 3,2% Н, для Б 40,7% С и 5,1% Н, для В 40,0% С и 6,7% Н и для Г 53,3% С и 15,6% Н, а также относительные молекулярные массы этих соединений — 45, 60, 118, 156 (последовательность указания значений молекулярных масс не соответствует порядку А—Г и № 1 —№4). Кроме того, известно, что одно из веществ образует циклический ангидрид. [c.144]


    Сочетание рефрактометрических измерений с определением других физических свойств (плотность, относительная молекулярная масса, температура кипения и др.) позволило определить состав многих сложных смесей органических соединений и природных продуктов и вывести ряд функциональных зависимостей, связывающих состав с рефракционной дисперсией, удельной и молекулярной рефракцией [30]. [c.183]

    Качественный анализ и идентификация органических соединений с помощью масс-спектрометра высокого разрешения с двойной фокусировкой основаны на точном определении разности масс ионов в сочетании с известными дефектами масс изотопов атомов в исследуемых веществах. Этот метод [699, 700], впервые предложенный для качественного анализа соединений относительно низкого молекулярного веса (меньше 250), представляет собой спектроскопию дефектов масс и при выводе структурной формулы учитывает соотношение интенсивностей пиков ионов, входящих в состав мультиплетов, обладающих одинаковой номинальной массой. [c.290]

    Разделение (разгонка) по температуре кипения на узкие фракции, что в грубом приближении соответствует разделению по молекулярной массе (М). Такой метод успешно применяется для анализа низкомолекулярной части нефтей, ибо этим путем удается получить фракции ограниченного индивидуального и структурно-группового состава (СГС), которые вполне поддаются анализу, либо индивидуального состава, как в случае бензинов, либо смешанного (индивидуального и СГС) — для средних фракций. Перенесение этого метода на ВМ-УВ не дает заметного эффекта из-за того, что с ростом М резко возрастает число компонентов одинаковой брутто-формулы (изомеров, гибридных структур) и падают различия в их физико-химических свойствах, так что в любой коль угодно малый из достижимых на практике интервал отбора (Ат. кин.) попадают многие тысячи соединений. Это делает невозможной задачу определения индивидуального состава. Для определения СГС такое разделение также не дает выигрыша из-за того, что любая фракция вне зависимости от температуры отбора будет содержать практически одинаковый набор СГ-фрагментов, сохраняя их относительное распределение. Кроме того, этот метод требует значительных количеств вещества ( 1 г). В силу этого он становится неприменимым при анализе углеводородов рассеянного органического вещества осадочного чехла (РОВ) из-за их малых количеств (< 1 г). [c.199]

    Большинство ионов в масс-спектре образуется при мономолекулярных процессах, и в широком диапазоне давлений образца их количество прямо пропорционально давлению внутри ионизационной камеры. Однако часто встречаются пики (обычно мало интенсивные), высота которых измеряется с давлением значительно сильнее, чем в случае пиков, образующихся указанным выше образом. Такие ионы возникают в процессе столкновения двух или более молекул [1951]. Некоторые из пиков, высота которых подобным образом зависит от давления, являются острыми, другие размытыми это указывает на то, что эти ионы образуются при реакции, происходящей на пути движения ионов по направлению к коллектору, аналогично реакции метастабильных ионов. Острые пики характеризуют процессы столкновения, происходящие в ионизационной камере. Пики таких ионов, образующиеся при столкновениях в ионизационной камере молекул органических соединений, изучены очень мало, отчасти потому, что их чрезвычайно трудно наблюдать. Осколочные ионы, образующиеся при ионно-молекулярном столкновении в ионизационной камере, будут появляться в тех же самых точках спектра, что и ионы, образующиеся при мономолекулярном распаде, причем относительное число последних будет значительно больше. Ионы, возникающие при столкновениях, иногда обладают массой, большей массы молекулярного иона в этом случае они могут быть легко обнаружены, поскольку их пики не накладываются на пики других ионов. Их можно отличить от пиков примесей по зависимости от давления. Поскольку такие пики встречаются довольно редко, они используются в качественном анализе для установления присутствия определенных групп. Присоединение дополнительной химической группы к молекулярному или осколочному иону наблюдается чаще всего в случае соединений, содержащих атом кислорода или азота. Легче всего удаляется один из электронов неподеленной пары. Следствием его удаления является гибридизация электронных орбит, и проявляется связывающий характер третьей орбиты, так что трехвалентный  [c.281]

    Присутствие атома серы в органической молекуле может быть легко установлено путем выявления пиков ионов, содержащих изотоп- 5, которому соответствует заметный пик ионов с массой на две единицы выше молекулярного иона (гл. 8) и также часто на две единицы массы выше распространенных осколочных ионов. Благодаря большому дефекту массы присутствие серы может быть легко обнаружено на основании точного измерения масс. Члены гомологических рядов сернистых соединений обладают молекулярным весом на четыре единицы массы выше веса соответствующих углеводородов с тем же числом колец и двойных связей в структуре этот факт также позволяет обнаруживать соединения, содержащие серу. Так, метилмеркаптан обладает молекулярным весом 48, другими летучими органическими соединениями, обладающими тем же молекулярным весом, являются только метиленгликоль и метил-гидропероксид. Относительно высокий атомный вес серы приводит обычно [c.423]

    Органические вещества А w В представляют собой жидкости. Оба они имеют одинаковые молекулярные массы и одинаковый качественный состав молекул. Вещество А относительно мало растворимо в воде, вещество В смешивается в любых соотношениях, растворимость одного из этих веществ в другом не ограничена. Вещество А получают из ближайшего гомолога вещества В при нагревании этого гомолога с концентрированной серной кислотой. Отношение масс водорода и кислорода, входящих в состав соединений А я В, равно 3 8, а масс углерода и кислорода — 3 2. [c.139]

    В большинстве случаев масс-спектры отрицательных ионов получались в условиях наложения указанных элементарных процессов (иногда с добавлением ионно-молекулярных реакций), что приводило к плохой воспроизводимости масс-спектра и уменьшению относительного веса процессов резонансного захвата, наиболее четко характеризующего структуру органических соединений. [c.23]

    Большой интерес, проявляемый к ДМСО, объясняется многими причинами. Диметилсульфоксид является одним из наиболее интересных представителей среди диполярных апротонных растворителей, к которым он относится (имеются некоторые сомнения относительно его апротонного характера [468]), и характеризуется специфическими свойствами. Он является лучшим растворителем среди ДАР, смешивается с водой, спиртом, эфиром и многими другими растворителями в его среде и в смесях его с другими растворителями растворяются многие неорганические и органические соединения он превосходно растворяет вещества, содержащие гидроксильные или другие протонодонорные группы, даже в тех случаях, когда молекулярная масса растворяемого вещества относительно высока. ДМСО растворяет углеводы (сахар, крахмал, производные целлюлозы), протеины, полиамиды, полиуретаны, полициклические ароматические и гетероциклические соединения и т. д. В табл. 7 представлены сведения о растворимости в ДМСО некоторых соединений — доноров водородной связи. Для подобных соединений ДМСО является лучшим растворителем, чем вода. [c.119]

    Признаки, характеризующие органические соединения, но имеющие относительное значение 1) неустойчивость химическая и термическая. Действительно, подавляющее большинство органических соединений разрушается при температурах 300—400 °С однако известны органические соединения, устойчивые при 500 °С и даже температуре красного каления (фтороуглероды) 2) сложность строения. Архитектура некоторых органических соединений, особенно природных, весьма сложна, а молекулярная масса достигает сотен тысяч 3) скорости многих реакций органических соединений значительно меньше скоростей ионных превращений неорганических соединений. Однако и в органической химии известно много ионных реакций, протекающих с большими скоростями 4) реакции органических соединений протекают часто не в одном, а в нескольких направлениях. Образуются смеси различных продуктов, что затрудняет выделение нужных веществ и одновременно дает возможность, изменяя скорости отдельных направлений, получать с наибольшими выходами главный продукт. [c.8]

    Масс-спектрометрия предоставляет в распоряжение аналитика эффективный метод обнаружения, идентификации и исследования структуры органических соединений. Масс-спектр несет информацию о массе и относительном содержании молекулярных и осколочных ионов, возникающих при ионизации молекул в ионном источнике масс-спектрометра. Масса молекулярного иона соответствует молярной массе по осколочным ионам можно судить о структурно-специфических реакциях деструкции молекул в условиях измерений и, таким образом, делать далеко идущие выводы о строении исследуемого соединения. На основании природного содержания изотопов в элементах из анализа масс-спектра можно получить сведения о типе и [c.275]

    По мере перехода от газообразных к жидким, а затем и к твердым горючим ископаемым происходят непрерывный рост молекулярной массы их органических соединений, усложнение их строения и упрощение состава. Так, если в горючих газах основная часть представлена простыми индивидуальными углеводородами, в нефти они вводят лишь в продукты прямой перегонки, а тяжелые остатки нефти и ТГИ торфяной стадии зрелости — смесь уже весьма сложных углеводородных гетероциклических соединений, то бурые и каменные угли — смесь сложных высокомолекулярных гетерополиконденсатных соединений, практически не поддающаяся физико-химическому разделению на отдельные классы. Вместе с тем в последних имеются фрагменты, аналогичные алифатическим, нафтеновым, парафиновым и гетероциклическим структурам. Соединения с относительно небольшой молекулярной массой могут быть уподоблены некоторым полимерным материалам. Это все дает возможность изучать общую картину термической деструкции веществ ТГИ на более простых соединениях природных газов и нефтей, хорошо изученных методами органической химии и физико-химического анализа. [c.126]

    По современным представлениям около 15% всех охарактеризованных в настоящее врсмя масс-спектрами органических соединений дают при ионизации электронным ударом настолько слабые пики молекулярных ионов, что в обычных условиях регистрации они могут быть пропущены (относительная интенсивность менее 0,2% или менее 0,1% суммарного ионного тока). Для более надежной регистрации этих пиков иногда повторяют запись масс-спектров при меньшей энергии ионизирующих электронов или с использованием других методов ионизации, чаще всего — химической. Разработан также ряд программ для ЭВМ, предназначенных для расчета вероятной молекулярной массы по масс-спектру, не содержащему пика молекулярного иона [63, 64]. [c.58]

    Дополнительную информацию о строении неизвестного вещества можно получить из масс незаряженных частиц, теряемых молекулярными ионами (характеристические разности). При этом следует учитывать, что большая часть органических соединений отщепляет при фрагментации алкильные радикалы и дает в спектрах ионы [М—Х1+, где X = СНз, С2Н5, С3Н7... Такие ионы не позволяют определять класс соединения, поэтому особое внимание при анализе разностей массовых чисел следует обратить на относительно редкие и поэтому наиболее информативные для установления класса вещества пики ионов ГМ—Х]+, где масса X не равна 15, 29, 43 и т. д., т. е. не принадлежит серии 1. В табл. ПХУП перечислены некоторые простейшие фрагменты (с массой до 50), теряемые молекулярными ионами, и указаны классы органических веществ, для которых они типичны. [c.185]

    Давление оказывает влияние не только на скорость и равновесие процесса полимеризации, но и на свойства обр зующихся полимеров. Из уравнения (69) следует, что увеличение давления приводит к увеличению средней относительной молекулярной массы продуктов реакции по достижении равновесия. Однако уравнение (69) выведено в несколько идеализированном предположении, что ЛУ остается неизменным на всех ступенях процесса полимеризанни. На самом деле по Mei)e увеличения относительной молекулярной массы полимеров их сжимаемость уменьшается, и Д1 уменьшается по абсолютной величине, оставаясь, разумеется, всегда отрицательным. Поэтому возрастание относительной молекулярной массы полимеров замедляется с ростом давления. Ввиду этого в конечном продукте. будет преобладать полимер не с наивысшей степенью полимеризации, а с некоторой иной, относительная молекулярная масса которого определяется давлением, температурой, концентрацией катализатора и природо исходного мономера. Рассмотрим как пример теломеризацию, являющуюся реакцией полимеризации непредельных органических соединений в присутствии веществ, которые реагируют с растундши цепями полимера, образуя крайние группы на концах полимерной молекулы, и обрывают таким образом рост цепей. [c.193]

    Айлер [164] выполнил количественное сравнение ассоциации поликремневой кислоты с различными классами полярных органических соединений. Относительная степень ассоциации регистрировалась путем измерения растворимости в органических -соединениях осадка, полученного при смешивании растворов поликремневой кислоты и желатина, в то время как другие факторы сохранялись постоянными. В отсутствие желатина ассоциация полярных органических соединений с поликремневой кислотой демонстрировалась тем, что некоторые из комплексов, представляющие кремнеземорганические соединения, выделяли из водной смеси. Растворимые комплексы получали из свежеприготовленных растворов поликремневой кислоты и полярных органических соединений с низкой молекулярной массой. Твердые осадки формировались из поликремневой кислоты с высокой молекулярной массой или же из низкомолекулярной кислоты, но с органическими соединениями с высокими молекулярными массами. Выше уже излагалась процедура титрования, приводящая к последующему увеличению молекулярной массы поликремневой кислоты путем формирования осадка с желатином. [c.383]

    Интенсивности пиков (М + 1) и (М + 2) определяются элементным составом соединения, естественным содержанием и массой изотопов, входящих в состав молекулы. Поэтому, определив по масс-спектру массу молекулярного иона М и относительную интенсивность пиков (М + 1) , (М -I- 2) , можно узнать молекулярную (брутто-) формулу соединения по таблицам Бейнона (Сильверстейн Р., Басслер Г., 1 4оррил Т. Спектрометрическая идентификация органических соединений. М. Мир, 1977. С. 96). [c.566]

    Цредставлены формулы, связываю1цие относительную плотность и Молекулярную массу с показателем цреломления, справедливые для гомологических рядов органических соединений, а также для некоторых нефтей. Формулы можно использовать для сокращения объема работ по экспериментальному определению, относительной плотности и молекулярной массы нефтяных фракций и нефтепродуктов. [c.161]

    Алифатические соединения серы (тиолы, дисульфиды), али-циклические и алкилароматические сульфиды гидрируются в условиях гидроочистки полностью и с большей скоростью, чем ароматические сульфиды и тиофены. В пределах одного класса соединений скорость гидрирования уменьшается с увеличением молекулярной массы. По реакционной способности органические соединения серы можно расположить в следующий ряд (в скобках даны относительные скорости гидрирования) [9] тиолы (7,0) =дибензилсульфид (7,0)>вторичные алкилсульфи-ды (4,3—4,4) >-тиоциклопентан и его производные (3,8— 4,1) >первичные алкилсульфиды (3,2) >производные тиофена и диарилсульфиды (1,0—2,0). В присутствии азотсодержащих соединений скорость гидрогенолиза органических соединений серы всех классов снижается [10]. [c.6]

    В расчетах точных значений масс и распространенностей изотопов при составлении таблицы органических соединений необходимо, как указывалось в гл. 2, ограничивать количество рассматриваемых элементов и их атомов. В органических соединениях чаще всего встречаются четыре элемента углерод, водород, кислород и азот, и с точки зрения поставленной задачи желательно ограничить наши расчеты распространенностей изотопов такими молекулярными и осколочными ионами, которые не содержат иных атомов, кроме перечисленных выше. Далее было принято, что все рассматриваемые комбинации атомов должны (за небольшими исключениями, такими, как СЫ, НгО, ЫНз) всегда содержать углерод и водород и не должны включать в себя больше шести атомов кислорода и азота или не больше четырех атомов каждого из этих элементов в отдельности. Верхний предел рассматриваемых молекулярных весов составлял 250, поскольку в этот диапазон включены наряду с углеводородными и неуглеводородные соединения, а относительное различие в распространенностях изотопов различных комбинаций элементов становится менее заметным с увеличением молекулярного веса. Максимальное число водородных атомов, включаемых в любую комбинацию углерода, кислорода и азота, должно удовлетворять всем требованиям валентности для расположения элементов, не содержащих колец или кратных связей. Несколько исключений из этого правила относятся к положительным ионам, встречающимся на практике, таким, как СЩ, Н3О, СН5О и тому подобным. В рассмотрение не включены многозарядные ионы, но следует принимать во внимание, что иногда они могут встречаться. К двузарядным могут быть отнесены ионы, пики которых по шкале масс отстоят от соседних на 0,5 а. е. м. В таких случаях, для определения состава иона измеряемая масса должна быть удвоена, и в таблице следует найти эту удвоенную величину, отвечающую наблюденному иону. [c.300]

    Относительно высокая летучесть сложных эфиров позволяет получать масс-спектры даже для соединений с молекулярным весом вьшие 300. Примером использования этих спектров для получения данных по структуре органических соединений может служить сравнение спектров метиловых эфиров изомерных декстропимаровой, изодекстропимаровой и криптопимаровой кислот (С19Н2ЭСООН) [288]. Этот метод определения заместителей уже упоминался в связи с исследованием углеводородов, однако применение его в случае сложных эфиров затруднено, так как величина гомологического ряда пиков 73, 87, [c.390]

    Если требуется определить лишь молекулярный вес или молекулярную формулу соединения , то исследование спектра ограничивается поиском молекулярного иона. Тем не менее уже одно это может дать очень ценную информацию. Как отмечалось выше, информативным оказывается уже само появление области молекулярного иона. Так, полезно помнить, что нечетный молекулярный вес указывает на нечетное число атомов азота в молекуле. Интенсивные ионы [М +2] обычно свидетельствуют о наличии хлора или брома, а менее интенсивные — серы. Приблизительное представление о числе атомов углерода в молекуле можно получить из относительной интенсивности k и h + I пнков ионов [М] и [М + 1] соответственно. Поскольку в органических соединениях природное содержание изотопа составляет около , %, приблизительное число атомов углерода можно рассчитать по формуле 100 (i -f l)/(l,lft) Например, в масс-спектре нафталина, имеющего десять атомов углерода, (/г-f 1)//г = 10,9/100, так что приблизительно (ЮОХ X Ю,9)/(1,1 X 100) = 10. Этот метод недостаточно точен для соединений, имеющих более 10—12 атомов углерода, и дает большую ошибку в случае азотсодержащих моле-К)м за счет вклада в пик [М + 1], а также при наличии примеси, дающей пик, совпадающий с [М + 1]. Для [c.80]

    Относительно высокая температура кипения спирта в каждой триаде, как считают, вызвана ассоциацией молекул спирта в жидкой фазе за счет межмолекулярных водородных связей, что не может происходить в случае простых эфиров или алканов, хотя в принципе эфиры могут принимать участие в образовании межмолекулярных водородных связей с протонсодержащими соединениями (см. разд. 4.3.4.2). Простые эфиры способны также образовывать комплексы с рядом кислот Льюиса, растворимые в эфирах же, они растворяют множество органических соединений и не вступают в реакции в широком диапазоне условий. Эти свойства делают простые эфиры весьма полезными растворителями для проведения органических реакций. Некоторые простые эфиры с низкой молекулярной массой, например диметиловый эфир или соединения с несколькими эфирными группами, например 1,2-диме-токсиэтан, растворимы в воде, однако высшие простые эфиры не смешиваются с водой и широко используются в органической химии для жидкостной экстракции. По свойствам некоторых эфиров как растворителей и методам их очистки имеется обзор [2]. [c.291]

    Общие соображения относительно к. п. д. тарелок. Следует сделать, еще некоторые общие заключения, основанные на вышеизложенном. При разгонке легких углеводородных смесей и органических соединений сравнителыю небольшого молекулярного веса вязкости жидкостей при температурах разгонки малы, а коэффициенты диффузии жидкости велики. В этом случае сонро-тивление переносу массы в жидкой фазе почти отсутствует и факторы, определяющие высокие к. п. д. в системах с контролем газовой фазы, становятся особенно важными (см. фиг. 2 и 3). [c.46]

    Относительно малолетучие органические соединения образуют чрезвычайно разнородную группу приоритетных загрязнителей, включающую галоидированные эфиры, галюгенуглеводороды, нитрозамины, фталаты, ПАУ, нитроароматические соединения, бензидины, ПХБ, хлорорганические пестициды, триазины, фенолы и некоторые другие производимые промышленностью вещества. Фактически, отнесение тех или иных соединений к этой группе довольно произвольное и основывается на газохроматографических данных. На практике, вещества считаются летучими, если их можно анализировать методом стриппинга с промежуточным концентрированием в ловушке. Вещества причисляют к группе соединений средней летучести, если продувка менеее эффективна вследствие низкого давления их паров, однако анализ посредством КГХ еще возможен. В основном, это соединения с молекулярными массами от 100 до 300 дальтон, обычно элюируемые из стандартных капиллярных колонок в температурном интервале между 80°С (после декана) и 320°С. [c.70]


Смотреть страницы где упоминается термин Молекулярная масса относительная органических соединени: [c.8]    [c.27]    [c.793]    [c.3]    [c.70]    [c.236]    [c.95]    [c.313]    [c.119]    [c.90]    [c.356]   
Краткий справочник по химии (1965) -- [ c.194 , c.238 , c.248 ]




ПОИСК





Смотрите так же термины и статьи:

Масса органическая

Молекулярная масса

Молекулярная масса относительная

Молекулярный вес (молекулярная масса))



© 2024 chem21.info Реклама на сайте