Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пептидные связи, расщепление аргинин

    Для специфического расщепления белков по определенным точкам применяются как ферментативные, так и химические методы. Из ферментов, катализирующих гидролиз белков по определенным точкам, наиболее широко используют трипсин и химотрипсин. Трипсин специфично катализирует гидролиз пептидных связей, расположенных после положительно заряженных аминокислотных остатков лизина и аргинина. Химотрипсин преимущественно расщепляет белки после остатков ароматических аминокислот — фенилаланина, тирозина и трипто- [c.269]


    Принцип метода. Под действием трипсина в белке или пептиде происходит расщепление пептидных связей, образованных остатками лизина и аргинина. [c.168]

    Специфичность. Трипсин специфически гидролизует пептидные связи по карбоксильной группе лизина и аргинина, т. е. типа -Lys-X- и -Arg-X-. Однако специфичность фермента не абсолютна, например фрагменты -Lys-Pro- и -Arg-Pro- устойчивы к действию трипсина. Присутствие кислотных остатков вблизи атакуемой связи приводит к резкому снижению скорости гидролиза, а в некоторых случаях полностью его исключает. Положительно заряженные группы также снижают скорость гидролиза. Например, если Arg и Lys находятся в ближайшем соседстве или расположены на N-конце полипептидной цепи, происходит лишь частичное расщепление пептидных связей. [c.147]

    Гидролазы. Ферменты этой группы играют особенно важную роль в пищеварении и в процессах пищевой технологии. К ним относится большая группа протеолитических ферментов, катализирующих гидролиз белков и пептидов. Большое значение в биохимии пищеварения принадлежит протеолитическим ферментам (пепсин, химиотрипсин, аминопептидаза, карбоксипептидаза и др.), осуществляющим деполимеризацию молекул белка по мере его движения по пищеварительному тракту. Протеолитиче-ские ферменты участвуют в процессах, происходящих при переработке мяса, в хлебопечении. С их помощью проводят умягчение мяса и кожи, их применяют при получении сыров. Действие протеаз очень избирательно. Одни протеазы разрушают пептидные связи внутри молекул белка — эндопептидазы и на конце ее молекулы (экзопептидазы), т. е. отщепляют аминокислоты с N- или С-конца, другие расщепляют пептидные связи только между отдельными аминокислотами. Так, трипсин разрушает пептидную связь между лизином (Лиз) или аргинином (Apr) и другими аминокислотами, пепсин — между аминокислотами с гидрофобными радикалами, например между валином (Вал) и лейцином (Лей). Фермент химотрипсин гидролизует пептидную связь между триптофаном, (см. схему) тирозином и другими аминокислотами. В самом общем виде схема расщепления пептидных связей в полипептидной цепи может быть представлена следующим образом  [c.23]

    Трипсин и химотрипсин обладают наиболее высокой специфичностью по отношению к субстрату, что и используется для определения стерической однородности пептидов. Трипсин расщепляет только пептидные связи, в образовании которых принимают участие карбоксильные группы аргинина и лизина. Гидролиз протекает очень медленно или вообще не идет, если эта аминокислота является N-концевой или второй от N-конца пептида. Не расщепляются пептидные связи, образованные со-за-мещенными аминокислотами, и связи Lys-Pro и Arg-Pro. Неспецифический гидролиз происходит крайне редко (ср. [2678]). Химотрипсин расщепляет главным образом пептидные связи, в образовании которых принимает участие карбоксильная группа остатка ароматической аминокислоты. Иногда имеет место и неспецифический гидролиз, например по амидным связям лей-цил—аминокислота. На гидролиз, катализируемый химотрипсином, природа всей молекулы пептида оказывает большее влияние, чем на расщепление трипсином (ср. [2678]). [c.403]


    Химотрипсиноген образован одной полипептидной цепью, состоящей из 245 аминокислот. Цепь связана пятью дисульфидными мостиками. Химотрипсиноген практически полностью лишен ферментативной активности. Однако он превращается в активный фермент, когда под действием трипсина расщепляется пептидная связь между аргинином-15 и изолейцином-16 (рис. 8.3). Образующийся активный фермент, называемый л-химотрипсином, действует затем на другие молекулы я-химо-трипсина, В результате удаления еще двух пептидов образуется стабильная форма фермента - а-химотрипсин. Дополнительное расщепление при превращении л-химо-трипсина в а-форму в сущности излишне, поскольку я-химотрипсин сам обладает полной ферментативной активностью. Поразительная особенность данного процесса [c.153]

    Трипсин 21 расщепляет пептидные связи, в образовании которых участвуют карбоксильные группы лизина и аргинина. К гидролизу трипсином устойчивы связи лизина и аргинина с пролином (лиз—про и арг—про). Замедление гидролиза этим ферментом наблюдается тогда, когда остатки лизина и аргинина находятся рядом со свободными а-амино- и а-карбоксильными группами, а также в участках полипептидной цепи с повышенным содержанием основных аминокислот (связи ЛИЗ—лиз, арг—арг, лиз—арг и арг—лиз расщепляются только частично). Селективность расщепления трипсином можно повысить путем блокирования e-NH2-rpynn лизина (например, ангидридами янтарной, малеиновой или цитраконовой кислот) или же гуанидиновых группировок аргинина (дикетоновыми реагентами, такими как диацетил, циклогександион, фенилглиоксаль и др.). Гидролизу трипсином могут подвергаться связи, образованные и остатками цистеина, после превращения его в аминоэтилцистеин обработкой белка этиленимином. [c.140]

    Каждый протеолитический фермент гидролизует пептидные связи только определенного типа. Например, трипсин катализирует гидролиз пептидных связей, образованных исключительно карбоксильными группами лизина или аргинина. Каждый пептид, полученный в результате расщепления трипсином, за исключением, быть может, исходного СООН-концевого, должен оканчиваться остатком аргинина или лизина. [c.179]

    Осуществленный таким способом гидролиз пептидньк связей-это необходимый шаг в определении аминокислотного состава белков и последовательности составляющих их аминокислотных остатков. Пептидные связи могут быть гидро-лизованы также под действием некоторых ферментов, таких, как трипсин и химотрипсин, представляющие собой протеолитические (белок-расщепляю-щие) ферменты, секретируемые в кишечник и способствующие перевариванию, т. е. гидролитическому расщеплению, белков, входящих в состав пищи. Если кипячение пептидов с кислотой или щелочью приводит к гидролизу всех пептидных связей независимо от природы и последовательности соединенных при их помощи аминокислотных звеньев, то трипсин и химотрипсин осуществляют каталитическое расщепление пептидов избирательным образом. Трипсин гидролизует только те пептидные связи, в образовании которьсс участвуют карбоксильные группы лизина или аргинина. Химотрипсин же атакует только те пептидные связи, которые были образованы с участием карбоксильных групп фенилаланина, триптофана и тирозина. Как мы увидим дальше, такой избирательный ферментативный гидролиз оказьшается очень полезным при анализе аминокислотных последовательностей белков и пептидов. [c.130]

    Если нельзя провести полный анализ аминокислотной последовательности, то первичную структуру исходных белков можно сравнить по гомологии пептидов, полученных при ферментативном или химическом расщеплении. При структурном анализе чаще всего используют трипсин, так как действие его специфично он разрывает только те пептидные связи, в которых участвуют карбоксильные группы лизина и аргинина. Полученные триптические пептиды разделяют двумерным электрофорезом и хроматографией в тонком слое целлюлозы или силикагеля. [c.83]

    Расщепление полипептидной цепи на фрагменты проводят обычно при помощи протеолитических ферментов, таких, как трипсин, химотрипсин или пепсин. Эти ферменты действуют на различные участки полипептидной цепи, так как имеют повышенное сродство к различным аминокислотным остаткам. Необходимо учитывать также соседние аминокислотные остатки, т. е. пространственное окружение атакуемой пептидной связи. Оказалось, что трипсин гидролизует только те пептидные связи, в образовании которых участвует карбоксильная группа лизина или аргинина, а химотрипсин гидролизует связи по фенилаланину, триптофану и тирозину Обычно протеолитические ферменты, гидролизующие полипептидные цепи, предварительно иммобилизуют на нерастворимых матрицах для более легкого отделения их от продуктов гидролиза. Далее определяют аминокислотные последовательности каждого полипептидного фрагмента. Для этого чаще всего используют метод Эдмана, заключающийся в анализе полипептида только с Ж-конца. Концевая аминокислота при взаимодействии с фенилизотиоцианатом в щелочной среде образует стойкое соединение, которое можно отщепить от полипептида без его деградации. Фенилтиогидантоиновое (ФТГ) производное аминокислоты идентифицируется хроматографическим методом. После идентификации концевого Ж-амино-кислотного остатка метка вводится в следующий аминокислотный остаток, [c.41]


    Молекулярная масса и изоэлектрическая точка - характерные параметры белка. Однако в основе точной идентификации белковой молекулы лежит определение аминокислотной последовательности. Уже на первом этапе этого процесса, включающего расщепление белка на мелкие фрагменты, можно получить значительную информацию о данном белке. В настоящее время в продаже имеются протеолитические ферменты и химические реактивы, расщепляющие белки по определенным аминокислотным остаткам (табл. 4-10). Так, фермент трипсин отщепляет остатки лизина и аргинина со стороны карбоксильных групп химический реактив бромистый циан расщепляет пептидные связи, расположенные после остатков метионина. Поскольку такие специфические ферменты и реактивы расщепляют в белковой молекуле ограниченное количество связей, при их воздействии образуется смесь больщих пептидов. Разделив эту смесь методом электрофореза или хроматографии, можно получить пептидную карту, характеризующую исследуемый белок. Такие пептидные карты называют иногда фингерпринтами (отпечатками пальцев) белка (рис. 4-53). [c.219]

    Фибриноген, легко растворимый белок плазмы, в результате протеолитического действия тромбина превращается в нерастворимый мономер фибрина. Тромбин расщепляет в фибриногене четыре пептидные связи между аргинином и глицином. В результате этого расщепления высвобождаются четыре пептида А-пептид из 18 [c.168]

    Каждый из этих ферментов атакует вполне определенные пептидные связи. Трипсин катализирует гидролиз пептидных связей, карбонильная группа которых принадлежит одной из основных аминокислот, обычно аргинину или лизину. Пепсин и химотрипсин предпочтительно катализируют гидролиз тех пептидных связей, в образовании которых участвуют ароматические аминокислоты, в частности триптофан, тирозин и фенилаланин. Среди протеолитических ферментов наиболее высокой специфичностью обладает трипсин поэтому именно он наиболее подходит для такого рода анализа. Ясно, однако, что при помощи только одного, пусть даже абсолютно специфичного, фермента невозможно определить полную последовательность аминокислот в полипептиде. Если, например, триптическое расщепление полипептида дало пять фрагментов (пептидов), в сумме соответствующих всей цепи, и если даже для каждого из них удалось установить аминокислотную последовательность, то это еще не все требуется узнать, в каком порядке эти пептиды располагались в нативном полипептиде. Чтобы узнать это, необходимо получить другие пептиды, которые перекрывались бы с первыми. Главное преимущество ферментативного гидролиза — специфичность реакции расщепления в отношении природы расщепляемых пептидных связей накладывает в то же время строгое ограничение на применимость этого метода. В идеале желательно было бы, например, иметь возможность расщеплять иногда те пептидные связи, которые в норме трипсином не атакуются, или, наоборот, предохранять от расщепления связи заведомо чувствительные. Недавно были предложены некоторые модификации методики, которые позволяют в какой-то мере решить эту задачу. Так, например, реакция е-аминогруппы лизина с этилтрифтортиоацетатом в слабо щелочном растворе дает блокированный по аминогруппе остаток, пептидная связь которого не атакуется трипсином [c.90]

    Неполярный участок связывания, расположенный вблизи каталитич. центра Т., обусловливает преим. расщепление ферментом субстратов, содержащих пептидные связи, образованные аргинином и лизином, негкэсредственно связанными с остатком ггоолина или с др. неполярными остатками аминокислот. Вблизи каталитич. центра располагается уникальная аминокислотная последовательность Туг — Pro — Pro — [c.13]

    Тиализильная пептидная связь, получающаяся в результате восстановления дисульфидных связей и 5-аминоэтилирования образовавшегося остатка цистеина, также расщепляется трипсином (см. разд. 23.3.3), так как ее боковая группа является изостериче-ской боковой группе Lys. Природа R имеет второстепенное значение, хотя связи Arg-Pro и Lys-Pro не разрываются. Известны и многие другие протеиназы, которые по своей специфичности напоминают трипсин. Например, известно, что тромбин разрывает участки Arg-Gly и Arg-Ser в фибриногене — одном из своих природных субстратов, однако для эффективного катализа необходима еще и связь фермента со вторым участком молекулы субстрата. Поэтому тромбин находит лишь ограниченное применение при расщеплении пептидных связей с целью изучения последовательности, хотя в случае секретина он разрывает связь Arg-Asp, в то время как три связи Arg-Leu остаются незатронутыми. Действие трипсина можно ограничить так, чтобы он разрывал либо по остаткам аргинина, либо по остаткам лизина. Модификация белка малеиновым ангидридом приводит к защищенным е-амино-группам лизиновых остатков схема (27) . [c.275]

    Превращение химотрипсиноген А -> химотрипсин представляет собой сложный процесс, приводящий фактически к образованию семейства химо-трипсинов — а, б, я и т. д. Все эти реакции катализируются трипсином и химотрипсином. Поскольку молекулярный вес химотрипсина близок к 25 ООО, активация зимогена должна быть сопряжена с относительно небольшим укорочением полипептидной цепи. Общая схема активации химотрипсиногена А представлена на фиг. 124. Катализируемое трипсином расщепление одной пептидной связи между аргинином и изолейцином приводит к образованию я-химотрипсина. Последующий разрыв второй пептидной связи] с отщеплением дипептида сериларгинина дает б-химотрипсин. [c.427]

    Специфичность. Гидролиз тромбином проходит по С-концевой пептидной связи остатков аргинина типа -Arg-X-. В нативном субстрате фибриногене этой связью является -Arg-Gly-, в других белках в качестве остатка X может быть аланин, aprii-нин, аспарагиновая кислота, цистеин, валин [64]. Наблюдаетс51 также гидролиз по связи -Arg-His- в кальмодулине [108]. Обработка тромбином приводит к расщеплению только очень ограниченного числа пептидных связей аргинина, и, следовательно, этот метод можно считать идеальным для получения крупных фрагментов белка, предназначенных для автоматического секвенирования. В некоторых случаях тромбин даже в жестких условиях гидролизует в белке только одну пептидную связь, в других случаях степень гидролиза зависит от продолжительности ])еакции и температуры. Соответствующие примеры приведены в работе [106]. [c.150]

    Природные ферменты наиболее близки к идеальным реагентам специфического расщепления белков. Трипсин является-наиболее специфичным в отношении других протеиназ установлены отклонения от специфичности, которой следовало бы ожидать на основании изучения их взаимодействия с син-т ХИч кими субстратами. Однако известно, что трипсин рас-щерляет пептидные связи, в которых участвует карбоксильная группа лизина или аргинина, имеющих положительно заряженную боковую цепь. До сих пор не обнаружено [c.165]

    Обнаружено, что существенная для связывания карбоксильная группа субстрата образует солевой мостик с гуанидиновой группой аргинина-145, тем самым, а также предпочтительными положениями связывания боковых радикалов, приводя подлежащую расщеплению амидную связь в контакт с атомом 2п. Теперь единственными другими функциональными группами, близкими к этой амидной связи, являются карбоксильная группа глутаминовой кислоты-270, которая (как и аргинин) сдвигается на 0,2 нм по сравнению со свободным ферментом, и фенольный гидроксил тирозина-248. Последняя группа не является одной из пяти групп, которые, как полагают, обычно участвуют в ферментативном катализе. Имеются также химические доказательства важности тирозина в карбоксипептидазе. Примечательно наблюдение, что эта группа не содержится вблизи цинка активного центра нативного фермента. Связывание глицил-тирозина, однако, вызывает весьма существенный конформационный сдвиг, в процессе которого фенольная группа тирозина-248 сдвигается не менее, чем на 1,2 нм с поверхности белка к новому положению вблизи пептидной связи субстрата. В результате этого движения происходит закрывание углубления, в котором находится активный центр, так что последний, по-видимому, не находится более в равновесии с растворителем. [c.502]

    С помощью обратимой или необратимой блокировки e-NH2-групп остатков лизина можно ограничить триптический гидролиз расщеплением только пептидных связей аргинина. Обратимую блокировку можно вызвать, например, с помощью трифторацетилирования. [c.169]

    Для обнаружения рацемизации можно с успехом использовать ферментативные методы. С этой целью применяли ферменты, специфичные для гидролиза пептидных связей в таких пептидах, в которых вновь образующиеся карбоксильные группы взаимодействуют с а-аминокислотными остатками Ь-конфи-гурации [43]. Гистидилфенилаланиларгинилтриптофилглицин был синтезирован из Ь-аминокислот с применением в качестве конденсирующегося реагента N. М -дициклогексилкарбодиимида [44]. После обработки пентапептида трипсином произошло образование гистидилфенилаланиларгинина и триптофилглицина вместе с большим количеством негидролизованного вещества, как это было показано с помощью хроматографии на бумаге. Расщеплению подверглось только 37 /о пентапептида. Фермент лейцинаминопептидаза привел к образованию гистидина, фенилаланина, аргинина, триптофана и глицина в следующих молярных соотношениях 1 1 0,4 0,4 0,4. Таким образом, оба ферментативных метода показывают, что в продукте реакции содержалось только около 40% от исходного оптически чистого Ь-изомера. Лейцинаминопептидаза также применялась для того, чтобы показать, что октапептид, занимающий положения б—13 в молекуле АКТГ, был синтезирован без рацемизации [45]. [c.182]

    Лизин-спеиифичная протеиназа в основном катализирует расщепление пептидных связей, образованных а-аминогруппой лизина, а клострипаин предпочтительно гидролизует связи, образованные карбоксильной группой остатков аргинина. [c.47]

    Все проферменты поджелудочной железы активируются по сходному механизму для превращения в активную форму необходимо расщепление пептидной связи, образованной остатком аргинина или лизина около начала пептидной цепи предшественника. Именно это расщепление и производится трипсином или иным протеолитическим ферментом, осуществляющим активацию. Механизм действия всех таких ферментов, по-видимому, одинаков в основе его лежит гидролиз точно определенной пептидной связи, производимый в соответствии со специфичностью гидролизирующего фермента, причем необходима специфичность именно такого типа, как та, которой обладает трипсин. В трипси-ногене быка, например, разрывается связь между 6- и 7-амино-кислотными остатками, в химотрипсиногене — при действии трипсина — между 15-м и 16-м. Активация трипсиногена сопровождается отщеплением от белка гексапептида при активировании же химотрипсиногена фрагмент не отщепляется, так как его первый остаток остается соединенным с основной частью молекулы дисульфидной связью. [c.94]

    Ферментативное действие Т. на фибриноген состоит в гидролитич. расщеплении в молекуле фибриногена двух пептидных связей, расположенных между остатками аминокислот аргинина и глицина. Помимо фибриногена, Т. способен расщеплять пептидные связи аргинина в других белках, в частности в казеине и р-лактоглобулине. Кроме того, Т. обладает эстеразной активностью и гидролизует синтетич. сложные эфиры Ь-аргинина и его производных, напр, метиловые эфиры К-тозил- и К-бензоил-Ь-аргинипа. [c.144]

    Для расщепления полипептидной цепи на отдельные фрагменты можно использовать несколько методов. Один из широко распространенных методов-это частичный ферментативный гидролиз полипептида под воздействием пищеварительного фермента шрнисмка. Каталитическое действие этого фермента отличается высокой специфичностью гидролизу подвергаются только те пептидные связи, в образовании которых участвовала карбоксильная группа остатка лизина или аргинина независимо от длины и аминокислотной последовательности полипептидной цепи (табл. 6-6). Число более мелких пептидов, образующихся под действием трипсина, можно, следовательно, предсказать, исходя из общего числа остатков лизина и аргинина в исходном полипептиде. Полипептид, в котором содержатся пять остатков лизйна и (или) аргинина, при расщеплении трипсином обычно дает шесть более мелких [c.148]

    ПЛАЗМИН (фибринолизин) — фермент, катализирующий гидролитич. расщепление фибрина, приводящее к растворению (ф и б р и н о л и з у) кровяного сгустка (тромба) относится к подклассу иептидо-гидролаз систематич. шифр 3.4.4.14 (см. Номенклатура и классификация ферментов). Действие П. направлено гл. обр. на пептидные связи, образованные остатками L-аргинипа и L-лизипа. Помимо фибрина, П. может гидролизовать и другие белки, в частности казеин, -лактоглобулин, желатину, фибриноген, а также пизкомолекуляриые синтетич. пептиды и эфиры L-аргинина и L-лизина. Физиологич. роль П. состоит в предотвращении роста и последующем растворении тромбов, образующихся в сосудах нри их повреждениях, а также при ряде заболеваний (тромбозы). [c.22]

    В основу классификации протеолитических ферментов обычно брали молекулярный вес и заряд субстрата. Считали, что протеиназы расщепляют белковую молекулу до полипептидов, последние же гидролизуются пептидазами. Однако оказалось, что даже такие типичные протеиназы, как пепсин и трипсин, расщепляют субстраты с молекулярным весом 300—400 по пептидным связям, но только в том случае, если химическое окрул<ение этих связей соответствует специфичности фермента. Так, для пепсина непременным условием его действия стали считать наличие остатка тирозина или фенилаланина в боковой цепи той аминокислоты, которая связана разрываемой пептидной связью. Аминогруппа, находящаяся в таком же положении, препятствует гидролизу субстрата пепсином. Для расщепления вещества трипсином необходимо наличие в указанном положении остатка лизина или аргинина  [c.345]

    Ферментативное расщепление. Хорошие результаты дают протеолитические ферменты, в первую очередь трипсин и химотрипсин а также пепсин Известно, что трипсин разрушает белок преимущественно но пептидным связям, образованным карбоксильными группами аргинина и лизина химотрипсин гидролизует нентидные связи, в образовании которых участвуют карбоксильные группы ароматических аминокислот (фенилаланина, тирозина и триптофана). Снецифичностт. пепсина менее ясно выражена, хотя в принципе близка к химотрипсину (атака вблизи ароматических аминокислот). Другие ферменты, такие, как термолизин плесневая нротеаза папаин тоже находят применение при гидролизе белков. Ферментативный гидролиз проводят при 37—40° С в течение нескольких часов при оптимальном для данного фермента значении pH. Ниже показано действие протеолитических ферментов на полипептидную цепь восстановленного лизоцима белка яиц (Т — трипсин, X — химотрипсин, П — пепсин, СМС — карбоксиметилцистеин)  [c.79]

    Продуктом гидролиза белков пищи трипсином являются полипептиды и небольшое количество аминокислот. Трипсин катализирует расщепление пептидных связей, образованных карбоксильными группами аргинина и лизина. Расщепление белков химотрипсином более глубокое по сравнению с гидролизом трипсином. Химотрипсин катализирует расщепление пептидных связей, образованных карбоксильными группами тирозина, фенилаланина, триптофана и метаовива. [c.15]

    Были проведены тщательные исследования природы образовавшихся фиб-ринонентидов (эти данные рассмотрены в обзоре Лаки и Гладнера [159], а также в приведенных выше работах, относящихся к исследованиям N-koh-цевых групп фибриногена), разбор которых выходит за рамки этой главы. Однако необходимо отметить, что тромбин обладает избирательной специфичностью, выражающейся в том, что образовавшиеся в реакции превращения пептиды всегда содержат С-концевой остаток аргинина, а фибрин — четыре N-концевых остатка глицина и два N-концевых остатка тирозина. Таким образом, специфичность действия тромбина ограничивается расщеплением аргинин-глициновой пептидной связи [183]. Каждый из образовавшихся фибринопептидов состоит примерно из 20 аминокислотных остатков и не содержит углеводов. [c.254]

    Специфичность. При изучении специфичности фермента было показано, что гидролиз проходит по N-концевой пептидной связи остатков лизина и аминоэтилцистеина (Лес) типа -X-Lys-и -Х-Аес-, даже если Х = Рго. Расщепление связи -Pro-Lys наблюдали при обработке инсулина и других субстратов [16, 36]. Было также показано, что пептидные связи, содержащие вблизи остатков лизина кислотные остатки, устойчивы к действию фермента. В некоторых случаях наблюдается гидролиз С-концевой пептидной связи аргинина -Arg-X. Степень гидролиза по этой связи возрастает, если X = Leu или Пе, хотя не все фрагменты этого типа подвергаются гидролизу. [c.154]


Смотреть страницы где упоминается термин Пептидные связи, расщепление аргинин: [c.553]    [c.155]    [c.182]    [c.113]    [c.365]    [c.42]    [c.182]    [c.217]    [c.81]    [c.32]    [c.71]    [c.109]    [c.147]    [c.152]    [c.344]    [c.219]    [c.30]   
Практическая химия белка (1989) -- [ c.147 , c.148 , c.151 , c.155 , c.388 , c.483 , c.485 , c.493 , c.517 , c.518 ]




ПОИСК





Смотрите так же термины и статьи:

Аргинин

Пептидные связи

Расщепление связей



© 2025 chem21.info Реклама на сайте