Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аргинин пептиды

    По полярности боковой цепи Я различают полярные и неполярные аминокислоты. К неполярным аминокислотам относятся глицин и аланин, а также гидрофобные аминокислоты — валин, лейцин, изолейцин, пролин, метионин и фенилаланин. К полярным аминокислотам причисляют серин, треоиин, цистеин, аспарагин, глутамин и триптофан (нейтральные соединения), аспарагиновую и глутаминовую кислоты и тирозин (кислые гидрофильные аминокислоты), а также лизин, аргинин и гистидин (основные гидрофильные аминокислоты). Гидрофильные полярные соединения увеличивают растворимость пептидов и белков в водных системах, в то время как нейтрально-полярные аминокислоты ответственны за каталитическую активность ферментов. В противоположность неполярным гидрофобным аминокислотам полярные аминокислоты обычно находятся на поверхности молекулы белка. [c.17]


    Полученные гидролизаты анализируют различными методами гель-хроматографией, ионообменной хроматографией, электрофорезом и хроматографией на бумаге и в тонком слое, электрофорезом в полиакриламидном геле, методом пептидных карт на бумаге или в тонком слое (в одном направлении пептиды подвергаются электрофорезу, в другом — хроматографии) и др. При этом пептиды, содержащие остат ки аргинина, триптофана и гистидина, могут быть открыты с помощью специфических цветных реакций (с. 129). Выбор метода диктуется величиной (молекулярной массой) и характером пептидов гидролизата. [c.139]

    Данные о специфичности транспорта аминокислот через биомембраны клеток были получены при анализе наследственных дефектов всасывания аминокислот в кишечнике и почках. Классическим примером является цистинурия, при которой резко повышено содержание в моче цистина, аргинина, орнитина и лизина. Это повышение обусловлено наследственным нарушением механизма почечной реабсорбции. Цистин относительно нерастворим в воде, поэтому он легко выпадает в осадок в мочеточнике или мочевом пузыре, в результате чего образуются цистиновые камни и нежелательные последствия (закупорка мочевыводящего тракта, развитие инфекции и др.). Аналогичное нарушение всасывания аминокислот, в частности триптофана, наблюдается при болезни Хартнупа. Доказано всасывание небольших пептидов. Так, в опытах in vitro и in vivo свободный глицин всасывался значительно медленнее, чем дипептид глицилглицин или даже трипептид, образованный из трех остатков глицина. Тем не менее во всех этих случаях после введения олигопептидов с пищей в портальной крови обнаруживали свободные аминокислоты это свидетельствует о том, что олигопептиды подвергаются гидролизу после всасывания. В отдельных случаях отмечают всасывание больших пептидов. Например, некоторые растительные токсины, в частности абрин и рицин, а также токсины ботулизма, холеры и дифтерии всасываются непосредственно в кровь. Дифтерийный токсин (мол. масса 63000), наиболее изученный из токсинов, состоит из двух функциональных полипептидов связывающегося со специфическим рецептором на поверхности чувствительной клетки и другого — проникающего внутрь клетки и оказывающего эффект, который чаще всего сводится к торможению внутриклеточного синтеза белка. Транспорт этих двух полипептидов или целого токсина через двойной липидный слой биомембран до настоящего времени считается уникальным и загадочным процессом. [c.426]

    Определение качественного и количественного аминокислотного состава белков и пептидов проводят после их гидролиза кислотой или щелочью. Оба вида гидролиза разрушают некоторые аминокислоты. При щелочном гидролизе частично разрушаются цистеин, серии, треонин и происходит частичная рацемизация некоторых аминокислот. При гидролизе соляной кислотой (5,7 н., 105—110° С), которая обычно используется при кислотном гидролизе пептидных связей, практически полностью разрушается триптофан. В связи с этим содержание триптофана в пробах обычно определяют после щелочного гидролиза или спектрофотометрическим методом Кроме того, наблюдаются значительные потери оксиаминокислот (серина, треонина, тирозина), се-русодержащих аминокислот (цистеина, метионина) и частично пролива. При этом степень разрушения аминокислот зависит от чистоты и концентрации НС1, используемой для гидролиза, а также длительности и температуры гидролиза. Следует отметить, что примеси альдегидов при кислотном гидролизе приводят к значительной потере тирозина, а также цистеина, гистидина, глутаминовой кислоты и лизина, а примеси углеводов в больших концентрациях — к разрушению аргинина. [c.123]


    Образование пептидной связи между двумя аминокислотами или пептидами, помимо самой конденсации, сопряжено с некоторыми дополнительными химическими операциями. Так, при образовании пептидной связи между карбоксильной группой одного реагента и аминогруппой второго часто необходима защита не только концевой а-аминогруппы первого реагента и концевой карбоксильной группы второго, но и других реакционноспособных групп от нежелательных побочных реакций. К числу таких групп относятся боковые аминогруппы лизина и орнитина, гуанидиновая группировка аргинина, гидроксильные группы серина, треонина, оксипролина и тирозина, тиоловая группа цистеина и даже имино-группа имидазольного кольца гистидина. Поэтому при синтезе сложных пептидов применяется целый ряд временных защитных групп, большая часть которых рассматривается" в главе Защитные группы (стр. 190). [c.158]

    Эта реакция не пригодна для отщепления С-концевых остатков пролина, так как они не образуют тиогидантоин, остатков аспарагиновой и глутаминовой кислот, которые образуют циклические ангидриды, а не тиогидантоины (аспарагин и глутамин, наоборот, дают тиогидантоины [301]), а также остатков серина, треонина, цистина, аргинина и лизина [19, 301], которые неустойчивы при циклизации или регенерации аминокислоты из тиогидантоинового производного. Таким образом, этот метод находит весьма ограниченное применение для прямого определения строения пептидов и белков. Для определения С-концевого остатка по разности [107] реакция может оказаться более полезной, но ее все же нельзя использовать для определения аспарагиновой и глутаминовой кислот и пролина. Однако путем микробиологического анализа [107], специфичного для остатков /-аминокислот, эти аминокислоты могут быть определены по потере оптической активности на 50% вследствие рацемизации в том случае, когда они являются С-концевыми. [c.247]

    Трипсин гидролизует пептидные связи, образуемые основными аминокислотами, т. е. связи, в которых участвуют остатки лизина и аргинина. Пептидные связи Лиз-Про и Арг-Про устойчивы к гидролизу. Частичной устойчивостью к трипсиновому гидролизу обладают также некоторые другие пептидные связи, например в структуре. .. Лиз-Лиз-Х... связь Лиз-Лиз или связи в пептидах Арг-Арг, Арг-Лиз и Лиз-Арг. Скопление основных аминокислот в определенных участках пептида обусловливает частичную устойчивость его к гидролизу. То же самое справедливо и для пептидных связей Лиз-Глу и Арг-Глу. [c.35]

    Высокий процент в большинстве белков лизина и аргинина приводит при гидролизе трипсином к появлению сравнительно большого числа относительно мелких пептидов. Их анализируют методом пептидных карт на бумаге или в тонком слое, а также с помощью хроматографии на колонках и электрофорезом. [c.140]

    Обнаружение аргинина и содержащих аргинин пептидов реагентом Сакагучи. Хроматограмму погружают в 0,1%-ный раствор 8-оксихинолина в ацетоне. Далее еще влажную бумагу опрыскивают щелочным раствором гипобромита (0,2 мл брома взбалтывают со 100 мл 0,5 н. раствора гидроксида натрия). Оранжево-красные пятна аргинина и аргининовых пептидов появляются сразу, но так же быстро исчезают. [c.125]

    Полный кислотный гидролиз ДИФ-пептида приводит к желтому ДНФ-производному Л -концевого остатка вместе со свободными аминокислотами и аминокислотами, меченными только в боковую цепь, такими продуктами как е-ДНФ-лизин и 0-ДНФ-тирозин. За исключением а-ДНФ-аргинина, сс-ДНФ- (или бис-ДИФ)производные Л -концевого остатка можно экстрагировать из подкисленного водного раствора подходящим органическим растворителем, например этилацетатом, и идентифицировать с помощью тонкослойной хроматографии. [c.266]

    Тромбин. Превращение фибриногена в фибрин под действием тромбина является примером ограниченного протеолиза, затрагивающего только две или три связи примерно из 3000 связей фибрина и приводящего к образованию двух полипептидов, которые были охарактеризованы [18, 30]. Оба полипептида содержат аргинин. Поскольку тромбин гидролизует синтетические субстраты, например метиловый эфир то-луолсульфонил-/-аргинина [285], был сделан вывод, что в фибриногене происходит расщепление аргинильных связей. Однако лизин в одном из. пептидов может участвовать в образовании разрываемой связи, так как субстратами тромбина являются как этиловый эфир лизина, так и лизилаланиноаая связь в цепи Б окисленного инсулина [95]. Протеолитического действия тромбина на овальбумин и миозин кролика не было обнаружено [18]. [c.213]

    Наиб, изучены два типа К., к-рые различаются по специфичности К типа А (мол. м 34,4 тыс., состоит из 307 аминокислотных остатков) отщепляет от пептидов все С-аминокислотные остатки, за исключением аргинина, лизина, пролина и гидроксипролина К типа В (мол. м. 34 тыс., состоит из 300 аминокислотных остатков) отщепляет только С-концевые остатки аргинина и лизина Оба фермента про- [c.321]

    Ферментативные методы гидролиза особенно ценны благодаря присущей им во многих случаях специфичности. Трипсин, представляющий собой так называемую эндопептидазу, быстро расщепляет пептидные связи лишь в том случае, если карбонильная группа расщепляемой амидной связи принадлежит одной из основных аминокислот — лизину или аргинину. Таким образом, трипсин превращает белок в сравнительно малое число триптических пептидов, которые можно разделить и охарактеризовать. Трипсин расщепляет только денатурированные белки, причем для получения хороших результатов нужно предварительно разорвать дисульфидные мостики. [c.166]


    Пептид или б лок Легко расщепляемые связи связи остатков лизина и аргинина [c.182]

    Наиболее специфичным из ферментов является трипсин. Он расщепляет только пептидные связи, образованные карбоксилом аргинина и лизина. Его действие можно еще более ограничить, если динитрофени-лировать в-аминную группу лизина. Химотрипсин расщепляет связи, образованные ароматическими аминокислотами. Недавно было обнаружено, что он гидролизует и лейциновые пептиды. Менее специфичны папаин, пепсин и субтилизин. Последний позволяет, однако, получать смесь низкомолекулярных пептидов, что часто оказывается удобным прн исследованиях. [c.516]

    При эгом они основывались на специфическом действии ферментов. В пептидах, образовавшихся в результате трипсинного гидролиза, С-концевыми аминокислотами являются аргинин и лизин. Пептиды, выделенные из гидролизата рибонуклеазы химотрипсином, содержат основном в качестве концевых С-аминокислот остатки тирозина и фенилаланина. [c.524]

    Известна также К. типа С, к-рая отщепляет от С-конца любые остатки аминокислот. Она выделена из плодов и листьев цитрусовых. В плазме крови человека функционирует К. типа N (ее каталитич. активность оптимальна при pH 7), сходная по субстратной специфичности с К. типа В. Этот фермент катализирует отщепление С-коицевого аргинина от находящегося в крови пептида брадикинина (см. Кинины), в результате чего этот пептид теряет способность понижать кровяное давление. [c.322]

    Ферментативные методы гидролиза основаны на избирательности действия иротеолитических (вызывающих распад белков) ферментов, расщепляющих пептидные связи, образованные определенными аминокислотами. В частности, пепсин ускоряет гидролиз связей, образованных остатками фенилаланина, тирозина и глутаминовой кислоты, трипсин-аргинина и лизина, хпмотрипсин-триптофана, тирозина и фенилаланина. Ряд других ферментов, например папаин, субтилизин, проназа и другие бактериальные протеиназы, также используется для неполного гидролиза белков. В результате полипептидная цепь расщепляется на мелкие пептиды, содержащие иногда всего несколько аминокислот, которые отделяют друг от друга сочетанными электрофоретическими и хроматографическими методами, получая своеобразные пептидные карты. Далее определяют чередование аминокислот в каждом индивидуальном пептиде. Завершается работа воссозданием первичной структуры полной полипептидной цепи на основании определения последовательности аминокислот в отдельных пептидах. [c.56]

    Если аминокислоты содержат еще и другие функциональные группы, например, ОН, SH, ННг— = NH, или карбоксильные группы, то синтез пептидов иногда сопровождается побочными процессами. Поэтому целесообразно по возможности защищать эти группы. Так, аргинин применяют обычно в виде нитроаргинина. [c.488]

    Такая модификация ограничивает действие трипсина расщеплением по остаткам аргинина, что приводит к большим фрагментам, чем те, которые образуются после действия фермента на не-модифицированный белок. Малеильную группировку можно удалить при pH 2—3 при комнатной температуре для того, чтобы выделенные в результате первого расщепления фрагменты можно было гидролизовать на более мелкие с помощью того же фермента. Такая процедура помогает при определении порядка связи пептидов в исходном белке. Альтернативно, е-аминогруппу лизиновых остатков можно модифицировать S-этилтрифторацетатом, что приводит к Л -трифторацетильным производным схема (28) . После расщепления по остаткам аргинина Л -трифторацетильную группу можно удалить обработкой водным пиперидином при 0°С. [c.275]

    Ситуация существенно изменилась после того, как стали метилировать Л -ацетилированные пептиды. Такая обработка не только увеличивает летучесть образцов, но и значительно упрощает масс-спектр, так как в нем обычно преобладают ионы ацилия. Из нескольких методов полного метилирования, как правило, выбирают смесь метилиодида, гидрида натрия и диметилсульфоксида 128, 29]. При малом времени реакции (1—3 мин) и небольщом избытке метилиодида достигается метилирование амидного азота как в пептидной цепи, так и в боковых группах аспарагиновых и глутаминовых остатков, при минимальном образовании ониевых производных атомов азота (кватернизация) и серы в боковых группах гистидина, аргинина, метионина и цистеина. Образование ониевых производных понижает летучесть. [c.278]

    С-концевой частях пептида. Существенное значение в стабилизации цонформации секретина, по мнению М. Бодански и соавт. [235], должны Лрать взаимодействия между отрицательно заряженными остатками Glu g Asp и положительно заряженными остатками четырех аргининов (Arg , Arg , Arg , Arg ) последовательности молекулы, поскольку замещения Glu и Asp соответственно на нейтральные остатки Gln и Д8п приводило к заметному изменению спектров КД исходного соедине-яяя. Применение ЯМР-спектроскопии [236] привело к предположению о наличии структуры секретина, предпочтительной для кислой среды, стабилизированной взаимодействиями остатков на участках последовательности [c.373]

    Помимо того, что перегруппировка происходит неколичественно, недостатком миграции ацильной группы от N к О как предварительного этапа исследования строения пептидов является изменение некоторых аминокислот глиадина под действием серной кислоты (247]. Изменения претерпевают амидные группы, метионин, аргинин, тирозин, фенилаланин и цистин. [c.221]

    Каждая из известных (встречающихся в природе) аминокислот освобождает одну молекулу азота за исключением пролина н окси-пролина, которые совсем не реагируют, и лизина, который дает две молекулы азота. Отмечается недостаток реакционной способности у аминогруппы остатка гуанидина в аргинине, креатине и самом гуанидине. Точно так же не рёагирует иминный азот пептидов за исключением глицилглицин а. У всех аминокислот кроме гликоколя, цистина и серина можно получить хорошие результаты при П0МО1ЦИ киспого перманганата. При анализах гликоколя результаты могут превысить истинные на много процентов, если работать с кислым перманганатом. У серина ошибка меньше. Повидимому, часть образующегося из гликоколя диазосоединения разрушается полностью при действии азотистой кислоты. Это сйъ-ясняет образование СО2 из этих аминокислот и освобождение вторичного азота из пептида. [c.765]

    Общепринято определять пептиды с помощью нингидриновой реакции. Добавление Сс1 к раствору нингидрина не только увеличивает ее чувствительность, но и повышает стабильность окрашивания. Ы-ацильные пептиды можно выявлять в реакции с хлором [67]. Некоторые аминокислоты выявляются реакциями специфического окрашивания, например гистидин — реакцией Паули, аргинин — реакцией Сакагуши. С помощью этих же реакций можно обнаруживать и пептиды, содержащие гистидин и аргинин. [c.38]

    Этот простейший из возможных методов защиты аминогрупп находит лишь ограниченное применение. Как было установлено,. Р-аминоспирты могут быть окислены в а-аминокислоты, если аминогруппу сначала превратить в замещенный аммониевый ион. Например, 2-аминопропанол-1 был превращен в замещенный аммонйй--сульфат и затем окислен перманганатом калия [62] в соответствии со схемой 15. Гуанидиновая группа аргинина была защищена лутем образования соли во время синтеза аргин ил пептидов [63]. [c.202]

    При синтезе пептидов из аргинина необходимо подавить основность гуанидиновой группировки, что может быть достигнуто нитрованием до N-нитроаргинина [142, 143]. Нитрогруппа может быть отщеплена каталитическим гидрированием. [c.212]

    Другой подход к получению пептидов аргинина состоит в использовании производных орнитина, содержащих в боковом радикале защитные группы, с последующим превращением на конечных стадиях синтеза орнитиновой боковой группировки в аргини-новую схема (27) . Таким путем можно избежать осложнений при синтезе, связанных с наличием в молекуле гуанидиновой функции. [c.386]

    Протамины и гистоны. Данная группа белков отличается рядом характерных физико-химических свойств, своеобразием аминокислотного состава и представлена в основном белками с небольшой молекулярной массой. Протамины обладают выраженными основными свойствами, обусловленными наличием в их составе от 60 до 85% аргинина. Так, сальмин, выделенный из молок семги, состоит на 85% из аргинина. Высоким содержанием аргинина отличается другой хорошо изученный белок—клу-пеин, выделенный из молок сельди из 30 аминокислот в нем на долю аргинина приходится 21 остаток. Расшифрована первичная структура клу-пеина. Протамины хорошо растворимы в воде, изоэлектрическая точка их водных растворов находится в щелочной среде. По современным представлениям, протамины скорее всего являются пептидами, а не белками, поскольку их молекулярная масса не превышает 5000. Они составляют белковый компонент в структуре ряда сложных белков. [c.73]


Смотреть страницы где упоминается термин Аргинин пептиды: [c.191]    [c.189]    [c.594]    [c.416]    [c.182]    [c.189]    [c.189]    [c.104]    [c.104]    [c.409]    [c.445]    [c.467]    [c.524]    [c.127]    [c.221]    [c.207]    [c.300]    [c.556]    [c.605]    [c.36]    [c.39]   
Практическая химия белка (1989) -- [ c.147 , c.148 , c.152 , c.155 , c.388 , c.389 , c.391 ]




ПОИСК





Смотрите так же термины и статьи:

Аргинин



© 2025 chem21.info Реклама на сайте