Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Механический модуль упругости зависимость от температуры

    Кривая зависимости модуля упругости от температуры также чувствительна к скорости испытания (скорости подачи напряжения), поскольку сильные изменения модуля упругости имеют место при особом типе молекулярной активности, когда они происходят быстрее, чем скорость испытания. Это поведение модуля упругости характерно для проявления любого обычного механического свойства, такого как предел текучести, прочность на излом, предельное растяжение, ударная прочность (или общая энергия разрушения) и т. д. [c.312]


    Теперь детализируем само представление о релаксационном спектре. Как мы уже отмечали, тепловое движение элементов структуры (релаксаторов) от самых мелких и подвижных (боковые и концевые группы в цепях или малые участки цепей и сегменты) до крупных (микроблоки, частицы активного наполнителя и т. д.) происходит либо путем перехода кинетических единиц из одного равновесного положения в соседнее (мелкие кинетические единицы и сегменты), либо путем распада и образования флуктуационных структур (микроблоки), либо путем отрыва стабильных коллоидных частиц друг от друга и их диффузии (частицы наполнителя, глобулы в расплавах и концентрированных растворах полимеров). Скорость указанных процессов зависит от сил взаимодействия между частицами, высоты потенциальных барьеров, разделяющих два соседних равновесия, размеров структурных элементов и температуры. Молекулярная подвижность таких кинетических единиц характеризуется временем оседлой жизни и собственно временем жизни флуктуационной структуры до ее распада. Характер теплового движения элементов структуры полимера сказывается на скорости деформации, скорости релаксации напряжения, на зависимости статического и динамического модулей упругости от температуры, времени наблюдения или частоты деформации, а также проявляется в механических потерях при деформировании материала. [c.76]

    В области низких температур механические свойства битумов изучались при деформировании по методу изгиба, в отличие от описанных выше сдвиговых методов, примененных для описания деформационных свойств битумов при более высоких темиературах. На рис. 19 в полулогарифмическом масштабе показана зависимость от температуры модулей упругости (начального и равновесного) характерных битумов разных типов. [c.92]

    Выше уже упоминалось, что модуль упругости изменяется при изменении скорости деформации испытываемого образца и что это вытекает из временной зависимости деформации от напряжения. Если напряжение изменяется периодически с относительно малой амплитудой и если известно, как деформация отстает от напряжения, то можно вычислить динамический модуль упругости О и коэффициент механических потерь б, который характеризует способность материала поглощать колебания. Динамический модуль упругости возрастает с повышением частоты синусоидального напряжения, а коэффициент потерь обычно проходит через несколько областей, в которых материал обнаруживает максимальное поглощение колебаний. Эти характеристические частоты соответствуют частотам отдельных атомных групп в цепи. Определение зависимости динамического модуля упругости и коэффициента механических потерь от температуры в диапазоне от очень низкой до близкой к температуре плавления полимера дает представление о температурном интервале, в котором наблюдается увеличение подвижности характеристических групп макромолекул, сопровождаемое заметными изменениями свойств полимера. Этот метод, [c.107]


    При изучении степени вулканизации динамическими механическими методами, описывающими свойства эластомеров комплексным модулем сдвига G = G + G", где G и G" - модуль упругости и модуль потерь, построение графической зависимости log G от log со (й) - угловая частота) при различных температурах позволяет оценить степень вулканизации и в соответствии с уравнением Аррениуса энергию активации процесса. Так, энергия активации для бутадиен-стирольного каучука, цис-полибутадиена и их смеси (70/30) находится в пределах от 5,9 до 14,7 кДж/моль, что соответствует энергии диссоциации связей между агрегатами технического углерода [20]. [c.509]

Рис. 28. Зависимость модуля упругости Е и механического фактора потерь 1 от температуры для различных полимеров Рис. 28. <a href="/info/955757">Зависимость модуля упругости</a> Е и <a href="/info/333627">механического фактора</a> потерь 1 от температуры для различных полимеров
Рис. 29. Зависимость модуля упругости Е и механического фактора потерь д. от температуры для поливинилхлорида с различным содержанием пластификаторов Рис. 29. <a href="/info/955757">Зависимость модуля упругости</a> Е и <a href="/info/333627">механического фактора</a> потерь д. от температуры для поливинилхлорида с <a href="/info/201414">различным содержанием</a> пластификаторов
    Резонансный метод исследования и контроля реакторных материалов и изделий используется достаточно эффективно, прежде всего при отработке технологии новых материалов. Этим методом изучали свойства металлических и керамических материалов в широком интервале изменения температуры (от 4,2 К до 2500...3000 К), концентрации, при механических, химических, радиационных воздействиях [22]. Зависимость модуля упругости от плотности и зависимость резонансных частот от размеров изделия позволили использовать этот метод для изучения спекания керамических материалов. Основу указанных применений составляла связь характеристик упругости и плотности с другими физическими свойствами материала. Например, изучение изменения модуля упругости двуокиси урана при облучении в активной зоне ядерного реактора позволило сделать заключение о механизме радиационного повреждения этого материала на начальном этапе его работы в реакторе. О возможности использования резонансного акустического метода для контроля топливных таблеток ядерных реакторов уже упоминалось. [c.154]

    При переходе из высокоэластического состояния в стеклообразное модуль упругости вещества возрастает на три-четыре десятичных порядка. При этом наблюдаются перегибы на кривых температурной зависимости удельной теплоемкости, термического расширения, диэлектрической проницаемости и др. В настоящее время твердо установлен релаксационный характер происходящих при стекловании изменений механических [201, с. 563 208, с. 329, 210, с. 280], электрических [211, с. 608 212, с. 412], тепловых [213, с. 1114 214, с. 329], оптических [215, с. 1861 216, с. 489] и реологических свойств [611, с. 527—548]. Переход аморфных веществ в стеклообразное состояние обусловливается изменением межмолекулярного взаимодействия, связанным с образованием и разрывом межмолекулярных связей. Различают стеклование аморфных веществ в статических условиях, например при изменении температуры структурное стеклование), и стеклование в динамических условиях, т. е. при действии на образец периодических внешних полей, в частности электрических или механических [217, с. 805 219, с. 5]. [c.68]

    Более упорядоченная структура макромолекул ПЭНД обусловливает и более высокие плотность (0,95—0,96 г/см ), степень кристалличности (75—85%). механическую прочность, модуль упругости при изгибе и теплостойкость. При повышении температуры степень кристалличности уменьшается, и при 130 °С и выше ПЭВД становится аморфным. Соответственно изменяется удельный объем. Зависимость удельного объема от температуры показана на рис. 7. Для сравнения приведена аналогичная кривая и для ПЭВД. [c.17]

    Было исследовано также влияние наполнителя на динамические механические свойства поливинилхлоридных композиций, наполненных аэросилом и сажей [257, 258]. В системах с сильной когезией в граничных слоях изменяется подвижность цепей, приводящая к изменению релаксационного спектра. Наполнитель приводит к увеличению модуля упругости и оказывает некоторое влияние на характер его температурной зависимости. При этом отношение модулей наполненного и ненаполненного полимеров в области температур стеклования растет с понижением температуры. Изменение спектра объясняется образованием граничных слоев с увеличенным свободным объемом и влиянием наполнителя на свойства полимерной матрицы. Размер частиц наполнителя также влияет на динамические свойства наполненных композиций, причем повышение динамических характеристик наблюдается при некотором оптимальном размере частиц [259]. [c.139]


    Для правильного описания результатов эксперимента приходится задаваться значениями Vм, меняющимися от 0,2 до 0,5. Для модельных систем (дисперсия акрилатного латекса в ПММА и т. п.), структура которых была оценена методом электронной микроскопии, проводились расчеты зависимости модуля упругости от состава по уравнению Кернера. Установлено, что в ряде случаев оказывается необходимым введение в теоретические уравнения не истинной, а эффективной доли объемной дисперсной фазы с учетом зависимости этой величины от температуры. При этом важную роль играет эффект инверсии фаз, который может приводить к изменению хода температурной зависимости механических потерь. Использование модельных представлений может быть положено также в основу рассмотрения влияния морфологии на свойства полимерных композиций, если под морфологией понимать характер распределения частиц наполнителя и их размеров в фазе полимера-матрицы [440]. [c.227]

    Другая причина, как мы полагаем, связана с температурной зависимостью механических свойств полистирола, который в области температур переходного состояния эпоксидной матрицы дильно размягчается. Естественно, что повышение концентрации наполнителя в этом случае тоже должно уменьшать величину действительной части комплексного модуля упругости системы. Обнаруженное уменьшение модуля сдвига с ростом концентрации полистирола и уменьшение среднего времени релаксации может быть истолковано как увеличение сегментальной подвижности в эпоксидной матрице. Поэтому по температурной зависимости экспериментально измеренного фактора сДвига ат и формуле [c.230]

    Если проводить измерения на постоянной частоте в очень широком интервале температур, то можно выявить все свойственные данному полимеру релаксационные процессы, обусловленные различными видами молекулярной подвижности, которые могут быть реализованы в полимере. Проявление каждого нового вида молекулярной подвижности, приводящее к существенным изменениям на температурной зависимости динамических механических свойств, обычно трактуют как температурный переход. Температурные переходы могут определяться по максимумам на температурной зависимости модуля или податливости потерь, tgo, по изменению температурного коэффициента скорости звука [4], по точке перегиба на температурной зависимости динамического модуля упругости. [c.260]

Рис. 4. Зависимость динамического модуля упругости и тангенса угла механических потерь от температуры для полимеров на основе ДГР + АП, 1 1 1) ДГР + ДАП + АП, Рис. 4. <a href="/info/958736">Зависимость динамического модуля</a> упругости и тангенса угла <a href="/info/21906">механических потерь</a> от температуры для полимеров на основе ДГР + АП, 1 1 1) ДГР + ДАП + АП,
    Температуру стеклования обычно определяют из зависимости изменений термических, механических, термомеханических и электрических свойств (объема, теплоемкости, диэлектрических потерь, диэлектрической проницаемости, модуля упругости, механических потерь, деформации) при заданном напряжении от температуры [c.218]

    Мех. свойства (в т. ч. -- модули упругости, релаксационная стойкость) температурная зависимость механических свойств коррозионная стойкость температурно-временная стабильность Критическая температура критические магнитные поля п плотности токов стабильность свойств механические свойства Тепловая чувствительность удельное электросопротивление температурный интервал службы механические свойства коррозионная стойкость [c.248]

    Изучены динамические механические свойства полистирола, его сополимеров и смесей, полученных в различных условиях процесс холодного течения [527, 1414, 1929—1932], зависимость модуля упругости и механических потерь от температуры [1933— 1935], влияние наполнителей на динамические механические свойства полистирола [1936—1938] и т. д. [536, 542, 547, 554, 1939—19451. [c.298]

    Изучена зависимость модуля упругости и механических потерь от температуры вблизи температуры фазового перехода второго рода для нитрильных каучуков [514]. Исследовалось разрастание надрезов в резиновых образцах [515]. С увеличением содержания в каучуке акрилонитрила (от 18 до 40%) скорость разрастания надреза уменьшается. [c.642]

    Единственная механическая характеристика, которую можно рассчитать с иомощью аддитивных величин, — это объемный модуль упругости или обратная ему величина — сжимаемость. С помощью объемного модуля упругости можно оценить другие упругие постоянные материала. Их можно также найти с помощью эмпирического соотношения между модулем упругости при сдвиге и температурами переходов. Если известна температура стеклования, то можно также оценить временную и температурную зависимости модуля. [c.143]

    Процесс стеклования полимера, т. е. переход его из высоко-эластического в стеклообразное состояние, сопровождается постепенным изменением его физических свойств (объема, плотности, диэлектрических и механических свойств и др.). Изучая изменение этих свойств в зависимости от температуры, можно определить температуру стеклования полимера. Наибольшее распространение получили методы исследования удельного объема (дилатометрический метод), теплоемкости, модуля упругости и деформации. [c.161]

    Уравнение (1.8) дает приближенно-количественную зависимость между износостойкостью и основными параметрами, характеризующими свойства фрикционной нары и условия испытания. Свойства истираемой резины согласно этому уравнению определяются ее прочностью Д, модулем упругости Е, коэффициентом динамической выносливости Ъ и коэффициентом трения по данному контр-телу (г. Из параметров, характеризующих условия испытания, в уравнение (1.8) входит только давление р. Скорость и температура могут быть введены через соответствующие зависимости для прочностных, упругих, усталостных и фрикционных свойств резин. Несмотря на приближенность уравнение (1.8) дает возможность устанавливать рациональные режимы работы элементов трения и выбирать резины с оптимальным комплексом механических свойств. Все входящие в него величины имеют ясный физический смысл и могут быть определены из других экспериментов. Зависимость интенсивности истирания резины от ее механических свойств может быть описана также уравнением [7, с. 9 8, с. 135 10 49 50], в котором более точно учтены параметры шероховатости контртела, в том числе и реальных покрытий [c.15]

Рис. 5.10. Зависимость модуля упругости и потерь механической энергии от температуры для стеклообразного полимера. Рис. 5.10. <a href="/info/955757">Зависимость модуля упругости</a> и <a href="/info/928161">потерь механической энергии</a> от температуры для стеклообразного полимера.
    Влияние термической предыстории на динамические и статические механические свойства подробно изучено на примере полиимидов, полученных циклизацией полиамидокислот [33]. Естественно, что проведение циклизации при нагревании полиамидокислоты до разных температур и с разными скоростями приводит к различным зависимостям и модуля упругости от температуры. Наличие незациклизованных звеньев и возможность химического структурирования при очень высоких температурах приводит к тому, что в процессе испытаний в определенном интервале температур будет происходить дополнительная циклизация, приводящая к появлению новых пиков на температурной зависимости igб. То же самое, относится к влиянию воды и остаточного растворителя. На этом следует остановиться подробнее. [c.222]

    Условия переработки смешанного полиарилата изофталевой и терефталевой кислот и диана влияют на механические свойства . Повышение температуры переработки, а также времени выдержки при этой температуре снижает прочность. В качестве примера на рис. 38 приведены зависимости предела прочности при растяжении, относительного удлинения при разрыве и модуля упругости от температуры переработки (температуры матрицы). Падение прочности полиарилата с увеличением температуры переработки и времени выдержки авторы объясняют [c.79]

    Отсутствие в стеклообразном состоянии трансляционной подвижности молекул дало основание использовать для описания механических свойств и теплопереноса квазирешеточную модель. Согласно последней атомы или атомные группировки колеблются относительно положений равновесия в ячейках, размеры которых зависят от температуры и давления. Этот подход позволил качественно объяснить возрастание механических модулей упругости, тепло- и температуропроводности при понижении температуры или повышении давления, уменьшении размеров боковых групп цепи и т. п. уменьшением размеров ячейки (т. е. возрастанием плотности молекулярной упаковки полимера). В рамках простой ячеистой модели, однако, необъяснимым является, например, возникновение избыточной теплоемкости и замедление температурной зависимости теплопроводности в области сверхнизких температур, довольно значительная величина длины свободного пробега фононов при повышенных температурах и т. д. В то же время перечисленные эффекты свидетельствуют в пользу представления о замороженных флуктуациях плотности в стеклообразных полимерах, предполагающего наличие упорядоченных участков, размеры которых определяют длину свободного пробега, и рыхлоупакованных межструктурных областей, в которых отдельные боковые группы сохраняют способность совершать квазинезависимые колебания даже вблизи О К. [c.118]

    Были определены [34] температурные зависимости механического и акустического модуля упругости для И типов волокон. На рис. 8.11 представлены эти зависимости. Механический модуль упругости определяется из диаграммы ст—е, полученной на разрывной машине при растяжении волокна на 1%- Акустический модуль упругости определяется по скорости измерения звука при частоте импульсов 10 кГц. Ка видно из рис. 8.11, отношение величины акустического модуля к динамическому изменяется в зависимости от температуры испытания и типа волокна. В зависимости от хода кривой В—Т волокна М0Ж1Н0 разбить на две группы. Для тех волокон, у которых Tg ниже или близка к комнатной, уменьшение модуля упругости при комнатной температуре является заметным, кривые сливаются при приближении температуры к Гпл, когда кристалличность резко снижается. Для тех волокон, у кото-торых Tg выше комнатной, кривые Е—Т не зависят от температуры в широком диапазоне и расположены параллельно друг другу, они заметно снижаются только в области температур, близких к температуре плавления. В этой области отмечается резкое снижение модуля упругости с температурой и слияние обеих кривых. Разница между акустическим и механическим модулем становится понятной, если общую деформацию волокна рассматривать как состоящую из трех частей уп- [c.240]

    Качество стали оценивается рядом структурнонечувствительных и структурно-чувствительных механических характеристик, устанавливаемых по результатам испытаний образцов на растяжение. К первой группе свойств относятся модули упругости Е и коэффициент Пуассона а. Величина Е характеризует жесткость (сопротивление упругим деформациям) стали и в первом приближении зависит от температуры плавления Тпл- Легирование и термическая обработка практически не изменяют величину Е. Поэтому эту характеристику можно рассматривать как структурно-нечувствительную. Коэффициент Пуассона р отражает неравнозначность продольных и поперечных деформаций образца при натяжении. При упругих деформациях л = 0,3. Условие постоянства объема стали при пластическом деформировании требует, чтобы л = 0,5. При определенных значениях относительной деформации 8 > 8т (или 80,2, 8о,з). Зависимость ст(е) отклоняется от прямолинейного закона (Гука). Предел текучести ат(ао,2 или ао,5) связан с величиной 8т по закону Гука ат = 8тЕ. Дальнейшее увеличение деформаций способствует увеличению напряжений. [c.88]

    Расчет футеровки печи и отдельно стоящей топки на воздействие высокой температуры и внешней нагрузки. При нагревании футеровки печн с внутренней стороны выше 50 °С ее расчет по несущей способности (прочности и устойчивости) можно проводить по тем же формулам, по которым осуществляется расчет ненагретой футеровки, однако с учетом изменения физико-механических характеристик ее кладки (прочности, модуля упругости и т. д.) при нагревании. Изменения этих характеристик в зависимости от температуры устанавливают на основании экспериментальных данных. Расчет футеровки, нагреваемой с внутренней стороны, на раскрытие швов кладки не производят, так как футеровка практически не может работать без раскрытия швов в растянутой зоне из-за возникновения температурного перепада по толщине. [c.246]

    Температуры структурного стеклования Тс и механического стеклования Тм. с независимы между собой, так как первая определяется скоростью охлаждения, а вторая — временным режимом механического воздействия (периода действия силы 0, частоты упругих колебаний v). Различие между Тс и Гм.с четко наблюдалось, например, при изучении температурной зависимости динамического модуля сдвига G или модуля одноосного сжатия Е. Характерная зависимость lg от температуры для полимера 11риведена на рис. П. 11. Ниже Гс полимер находится в стеклообразном состоянии и температурная зависимость Igf слабо выражена, как и у любого твердого тела вообще. Выше Гс логарифм модуля упругости изменяется с температурой несколько сильнее в связи С тем, что в структурно-жидком состоянии структура полимера изменяется с изменением температуры. При дальнейшем увеличении температуры, когда время релаксации снижается до величин, сравнимых с периодом колебаний, начинает возникать высокоэла-бтичёская деформация. С дальнейшим увеличением температуры амплитуда деформации полимера возрастает до предельного значения, а модуль упругости падает до весьма низкого значения (модуля высокоэластичности). Для полимеров модуль одноосного (жатия в стеклообразном состоянии Ео примерно в 10 —10 раз больше, чем соответствующий модуль Еж в высокоэластическом состоянии. [c.96]

    Веверка [229], напротив, показывает невозможность описания поведения битума с помощью простых механических моделей типа Максвелла или Кельвина — Фойгта и считает необходимым использование для оценки упруго-вязких свойств битума спектров релаксации и ретардации. Для практического применения автсгр-рекомендует приближенные методы оценки модуля упругости битумов, в частности при динамических испытаниях, например с помощью ультразвука. Эти методы шозволяют установить зависимости от температуры и реологического типа битума. Исследования реологических свойств битумов в большинстве сводятся к описанию закономерностей течения, носящих зачастую эмпирический характер. При этом битумы характеризуют значениями эффективной вязкости, полученными в условиях произвольно выбранных постоянных напряжений сдвига или градиентов скорости [161, 190]. [c.72]

    Рассматривая с этой точки зрения механические и реологические свойства битумов, Ван-дер-Поль (228] получил кривые зависимости модуля упругости разных битумов от времени, подчиняющиеся уравнению E = f xe ), где х — время Т — температура Л — константа. Автор показал, что модуль упругости Е не зависит от напряжения и определяется лишь индексом пенетрации Пфейфера и Ван-Дормаля. Ван-дер-Поль представил в виде номограммы модуль упругости битумов как функцию температуры размягчения по методу КиШ, индекса пенетрации, времени и температуры независимо от природы и метода изготовления битума. [c.74]

    Полученные результаты следует объяснить тем, что избыток битума в асфальтовяжущем раздвигает минеральные частички. Поэтому битумные пленки, находящиеся у самой минеральной поверхности и обладающие наибольшими значениями прочности. и модуля упругости, не работают. Свойства асфальтовяжущего зависят от свойств битума, который испытывает наименьшее воздействие минеральной поверхности. Переход его в хрупкое состояние осуществляется при наиболее низких температурах и Определяет значение температуры механического стеклования [2, 3] асфальтобетона. Температурные зависимости свойств [c.101]

    В большинстве случаев трехмерный аморфный полимер можно рассматривать как застеклованную жидкость, т. е. структура полимера соответствует в значительной мере структуре расплава перед гелеобразованием, так как после перехода полимера р стеклообразное состояние выделение частиц новой фазы невозможно. Вероятно, разделение фаз может наблюдаться в некоторой степени и в течение определенного времени после гелеобра-зования, пока температура стеклования отверждающейся системы выше температуры отверждения и полимер имеет студнеобразную консистенцию с малым модулем упругости. Процесс образования новых фаз в таких системах подобен ликвидации в силикатных стеклах [85]. Разделение фаз может быть обнаружено не только микроскопически, но и другими методами, например по появлению новых максимумов на кривых температурной зависимости механических потерь (рис. 3.4). [c.61]

    Зависимость механических характеристик п температуры стеклования эпоксидных композиций от содержания добавок не во всех случаях является монотонной и для полярных пластификаторов часто проходит через максимум при небольших концентрациях (см. рис. 6.1.). Для неполярных пластификаторов (например, дибутилфталата) максимумов не набл.юдается. Области максимумов для разных показателей не совпадают. Появление подобных максимумов связано с явлением так называемой антипластификации [10, 61], заключающемся в повышении модуля упругости при сравнительно небольших содержаниях пластификатора. Температура стеклования также иногда проходит через максимум, но при значительно меньших количествах пластификатора. Прочность при пластификации хрупких эпоксидных полимеров, как правило, вначале возрастает. Можно предположить, что антипластификация является результатом возрастания при. малых концентрациях пластификатора плотности упаковки цепей и уменьшения свободного объема системы пр№ дальнейшем же увеличении содержания пластификатора свободный объем возрастает, модуль упругости, твердость и прочность снижаются, а удлинение также возрастает. [c.159]

    Механокрекинг происходит главным образом по плоскостям раскола частиц [62—71, 175—177], по поверхностям, возникающим при измельчении, не затрагивая существенно объема измельчаемых частиц до определенного размера, соответствующего размерам основных механических устойчивых надмолекулярных образований [70], хотя возникающие на поверхности свободные радикалы, вернее, соответствующие им неопаренные электроны, могут мигрировать и концентрироваться в объеме. Следовательно, деструкция будет ограничена пределом степени дисперсности, достигаемой при измельчении в данных условиях [175—177]. Скорость деформации или частота механического воздействия в этом случае влияет па интенсивность механокрекинга, по всей вероятности, только через увеличение скорости диспергирования. Влияние температуры в области ниже Тс также сказывается весьма незначительно только в пределах температурной зависимости модуля упругости. [c.55]

    Недостатком всех рассмотренных модельных представлений является пренебрежение возможным взаимодействием между компонентами на границе раздела фаз. Как следует из изложенного выше, практически во всех случаях, когда имеется термодинамически несовместимая система, происходит образование межфазных переходных слоев. С этой точки зрения представляет интерес работа Романова и Зигеля [441], изучавших динамические механические свойства наполненных эластоме ров на примере этиленвинил-ацетатного сополимера с ПС, ПА и ПММА в качестве наполнителей при разных соотношениях компонентов. Ими была сделана попытка на основании данных о температурной зависимости модулей упругости компонентов и композиции рассчитать параметр, характеризующий взаимодействие компонентов, исходя из увеличения объема частиц вследствие адгезии прилегающего межфазного слоя. Было найдено, что этот параметр постоянен выше температуры стеклования полимерной матрицы и уменьшается при более низких температурах, но не зависит от содержания наполнителя. [c.227]

    Очень интересна работа [447], в которой в отличие от обычного типа. наполненных систем, где наполнитель вводится в объем полимерной матрицы, исследована I система, в которой иммобилизация полимера, рассматриваемого в качестве наполнйтеля, осуществлялась путем пропитки поверхностного слоя образцов целлюлозы его разбавленными растворами. При этом были взяты несовместимые системы, в результате чего появилась возможность определения свойств связанного поверхностного полимера, отражающих адгезионное взаимодействие. Были исследовану сополимеры стирола и акрилонитрила с бутадиеном.и определены динамические механические свойства исходных и композиционного материалов. На основании данных о температурной зависимости мнимой составляющей комплексного модуля упругости при разных количествах полимера, введенного в поверхностный слой, были определены температуры стеклования каучуков. Оказалось, что температура стекло- [c.231]

    Рнс. 8.5. Зависимость модуля упругости при сдвиге (а) и логарифмического декремента затухания (6) от температуры (по Нильсену) для механической смеси совместимых полимеров поливинилацетата и полиметилакрилата (сплопшые линии) и сополимера винилацетата и метилакрилата (пунктирные линии). [c.160]

    Влияние различных наполнителей на механические характеристики вулканизатов БСК иллюстрирует рис. 8. Положение кривых, характеризующих зависимость предела прочности от температуры определяются значением модулей наполнителей. Следовательно, снижение прочности вулканизата при введении в него. СБ-10 вполне можно объяснить не связыванием наполнителя, а пониженными значениями его модуля упругости. На это же указывают и значения предела прочности вулканизатов БСК, наполненных полиаценафти-леном. Другими словами, жесткость наполнителя оказывает большое влияние на вязкоупругие свойства системы в целом и, следовательно, на значения предела прочности. Однако это предварительное заключение требует дополнительных экспериментальных подтверждений. [c.103]

    Для полимеров даже сравнительно небольшое изменение температуры (20—60 °С) может привести к существенному изменению таких механических характеристик, как модуль упругости, модуль потерь и др. На зависимость этих характеристик от температуры влияет набухание образцов в жидкостях. Кинетика процессов сорбции, набухания и диффузии жидкости в полимерном материале также изменяется. Совокупность этих факторов приводит к существенному изменению характера и скорости процессов разрушения пластмасс. С повышением температуры псевдохрупкий механизм разрушения может трансформироваться в пластический, как это видно из анализа фрактограмм (рис. V.8). Указанные [c.182]

    СНэ) (С,Н )ПОФ.Этт материал не кристаллизуется, так что эффекты, подобные обнаруженным для (СбН5)зПОФ, в данном случае наблюдаться не могут. Температурные зависимости модуля упругости С и tg б (СНз)(СбН5)ПОФ приведены на рис. И. В области температур от —200 до 100 °С механические свойства материала характери- [c.141]

Рис. 1Х.12. Относительное уменьшение модуля упругости в зависимости от среднего значения тангенса угла механических потерь tg б в иртервале температур от 20 до 60 °С Для полимеров, находящихся при темперйту-рах, существенно меньпшх Т . Модуль определен при частоте 1 гц [15]. Рис. 1Х.12. Относительное <a href="/info/503486">уменьшение модуля упругости</a> в зависимости от <a href="/info/34432">среднего значения</a> тангенса угла <a href="/info/21906">механических потерь</a> tg б в иртервале температур от 20 до 60 °С Для полимеров, находящихся при темперйту-рах, существенно меньпшх Т . <a href="/info/312447">Модуль определен</a> при частоте 1 гц [15].

Смотреть страницы где упоминается термин Механический модуль упругости зависимость от температуры: [c.348]    [c.144]    [c.39]    [c.298]    [c.374]    [c.381]   
Полиамидные волокна (1976) -- [ c.241 ]




ПОИСК





Смотрите так же термины и статьи:

Механические и температура

Модуль

Модуль и температура

Упругий модуль

зависимость от температур



© 2024 chem21.info Реклама на сайте