Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Микроскопия общая

    Коллоидные системы представляют собой частный вид дисперсных систем. К коллоидным относятся системы со сравнительно высокой степенью дисперсности размер частиц составляет от 10 до 2000 А. Таким образом, коллоидные системы по степени дисперсности частиц должны быть помещены между грубодисперсными системами и молекулярно-дисперсными, т. е. истинными растворами (в последних растворенное вещество находится в растворителе в виде отдельных молекул или ионов). В коллоидных системах частицы не могут быть обнаружены с помощью обычного микроскопа. Таким образом, коллоидные системы являются системами гетерогенными (точнее — микрогетерогенными), так как частицы дисперсной фазы составляют самостоятельную фазу, обладающую некоторой поверхностью, отделяющей ее от дисперсионной среды. Вследствие малого размера частиц общая поверхность их в коллоидных системах очень велика и составляет десятки, сотни и тысячи квадратных метров на грамм дисперсной фазы. Очень сильное развитие этой поверхности раздела и обусловливает особенности в свойствах, присущие коллоидным системам. [c.504]


    Советские биологические микроскопы. Оптическая промышленность Советского Союза выпускает большое количество разнообразных микроскопов. Основными моделями лабораторных микроскопов общего назначения являются два микрозкона микроскоп М-9 и микроскоп МВИ-1. [c.330]

    Топографический контраст возникает за счет того, что отражение электронов и вторичная электронная эмиссия зависят от угла падения пучка на образец. Угол падения будет меняться из-за неровностей (топографии) образца, приводя к образованию контраста, связанного с физической формой объекта. Топографический контраст — это наиболее часто встречающийся контраст в растровой электронной микроскопии общего назначения. [c.143]

    Поляризационный микроскоп, общий вид 1 — окуляр, 2 — тубус микроскопа, 3 — поворотный диск со светофильтрами, 4 — анализатор, 5 — объектив, 6 — маховичок грубой наводки на фокус, 7 — предметный столик, 8 — поляризатор, 9 — осветитель, 10 — маховичок тонкой наводки на фокус, 11 — трансформатор [c.108]

    Основные правила работы с микроскопом (общие замечания). Место для микроскопа выбирается подальше от прямого солнечного света. Работа на столе с темной поверхностью способствует меньшему утомлению глаз. [c.14]

    Макропоры имеют радиус порядка одной тысячной сантиметра они видны в микроскоп. Общая поверхность их [c.217]

    В данной главе световая микроскопия подразделяется на две основные части микроскопия общая и кристаллографическая. Роль общей микроскопии в органической химии заключается главным образом в исследовании формы и строения высокомолекулярных соединений или полимеров, как, например, синтетических каучуков и пластмасс, коллоидных и вообще дисперсных систем и, наконец, сложных соединений, изучаемых в биохимии. [c.198]

    В продаже имеются самые разнообразные микроскопы. Те из них, что производятся на лучших заводах, примерно одинаковы по качеству, а количество предлагаемых для них дополнительных приспособлений более чем достаточно. Они различаются главным образом конструкцией опорной части, и их выбирают исходя скорее всего из соображений удобства и личных симпатий. По-настоящему хорошие микроскопы дороги. Приложив усилия, можно делать хорошие работы на микроскопе общего назначения или даже на студенческом микроскопе, если оборудовать их первоклассной оптикой. Однако при этом трудно состязаться с работами, выполненными на приборах, которые поставляются лучшими фирмами-изготовителями. Выбор может зависеть также от технических требований. Всегда рекомендуется проводить прямые сравнения разных микроскопов и приспособлений на собственном материале при используемых в работе условиях. Поэтому нет необходимости обращать внимание на то, кем сделан инструмент. Главное — чтобы работа на хорошем микроскопе (независимо от времени [c.16]


    Изменение веса шарика в процессе выгорания кокса регистрировалось по сдвигу в поле зрения измерительного микроскопа репера, прикрепленного к нити. Общее количество. выгоревшего кокса дополнительно контролировалось при помощи измерительного микроскопа по углу закручивания шлифа, образующемуся при его вращении по окончании регенерации до возвращения репера в начальное положение. [c.45]

    Если кинетические кривые и функции распределения в каждом из этих опытов достаточно хорошо совпадают друг с другом, то предлагаемым методом определения кинетических параметров кристаллизации можно пользоваться. После каждого эксперимента из общего числа кристаллов отбирают случайным образом не менее 15 проб, которые затем фотографируются. После фотографирования определяются размеры кристаллов на этих фотографиях, доля кристаллов определенного размера, с помощью которых затем строятся функции распределения. Фотографирование можно проводить с помощью микрофотонасадки типа МФН-12, смонтированной на поляризационный микроскоп типа МИН-8. По полученным фотографиям определяют распределение кристаллов по размерам (объемам). Таким образом, в результате проведенных экспериментальных исследований становятся известны кривые изменения концентрации, равновесной концентрации, температуры раствора в ходе процесса, функции распределения кристаллов по размерам в некоторых последовательных временных точках. Так, на рис. 3.19 представлены функции распределения кристаллов щавелевой кислоты по объемам в различных временных точках. Эксперименты проводились при различных начальных концентрациях, температурах раствора при различных темпах охлаждения и чис- [c.303]

    Для фотографий определяют общий коэффициент увеличения, который равен произведению увеличений микроскопа и фотоувеличителя. Затем с помощью отсчетного микроскопа измеряют диаметры 700— 800 частиц, разбивают их на фракции по интервалам размеров и определяют долю частиц каждой фракции по отношению к общему числу частиц (методику микроскопического анализа см. в работе 18). Строят гистограмму распределения частиц по размерам и по формулам (IV. 9), (IV,, 11), (IV.12) вычисляют среднечисленный и среднемассовый радиусы частиц и коэффициент полидисперсности к. [c.126]

    При работе с фазовоконтрастным устройством из системы микроскопа удаляется кронштейн с конденсором. На место снятого кронштейна устанавливается другой кронштейн, а, в кольцо последнего— фазовоконтрастное устройство КФ-1. Работа осуществляется на фазовых объективах, входящих в комплект КФ-1. Фазово-контрастное устройство позволяет определять показатели преломления мелкокристаллических веществ и изуч.ать тонкие структуры материалов (глинистые минералы и т. д.). Поляризованный свет, необходимый для определения оптической плотности минералов, создается посредством накладного поляроида. Общее увеличение микроскопа составит u = V V2, где V — увеличение, даваемое объективом V2 — увеличение, даваемое окуляром. [c.110]

    При встряхивании воды и нефти с такими частичками леска последние будут задерживаться на пограничных поверхностях тех капель нефти или воды, которые будут отрываться от общей массы жидкости. В результате получается весьма стойкая эмульсия первого или второго типа в зависимости от соотношения между количествами нефти и воды. При рассмотрении таких эмульсий в микроскоп, видно, что они состоят из капель воды в нефти или нефти в воде, окруженных оболочками из тончайших частиц песка. [c.71]

    Экспериментальные методы, применяемые для определения и характеристики структуры полимерных цепей и их совокупностей, упоминались в общем обзоре гл. 1. Дополнительную информацию по дифракции рентгеновских лучей [3], рассеянию нейтронов [4—6], электронов и света [4, 52, 53], оптической и электронной микроскопии [3, 14Ь], термическим [3, 54] и вязкоупругим свойствам [14с, 55—57] и методу ядерного магнитного резонанса (ЯМР) [3] можно получить из источников, указанных в списке литературы к данной главе. В гл. 5 и 6 соответственно будут рассмотрены методы инфракрасного поглощения (ИКС) и ЭПР. [c.35]

    Процесс ф-релаксации наблюдается только в наполненном полимере, и с увеличением содержания активного наполнителя его вклад в общий релаксационный процесс, как и -процесса, возрастает. ф-Процесс связан с подвижностью коллоидных частнц наполнителя и в целом с перегруппировкой сетки, образованной частицами активного наполнителя. Относительно высокие значения времени релаксации и энергии активации процесса обусловлены заторможенной подвижностью частиц наполнителя, довольно прочно связанных между собой и с полимером. Размеры релаксаторов этого процесса, рассчитанные из формулы (1.24), практически совпадают с размерами частиц сажи, найденными методами электронной микроскопии (30—50 им). [c.63]

    Общее увеличение, обеспечиваемое электронным микроскопом,— 10 000—200 ООО раз. Разрешающая способность (наимень- [c.156]


    Учебная лаборатория должна быть в достаточной степени оснащена необходимым оборудованием (вытяжные шкафы общего и специального назначения, сушильные шкафы, муфельные печи, установки для получения дистиллированной воды, воронки для горячего фильтрования, вакуумные и водоструйные насосы, рН-метры, микроскопы, установки для определения температуры плавления, технохимические и аналитические весы и т. д.). [c.14]

    Лабораторные приборы и другое оборудование делятся на предметы общего и индивидуального пользования. К первым относятся нагревательные приборы (горелки, сушильные шкафы, муфельные печи), весы, баллоны со сжатыми газами, микроскопы, рН-метры, прибор для вакуумного фильтрования и др. Эти приборы находятся в лаборатории постоянно, и студенты пользуются ими по мере надобности в течение всего учебного года. В данном разделе описываются те из них, которыми приходится пользоваться наиболее часто. Остальные описываются в соответствующей работе, в которой они применяются. [c.10]

    Б. В. Дерягин и Г. Я. Власенко сконструировали специальный поточный ультрамикроскоп, с помощью которого весьма быстро можно определить число частиц в единице объема аэрозоля или лиозоля. Схематическое устройство поточного микроскопа показано на рис. И, 7. Изучаемый лиозоль или аэрозоль наблюдается в потоке, направленном вдоль канала кюветы 2, параллельного оси тубуса микроскопа 5. Каждая частица, пересекая зону, освещенную источником света 3, дает вспышку общее число таких вспышек может быть легко подсчитано наблюдателем. Разделив число подсчитанных вспышек на измеряемый счетчиком 1 общий объем аэрозоля, протекающего через контролируемую и вырезанную окулярной диафрагмой 6 часть поля, легко найти численную концентрацию, [c.47]

    Ход электронного пучка в электронном микроскопе изображен на рие. 11,8. В общем он сходен с ходом световых лучей в обычном микроскопе. Однако поскольку электроны легко рассеиваются и поглощаются, для фокусировки пучка электронов применяют электромагнитное катушки, создающие электростатические или магнитные поля. Для уменьшения рассеяния электронов внутри электронного микроскопа поддерживают высокий вакуум. Наконец, с той же целью для исследования применяют объекты очень малой толщины, нанесенные обычно на тончайшую нитроцеллюлозную, кварцевую, углеродную или другие пленки, прозрачные для пучка электронов. Если последнее условие не будет соблюдено, то под воздействием электронов может происходить нагревание и разрушение объекта. Очень часто вместо самих объектов в электронном микроскопе наблюдают их отпечатки на различных пленках. Такие пленки —отпечатки (реплики) для придания им большей контрастности обычно оттеняют с помощью напыления каким-нибудь молекулярно-раздробленным металлом (например, хромом). [c.49]

    Распределение одинаковых по размеру частиц, видимых в микроскоп или ультрамикроскоп, по высоте можно исследовать двумя методами. В первом слуг чае микроскоп располагают горизонтально и при исследовании системы передвигают его по высоте. Тогда сразу видно, что число частиц убывает с высотой. Однако для выявления зависимости убывания частиц с высотой обычно пользуются вторым методом. Согласно этому методу микроскоп при исследовании устанавливают вертикально, при этом видны только частицы, находящиеся в слое, на который фокусирован микроскоп. Толщина этого слоя в опытах Перрена, работавшего с монодисперсным золем гуммигута, составляла 1 мкм. Поднимая или опуская тубус, микроскоп можно было фокусировать на слои, которые лежали выше или ниже начального. В одной из серий опытов Перрена при общем числе частиц 13 000 и диаметре их в 0,212 мкм соотношение числа частиц в слоях, отстоявших от дна кюветы на расстояниях 5, 35, 65 и 95 мкм, составляло 100 47 22,6 12. Как можно видеть, через каждые 30 мкм число частиц в поле зрения микроскопа убывало вдвое. Таким образом, при возрастании высоты в арифметической прогрессии число частиц в поле зрения микроскопа уменьшалось в геометрической прогрессии. Следовательно, как н предполагал Перрен, взвешенные в жидкости частицы распределяются по высоте в гравитационном поле по той же барометрической формуле, что и молекулы газа. За эти опыты, увенчавшиеся окончательной победой атомизма и отличавшиеся исключительной точностью, остроумием и простотой, Перрену в 1926 г. была присуждена Нобелевская премия. [c.69]

    Изображение препарата в ультрафиолетовых лучах, создаваемых ртутно-кварцевой лампой, выделяется из общего потока лучей светофильтром и проектируется объективом микроскопа и добавочным проекционным объективом на тонкий флюоресцирующий экран, на котором оно рассматривается в свете флюоресценции через второй микроскоп — окуляр, снабженный обычной стеклянной оптикой. В качестве первого объектива микроскопа применяются сменные ультрафиолетовые ахроматические объективы различных увеличений. [c.125]

    В зависимости от того, из какого вещества приготовлен флюоресцирующий экран, в- поле зрения микроскопа можно наблюдать различную цветную картину. Отфильтровывая от общего ультрафиолетового излучения лампы только те лучи, которые отразились от данного минерала, и изготавливая экран двухслойным, можно в поле зрения оптического микроскопа видеть три различных цвета, например синий, зеленый (люминесцентные) и красный (вследствие использования прямого красного света источника). [c.125]

    Вся система микроскопа находится в колонке под вакуумом, равным 1,33-10-= —6,66-10- Па. Общее увеличение микроскопа равно произведению увеличений, даваемых линзами. [c.132]

    Определив с помощью микроскопа число частиц в пробе, по формулам (У.2) легко рассчитать их размер, предположив сферическую или кубическую форму част1щ. Для этого необходимо знать общую массу частиц в пробе и нх плотность. При известных массовых с и частичных V концентрациях уравнения (V. 2) можно представить в следующем виде  [c.259]

    В зависимости от общего числа студентов и числа студентов, приходящихся на одного преподавателя, в лаборатории устанавливается то или иное число письменных столов для преподавателей 8 (см. рис. 1). На столах укреплены микрокалькуляторы и микроскопы. [c.20]

    Удачно дополняет ассортимент качественных реакций микрокристаллоскопия [13]. Если при химической реакции образуются кристаллические осадки, то форма кристаллов всегда пригодна для идентификации определенных соединений под микроскопом. При этом точное знание системы кристалла не является безусловно необходимым. Чаще всего можно довольствоваться общим видом кристаллов, образующихся при строго определенном порядке выполнения реакции, и на основе этого делать качественные выводы. [c.52]

    Кинетические исследования проводили весовым методом в высокотемпературной установке с непрерывным взвешиванием, состоящей ие печи сопротивления с графитовым нагревателем и измерительной части. Чувствительность весов составляла 1.56 мг на деление отсчетпого микроскопа. Общая убыль веса контролировалась взвешиванием на аналитических весах исходного и прореагировавшего брикета. Степень восстановления а оценивали по изменению веса брикета. Принимали а=1 при полном отнятии кислорода от окисла. Рентгенофазовый анализ проводили на установке УРС-50И. Съемку дифрактограмм вели в медном фильтрованном (никелевый фильтр) излучении. [c.298]

    Приготовить препарат улотрикса. Для этого следует взять небольшое количество нитей и поместить в каплю воды на предметном стекле. Покачиванием стекла можно добиться равномерного распределения нитей, не повредив материала, после чего накрыть покровным стеклом. Рассмотреть при малом увеличении микроскопа общий вид нити и зарисовать ее. Обратить внимание на форму, размеры и окраску верхушечной и базальной клеток (последние попадаются редко). [c.54]

    Из приведенных данных видно, что при достаточно большой поверхности металла, контактирующего с топливом, 25—30% вторично-октилмеркаптана взаимодействуют с металлом значительная часть продуктов окисления остается в топливе в виде нерастворимого осадка, в состав которого входит 2—5% общего количества серы. На поверхности бронзы не образуется заметной защитной пленки. Под микроскопом видны следы разрушитель-1Г0Й деятельности вторичного октилмеркаптана (рис. 12). Поверхность бронзы как бы выедается, причем продукты взаимодействия вторично-октилмеркаптана с металлол не остаются на поверхности бронзы, а переходят в топливо в виде осадка. [c.91]

    По ГОСТ 1763—68 глубина обезуглероженного слоя стальных полуфабрикатов и деталей определяется металлографическими методами М, М1 (метод карбидной сетки), М2 (метод Садовского), методом замера термоэлектродвижущей силы, методом замера твердости (Т) и химическим методом (X). По методу М просматривают деталь под микроскопом при увеличении 63-н150 по всему краю травленого (до четкого выявления всех структурных составляющих стали) шлифа, плоскость которого должна быть перпендикулярна к исследуемой поверхности полуфабриката или детали. Общая глубина обезуглероживания включает зону пол- [c.442]

    В катализаторах на носителях необходимо следить аа структуроД слоя активного компонента, покрывающего носитель. Так, Шехтер, Рогинский и Исаев [43] показали съемкой в электронном микроскопе, что в платино-асбестовом катализаторе платина находится на асбесте в виде сферолитов различной величины. Адлер и Кивней [441 нашли для платино-глиноземного катализатора, что в зависимости от метода нанесения платина различным образом располагается на окиси алюминия, образуя монослой при пропитке и сферические дискретные частицы при соосаждении. В общем, дисперсность активного компонента в нанесенных катализаторах может варьироваться в достаточно широких пределах и тем самым определять свойства катализатора. Поэтому для таких катализаторов нужно иметь [c.197]

    Эмульсии относятся к микрогетерогенным системам, частицы которых видны в обычный оптический микроскоп, а коллоидные растворы принадлежат к ультрамикрогетерогенным системам, их частицы не видны в обычный микроскоп. Хотя по своей природе эти системы близки, но физико-химические их свойства различны и зависят в значительной степени от дисперсности. При образовании эмульсии образуется огромная поверхность дисперсной фазы. Так, количество глобул воды в одном литре 1%-ной высокодисперсной эмульсии исчисляется триллионами, а общая межфазная площадь поверхности — десятками квадратных метров. На такой огромной межфазной поверхности может адсорбироваться большое количество веществ, стабилизирующих эмульсию. В процессе образования эмульсии на хщспергирование жидкости затрачивается определенная работа и на поверхности раздела фаз концентрируется свободная поверхностная энергия — избыток энергии, содержащейся в поверхностном слое (на границе двух соприкасающихся фаз). Энергия, затраченная на образование единицы межфазной поверхности, называется межфазным поверхностным натяжением. Удельная поверхностная энергия измеряется работой изотермического и обратимого процесса образования единицы поверхности поверхностного слоя и обозначается а. [c.15]

    Сетку с препаратом вводят через шлюзовое устройство в камеру объектов колонны микроскопа. Сначала пленку-подложку освеп1ают электронным лучом небольшой интенсивности (тренировка). Происходящая при этом карбонизация поверхности полимерной пленки-подложки значительно повышает ее устойчивость к действию электронного пучка большей интенсивности. Затем увеличивают интенсивность пучка и просматривают весь препарат при небольшом увеличении (5000— 10 000 раз), выбирая участок, наиболее подходящий для съемки. После этого устанавливают необходимое рабочее увеличение, наводят на резкость и фотографируют. Данную операцию повторяют 2—4 раза,, исследуя разные участки пленки. При этом общее число отснятых частиц должно быть не менее тысячи. (Операции проявления фотопластинок и получения фотоотпечатков проводят под руководством лаборанта.) [c.126]

    У.8.3. В опыте Сведберга из общего числа наблюдении, равного 518, одна частица в микрообъеме поля зрения микроскопа наблюдалась 168 раз среднее число частиц г= 1,545. Рассчитать теоретическую вероятносгь [c.118]

    Обычно кристаллы классифицируют по признакам общей симметрии. В этом отношении жидкие кристаллы можно подразделять на смектические, нематические и холестерические. Для смектических жидких кристаллов, обычно являющихся термотропными, характерен ближний одномерный и ориентационный порядок, что имеет место и у твердых кристаллов. У нематических жидких кристаллов проявляется дальний ориентационный порядок в каком-либо одном направлении. Аналогичный порядок расположения молекул имеют и холестерические жидкие кристаллы, но они отличаются по равновесной структуре и текстуре. Существующие в различных жидких кристаллах видимые в обычный оптический микроскоп дефекты структуры получили название дисинклинаций. Иногда одна часть полимерной системы имеет смектическую, а другая — нематическую фазу. При этом может происходить переход [c.30]

    В газо-адсорбционной хроматографии в качестве поглотителей применяют различные адсорбенты. Адсорбенты — это твердые тела, на поверхности которых поглощаются газы или пары. Газ или пар, удерживаемый поверхностью твердого адсорбента, принято называть адсорбатом. Газ или пар, приведенный в соприкосновение с твердым телом, с которого тщательно удалены газы, частично поглощается. Если поглощение идет при постоянном объеме, то давление в системе падает если давление поддерживается постоянным, то объем газа уменьшается. Молекулы, извлекаемые из газовой фазы, или проникают внутрь адсорбента, или же остаются снаружи и удерживаются на его поверхности. Первое явление называется абсорбцией, второе — адсорбцией. Не всегда легко установить, находится ли газ внутри адсорбента или на его поверхности. Большинство адсорбентов — высокопористые тела с исключительно большой внутренней поверхностью. Внешняя поверхность, даже измеренная с помощью совершенных микроскопов, составляет лишь небольшук) часть громадной общей поверхности. Однако до тех пор, пока молекулы адсорбируемого газа не проникают в силовое поле, существующее между атомами или ионами, или молекулами внутри твердого тела, считается, что газ находится снаружи. [c.83]

    Оптическая схема электронного микроскопа близка к схеме обычного светового. Катод, представляющий собой вольфрамовую проволоку, при накаливании испускает электроны. В результате разности потенциалов между катодом и анодом, равной нескольким десяткам киловольт, электроны со значительной скоростью движутся к аноду и проходят через отверстие б магнитную линзу. Линза фокусирует пучок электронов в плоскости объекта. Электроны, прошедшие сквозь объект, попадают во вторую магнитную линзу, которая создает в плоскости увеличенное изображение объекта. Чтобы сделать это электронное изображение видимым, в данной плоскости устанавливают флюоресцирующий экран. Получаемое видимое изображение объекта называют промеи<уточным. Часть электронов, несущих определенную часть общего изображения, проходит через отверстие в центре экрана и при помощи третьей магнитной линзы фокусируется в увеличенном виде в плоскости. В плоскости конечного изображения также имеется флюоресцирующий экран, превращающий электронное изображение в световое. Под флюоресцирующим экраном помещается кассета с обычной фотографической пластинкой, которую можно заэкспонировать. [c.131]

    Общий вид электронного микроскопа УЭМВ-100В показан на рис. VII. 11, а. В его состав входят колонна 1, вакуумная система 2, стенд 3 и блоки системы питания 4. Колонна, вакуумная система и пульт управления микроскопом смонтированы на оперативном столе стенда микроскопа. Наблюдение картин микродифракции производится на флуоресцирующем экране и регистрируется на фотопластинках. [c.144]


Смотреть страницы где упоминается термин Микроскопия общая: [c.110]    [c.322]    [c.165]    [c.109]    [c.359]    [c.82]    [c.74]    [c.49]    [c.117]    [c.152]    [c.190]   
Физические методы органической химии Том 2 (1952) -- [ c.200 , c.225 ]

Физические методы органической химии Том 2 (1952) -- [ c.200 , c.225 ]




ПОИСК





Смотрите так же термины и статьи:

Микроскоп

Микроскопия



© 2025 chem21.info Реклама на сайте