Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Модуль неравновесный

    Модуль неравновесный — отношение мгновенного значения напряжения к соответствующей высокоэластической деформации при неустановившемся равновесии. [c.563]

    Структурная модель, базирующаяся на представлениях о неравновесных границах зерен и предложенная в работах [12, 207], может быть использована для объяснения и других свойств наноструктурных материалов, по крайней мере, в качественном аспекте. Увеличение объема материала, вызванное дефектами, должно приводить к уменьшению температуры Дебая и упругих модулей. Поскольку обменная энергия в магнитных материалах очень чувствительна к межатомным расстояниям, это может вызвать уменьшение температуры Кюри. Как уже указывалось ранее [83], случайные статические смещения атомов могут влиять на свойства аналогично увеличению температуры. Например, это может вызвать уменьшение энергии активации диффузии, экспериментально наблюдаемое во многих наноструктурных металлах [61, 218], что также может быть объяснено в рамках данных представлений. [c.112]


    Отжиг при относительно низких температурах приводит к трансформации зернограничной структуры, перестройке неравновесных границ в относительно равновесные благодаря аннигиляции неравновесных дефектов, что сопровождается релаксацией напряжений вдоль границ. Очевидно, что движение зернограничных дефектов в поле напряжений звуковой волны, их упругая релаксация приводят к дополнительной деформации и объясняют понижение эффективных упругих модулей. К сожалению, сейчас трудно конкретизировать природу этих зернограничных перестроек и необходимы дальнейшие экспериментальные и теоретические исследования этого эффекта. Отметим, что аналогичные результаты, указывающие на изменения модулей упругости в ИПД Си и Си нанокомпозитах, были получены также в работах [290, 291]. [c.174]

    С другой стороны, проведенные исследования показали, что анизотропия модуля Юнга в холоднокатаной наноструктурной Си значительно менее выражена, чем в случае холоднокатаной крупнокристаллической Си. В то же время характер кристаллографической текстуры в этих состояниях близок. Как уже отмечалось в 3.2, холодная прокатка наноструктурной Си, полученной РКУ-прессованием, сопровождается процессами возврата, которые должны переводить границы зерен в равновесное состояние. При холодной прокатке крупнокристаллической Си возврат не наблюдался. Полученные результаты говорят о том, что не только кристаллографическая текстура, но и другие структурные параметры, в том числе, очевидно, и неравновесное состояние границ зерен, могут определять упругие свойства исследуемых материалов. Все это указывает на необходимость дальнейших исследований связи тонкой структуры ИПД материалов с их упругими свойствами. [c.180]

    Механические потери в области высокоэластического плато определяются разрушением и рекомбинацией физических узлов, это значит, что механические потери Агю и релаксирующая часть модуля Е t) связаны между собой. Эти представления подтверждаются данными работы по самопроизвольному сокращению резин [146], из которой следует, что механические потери Дш, а следовательно, и неравновесная часть модуля Е ( ) в случае редкой сетки не зависят от того, сшит или не сшит полимер. Но модуль высокоэластичности Е, совпадающий с Е t) для несшитого эластомера, существенно больше для сшитого из-за наличия равновесного модуля. Например, для сши- [c.222]

    Хотя структуры типа шиш-кебаб образуются при самых разных условиях кристаллизации, они явно являются неравновесными, о чем свидетельствует уменьшение содержания наростов прн повышении температуры кристаллизации, что одновременно сопровождается заметным увеличением модуля упругости получающегося материала. Выше некоторой температуры (для полиэтилена, формуемого из ксилола, она составляет 385— 386 К) образования таких структур не происходит. Если же применить специальную методику контактирующего конца (подробности можно найти в [257, гл. 10]), и довести Гкр до 396 к (что на 5°К выше температуры растворения макромолекул бесконечной степени полимеризации), то удается получить волокна практически гладкие и не содержащие наростов. Здесь мы, по-прежнему, уже имеем дело с почти идеальной структурой монокристалла, образованного выпрямленными цепями. Достигаемый при этом модуль оказывается равным примерно 100 ГПА, что все-такн в л 2,5 раза меньше предельного (теоретического) значения. [c.369]


    Модули в неравновесных условиях. Понятие о М. может быть распространено на любые неравновесные режимы деформирования, когда отношение ст/е становится зависящим от временного фактора (продолжительности или частоты деформирования). [c.140]

    Деформационные свойства резин оценивают также условными показателями неравновесного модуля, проводя статич. испытания при кратковременных воздействиях нагрузок в условиях растяжения (ГОСТ 210—53 и 412—53) и сжатия (ГОСТ 265—66). [c.447]

    Методы экспериментального определения модулей. Методы измерений М. представляют собой частные случаи механич. испытаний полимерных материалов (подробно см. Испытания пластических масс, Испытания резин. Испытания химических волокон), отличающиеся необходимостью задания плп вычисления таких количественных характеристик режима деформирования, как напряжения и деформации. Соответственно задачам измерений опыты могут проводиться в равновесных режимах, когда главной экспериментальной задачей является достаточно длительная выдержка образца в заданных условиях, чтобы завершились процессы релаксации, или в неравновесных режимах, когда существенно достижение установившегося режима и выполнение измерений в очень широком временном диапазоне — при частотах от 10 до 10 г if или продолжительностях нагружения от малых долей сек до многих сут. Для расширения частотного (временного) режима нас ружения важной является возможность взаимного пересчета различных М., измеренных в ли- [c.139]

    Модуль G (oj) определяется как отношение составляюще напряжения, находящейся в фазе с синусоидально изменяющейся деформацией, к величине этой деформации. При сравнении различных систем при одинаковых амплитудах деформации он является мерой энергии, запасаемой и освобождаемой за период колебаний в единице объема данного материала. Зависимость упругого модуля от угловой частоты в логарифмических координатах представлена на фиг. 14. Поскольку как G(i), так и G (o>) определяют запасенную упругую энергию, а динамические нз.мерения при частоте (О качественно эквивалентны измерениям неравновесных свойств при t = 1/о), 10 приведенные зависимости являются в первом приближении зеркальным отображением относительно оси. модуля соответствующих зависимостей, описывающих релаксацию напряжения. В частности, когда G(t) изменяется очень медленно, G(t) G (l//), так что значения Gg и Ge, характеризующие поведение материала при высоких и низких частотах, те же самые, что и значения, характеризующие поведение материала при малых и больших временах наблюдения соответственно. [c.46]

    Молекулярные движения в полимерах ниже температуры стеклования. Важной особенностью твердых полимеров, способных к холодной вытяжке, является возможность осуществления в них крупномасштабных сегментальных движений при температуре ниже температуры стеклования. Эта возможность особенно наглядно выявляется при исследовании низкотемпературного отжига полимерных стекол. Влияние отжига на механические и теплофизические свойства стеклообразных полимеров подробно рассмотрено в работах Петри и др. [30—33]. Установлено, например, что отжиг аморфного полиэтилентерефталата при 50 °С приводит к потере его способности деформироваться с образованием шейки, так что образец разрушается при малых (около 4 %) удлинениях даже при весьма низких скоростях деформации (10%/мин). Отжиг ниже температуры стеклования приводит также к заметному изменению объема, энтальпии, динамического модуля сдвига и механических потерь. Изменение перечисленных характеристик полимеров зависит от длительности отжига, однако при каждой температуре после достижения некоторого равновесного стеклообразного состояния отжиг перестает влиять на свойства полимера. Если же полимер нагреть выше Гс и после этого закалить резким охлаждением, то все неравновесные (зависимые от длительности отжига) характеристики образца восстанавливаются. Изменения показателей физических свойств полимера в зависимости от условий его отл и- [c.8]

    Структура стеклянных волокон зависит от условий рафинирования стекла в плавильной ванне перед вытяжкой, температуры вытяжки, степени кристалличности и других факторов. В результате быстрого охлаждения при вытягивании (скорость охлаждения измеряется сотнями градусов в секунду) в непрерывных стеклянных волокнах фиксируется структура высокотемпературного наиболее однородного и рыхлого расплава стекла. Поэтому плотность, модуль упругости, коэффициент термического расширения, удельная теплоемкость и показатель преломления стеклянных волокон несколько ниже, чем у массивного стекла [1, 4, 8]. Такая структура волокон является неравновесной и при термообработке стремится приблизиться к структуре массивного стекла. Этот процесс получил название уплотнение стеклянных волокон. В процессе уплотнения плотность, модуль упругости и другие свойства волокон приближаются к свойствам массивного стекла. [c.122]


    По мере развития эластической деформации из-за процесса релаксации линейная зависимость между f н е нарушается. При медленном растяжении она сохраняется до 300— 400%-ной деформации. В процессе дальнейшей деформации проявляется действие и других факторов, например кристаллизации, и каждому значению напряжения или деформации соответствует свое значение Е — неравновесного модуля эластичности. На кривой растяжения модуль эластичности равен тангенсу угла наклона касательной к оси абсцисс  [c.73]

    Этот процесс соответствует переходной зоне от стеклообразного к высокоэластическому состоянию. После его прохождения контурная длина простейшей цепи возвращается к своему равновесному значению хр, но сохраняется неравновесная ориентация цепей в деформированных трубках. Связанная с этой ориентацией оставшаяся часть свободной энергии медленно релаксирует за счет постепенного выползания цепей из первоначальных петель (первоначальной трубки) и возвращения к равновесному состоянию ("рис. 1У.8). Релаксационный модуль С(Г) пропорционален доле /( ) сегментов цепи, еще не покинувших первоначальную трубку  [c.99]

    Таким образом, наибольший интерес представляют неравновесные высокоэластические деформации, которые и будут рассмотрены в этом очерке. Однако, исторически, очень много внимания было уделено теоретическому рассмотрению природы высокоэластической деформации и вычислению модуля равновесной высокоэластичности по молекулярным характеристикам. Эти работы, с нашей точки зрения, имеют ограниченное значение вследствие содержащихся в них недостаточно обоснованных предположений, рассматриваемых ниже, а также вследствие узости их основной задачи — вычисления равновесной высокоэластической деформации. Тем не менее они сыграли положительную роль, состоящую в том, чтобы были выяснены природа высокоэластичности и ее связь со свойствами цепных молекул. [c.55]

    Кнезеровский эффект может влиять на перестройку ближнего порядка и ориентацию молекул [361], что вызывает изменение неравновесной (запаздывающей [346]) компоненты таких свойств, как изотермического и адиабатического модулей упр)то-сти, теплоемкости, термических коэффициентов сжимаемости, сдвиговой и объемной вязкости, теплопроводности. В этрй связи в жидкости под воздействием акустических колебаний имеет место ряд специфических явлений  [c.49]

    Механические свойства резин можно разделить на равновесные и зависящие от величины и скорости деформации. Хотя теоретическому рассмотрению и детальному экспериментальному исследованию подвергались в основном равновесные свойства (определяющие зависимость напряжение — деформация), практически наибольший интерес представляют неравновесные — динамические свойства резин. Из теории следует, что равновесные эластические свойства сеток зависят только от концентрации эластически эффективных узлов и не зависят от природы и строения эластомеров. Значение равновесного модуля при растяжении сеток выражается простым соотношением [см. уравнение (4), гл. 2]. [c.83]

    NaaO AI2O3, т. е. разным так называемым каустическим модулям. Этот модуль — важнейшая характеристика алюминатного раствора. Линия GH составлена нз точек, координатами которых являются такие концентрации щелочи и глинозема, которые характеризуют равновесие указанной выше реакции. При меньших концентрациях щелочи или более высоких концентрациях АЬОз, чем те, что соответствуют линии GH, равновесие реакции нарушается и сдвигается вправо, при этом выпадает осадок А1(0Н)з. Таким образом, область I — это область неравновесных, нестабильных растворов, из которых будет выделяться А1(0Н)з до тех пор, пока не установится вновь равновесие. [c.456]

    Неравновесные границы зерен в наноструктурных материалах вследствие наличия в их структуре внесенных дефектов с предельно высокой плотностью обладают избыточной энергией и дальнодействуюшими упругими напряжениями. В результате действия этих напряжений вблизи границ зерен возникают значительные искажения и дилатации кристаллической решетки, которые экспериментально обнаруживаются методами просвечиваю-шей электронной микроскопии и рентгеноструктурного анализа. В свою очередь атомные смешения в приграничных областях изменяют динамику колебаний решетки и, как результат, приводят к изменению таких фундаментальных свойств, как упругие модули, температуры Дебая и Кюри и др. [c.99]

    Приведенные выше результаты экспериментальных исследований и модельные представления свидетельствуют о том, что основными структурными элементами наноматерйалов, полученных ИПД, являются малый размер зерен и большая протяженность неравновесных границ зерен, содержащих внесенные зернограничные дефекты и упругие искажения кристаллической решетки. В данной главе эти представления использованы для анализа различных аномалий фундаментальных, т. е. обычно структурно-нечувствительных свойств, таких как упругие модули, температуры Кюри и Дебая, намагниченность насыщения, температуры фазовых превращений и т. д., которые, как было показано, заметно изменяются в наноструктурных материалах. [c.153]

    Равновесный модуль зависит главным образом от стеиени поперечного сшивания (вулканизации). Величина неравновесной части динамического модуля практически не зависит от степенн вулканизации . Таким образом, вулканизацией можно изменять величину динамического модуля, не изменяя внутреннего трения резины. Неравновесная часть модуля, как и внутреннее трение, суш,ественно зависит от числа полярных групп в цепн каучука и количества активного наполнителя, т. е. от характера и интенсивности межмолекулярного взаимодействия. Влняние наполнителя на динамический модуль сказывается в изменении Е при практически неизмененном Еоа- [c.217]

    Аналогичные исследования проведены и с другими полимерами [157, с. 486 169, с. 24]. В частности, показано, что температурные зависимости равновесного и неравновесного модулей упругости при низких температурах располагаются выше для образцов полипропилена с крупносферолитной структурой, а при высоких температурах — мелкосферолитной структурой. [c.59]

    Влияние неравновесных эффектов на тепловые потоки к поверхности, имеюш,ей конечную каталитическую активность, суш,е-ственно также и для аппаратов с аэродинамическим торможением. Корабли такого типа используют атмосферу для уменьшения энергии, чтобы вернуться с геостационарной орбиты Земли, с Луны или с Марса. К таким аппаратам относятся транспортный корабль с аэродинамическим торможением (AOTV) и аппарат, созданный для летного эксперимента с аэродинамическим торможением (AFE). Аналогичные концепции кораблей планируются и ири входе в атмосферу Марса. Желательно, чтобы тепловые потоки и нагрузка при таких маневрах были как можно меньше. Следовательно проектируемые траектории должны быть как можно выше. При полете с большой скоростью на большой высоте имеет место ноток с высокой энергией и малой плотностью. Поэтому химический состав в ударном слое вблизи поверхности значительно отличается от равновесного, и для снижения аэродинамического нагрева можно использовать низко каталитические покрытия. При этом нагрев будет гораздо меньше, по сравнению с такими аппаратами, как командный модуль Аииолона или баллистическая ракета, которые совсем немного времени находятся на больших высотах и входят в атмосферу ио баллистической траектории. [c.128]

    Высокополимерные материалы (например, каучук, целлюлоза и ее производные) при их деформации не подчиняются ни закону вязкости Ньютона, ни закону Гука. Нарушение обоих законов проявляется в том, что коэффициент вязкости (при рассмотрении тела как вязкого) и модуль Юнга (при рассмотрении тела как упругого) зависят от времени (от скорости и длительности деформации). При равновесном или стационарном процессе, согласно самому смыс [у этих определений, влияние времени исключено. Следовательно, рассматриваемое явление есть явление неравновесное или нестационарное. Суш,ествующее в механике непрерывных сред определение понятия вязкости, непосредственно связанное с законом вязкости Ньютона, относится к стационарным процессам деформации. [c.214]

    Для описания температурных зависимостей деформационных характеристик Р. при различных режимах нагружения м. б. применен метод приведенных переменных — следствие температурно-временной суперпозиции (см. Суперпозиции принцип температурно-временной), В03М0ЖН011 при одинаковой температурной зависимости всего спектра времен релаксации или времен запаздывания. В этом случае зависимости неравновесного или динамич. модуля от /( , и), полученные нри разных темп-рах Т, м. б. приведены к одной темп-ре, т. н. темп-ре приведения Т , связанной с временн1лм фактором коэффициентом приведения а-1-. При этом t, и (или со) и Т оказываются взаимозаменяемыми одно и то же значение модуля иолучают соответственно при Т ж t(v, со) или нри /" р и t y = t/a-[-Шпр=соа7-). Принцип температурно-временной суперпозиции применим как для линейных, так и нелинейных деформационных свойств. [c.159]

    Динамическими называют условия, при которых внешнее воздействие на пленку изменяется по величине и знаку (циклические напряжения). В таких условиях материал находится в неравновесном, нерелаксированном состоянии, и это можно использовать для определения вязкоупругих свойств. Вязкие или зависящие от времени свойства не фазированы с напряжением, тогда как упругие или мгновенные свойства находятся в фазе с напряжением. Находящееся в фазе свойство называется динамическим модулем, поскольку в этом случае упругая энергия сохраняется и может высвободиться после снятия напряжения. Свойство, находящееся не в фазе, называется модулем потерь, поскольку энергия в процессе вязкого течения переходит в тепло. Такие свойства обычно измеряются в зависимости от температуры и/или частоты. Температуру и частоту можно объединить в едином температурно-временном преобразовании, тогда свойства могут быть измерены в пределах реального времени [23]. На рис. 1.14 показаны кривые анализа механических свойств для ПП. [c.38]

    При механич. нагружении Р., находящихся в высокоэластич. состоянии, наблюдаются релаксационные явления, т. е. растянутая во времени реакция материала на механич. воздействие. Релаксационные свойства Р. обусловливают длительность их перехода при статич. нагружении от неравновесного состояния к равновесному, при динамич. нагружении — от неустановив-шегося, или нестационарного, состояния к установившемуся, или стационарному. В равновесном состоянии Р. соотношение между напряжением а и деформацией е не зависит от времени и связь этих параметров однозначно определяется равновесным модулем. [c.158]

    Если нзвестны обе динамические компоненты, то неравновесная функция может быть найдена методом Ниномия и Ферри. Так, для релаксационного модуля [c.93]


Смотреть страницы где упоминается термин Модуль неравновесный: [c.290]    [c.299]    [c.300]    [c.173]    [c.173]    [c.115]    [c.389]    [c.217]    [c.219]    [c.219]    [c.162]    [c.39]    [c.30]    [c.158]    [c.158]    [c.209]    [c.311]    [c.85]    [c.122]    [c.107]   
Механические испытания каучука и резины (1964) -- [ c.192 , c.195 , c.269 ]




ПОИСК





Смотрите так же термины и статьи:

Модуль

Неравновесный ЯЭО



© 2025 chem21.info Реклама на сайте