Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Плазма, очистка

    При взаимодействии плазмы с жидкостью, например азота и водорода с жидкими углеводородами, могут быть синтезированы ацетилен и цианистый водород [4]. Для осуществления процесса плазменную струю затопляют в толще жидкого углеводорода. Процесс протекает в газовом пузыре, который образуется вблизи сопла плазмотрона. Температура в зоне реакции зависит от мощности генератора плазмы и теплофизических характеристик плазмообразующего газа. К преимуществам такой организации процесса относят очистку от сажи и тяжелых углеводородов при прохождении пирогаза через толщу углеводородного сырья непосредственную закалку продуктов в слое углеводородов возможность использования некондиционных видов сырья. [c.188]


    В некоторых установках для катодного распыления можно изменять полярность образца и мишени, что позволяет производить плазменное травление, а возможно, и очистку поверхности. Подобным образом в кислородной плазме газового разряда можно быстро удалять органические материалы с поверхности неорганического образца. Такие методики следует использовать с крайней осторожностью на соответствующим образом стаби- [c.227]

    Для очистки поверхности черных металлов от продуктов коррозии можно применять восстановление в низкотемпературной газовой плазме, содержащей значительное количество химически активных ионов, радикалов, атомов и молекул в возбужденном состоянии. Обрабатываемое изделие помещают на алюминиевую сетку, находящуюся внутри стеклянного сосуда. Сосуд имеет два алюминиевых электрода, на которые подается разночастотное поле с напряжением 16 кВ, а также штуцеры для ввода и удаления газовой смеси кислород—аргон или водород —аргон. [c.159]

    Для удаления всех этих загрязнений можно использовать жидкостную очистку, высокотемпературное окисление, плазменные методы и шлифование. При жидкостной очистке применяют растворы кислот, оснований и органические растворители (спирты, кетоны, хлорированные углеводороды, фреоны и др.). Воду и незначительные количества диоксида кремния можно удалить при 1000°С в кислороде, вакууме или восстановительной атмосфере. Метод нельзя использовать в случае, когда высокая температура изменяет свойства подложки, например, диффузионных слоев. Диоксид кремния, кроме того, удаляют плавиковой кислотой с добавками или травлением плазмой. Для других неорганических загрязнений используют сильные неорганические кислоты или окислительные смеси типа хромовой. Жидкостная очистка производится погружением, обработкой парами растворителя, ультразвуком и пульверизацией. Очистка парами растворителя очень распространена и эффективна, особенно если сочетается с пульверизацией. Рекомендуется использовать негорючие растворители (фреоны, хлорированные углеводороды), [c.16]

    Широко применяются иониты при извлечении металлов, радиоактивных веществ, фенолов из сточных вод промышленных предприятий и обогатительных фабрик, при очистке сахарных сиропов (в производстве сахара), витаминов, антибиотиков. Используются иониты для обработки плазмы крови с целью предупреждения ее свертываемости при хранении, а также для разделения сложных смесей в аналитической химии. Кроме того, иониты применяются в химической промышленности в качестве катализаторов, носителей катализаторов и т. д. [c.252]


    Загрязнение элюата устраняют тщательной очисткой сорбентов. При неполном выделении сорбированных ионов смолу озоляют (на воздухе или в кислородной плазме [9, 10]) и определяют следы элементов в золе. Другой путь — определение следов элементов непосредственно в смоле соответствующим инструментальным методом (рентгеновская флуоресценция, нейтронно-активационный анализ и т. п.). [c.147]

    Применение ионной масс хроматографии низкого разрешения для непосредственного анализа экстрактов из исходной плазмы крови осложняется в ряде случаев из за присутствия мешающих примесей (плазма, растворители, используемые pea генты и др ) Поэтому для определения нанограммовых коли честв сверхчувствительными методами требуется предваритель ная очистка образца Для большинства ЛП процедура очистки сырого экстракта обычно связана с экстракцией кислыми раст ворителями и последующим удалением липидов путем отмыва ния неполярными растворами Такая очистка как правило, весьма трудоемка и продолжительна, что затрудняет автомати зацию процесса подготовки образца и анализа, и в итоге не позволяет проводить массовые клинические анализы [c.180]

    ФАС Путем жидкостного формования сополимеров фурфурола и некоторых смол (эпоксидной, каменноугольной и др.) с последующим термоотверждением, карбонизацией, парогазовой активацией, отмывкой сферических гранул дистиллированной водой и сушкой Для детоксикации организма человека путем очистки крови, плазмы и лимфы. Для лечения различных форм острых отравлений и заболеваний [c.619]

    Если определяемые элементы присутствуют в окружающей среде и в электродах, то при испарении проб малой массы особенно важна чистота вспомогательных электродов. Поэтому еще до использования электродов с них желательно удалять поверхностные примеси, обусловленные обработкой электродов или окружающим воздухом. Такая очистка совершенно необходима в случае определения следов элементов. Для этого предварительно в дуге обжигают пару пустых электродов. То же делают и с угольными противоэлектродами (разд. 3.2.2) [4]. Однако необходимо отметить, что интенсивность излучения дуги с пустыми электродами и электродами, заполненными пробой, неодинакова даже при идентичных условиях анализа, что обусловлено различием параметров плазмы (температуры, степени ионизации, фонового излучения и т. д.). Разными оказываются также пределы обнаружения примесей [3]. Величину холостого опыта для данного метода анализа можно определить на материале относительно высокой чистоты, являющемся основным компонентом анализируемой пробы. [c.95]

    ХИМИЯ ПЛАЗМЫ. Плазма — ионизованный газ, используется как среда, в которой протекают в[лсокотемператур-ные химические процессы. С помощью плазмы достигают температуры около миллиона градусов. Плазма, используемая в химии, в сравнении с термоядерной считается низкотемпературной (1500—3500 С). Несмотря на это, в химии и химической технологии она дает возможность достижения самых высоких температур. В химии плазма используется как носитель высокой температуры для осуществления эндотермических реакций или воздействия на жаростойкие материалы ири их исследовании. Технически перспективными процессами X. п. считаются окисление атмосферного азота, получение ацетилена электро-крекингом метана и других углеводородов, а также синтез других ценных неорганических и органических соединений. Специальными разделами X. п. является плазменная металлургия — получение особо чистых металлов и неметаллов действием водородной плазмы на оксиды или галогениды металлов, обработка поверхностей металлов кислородной плазмой для получения жаростойких оксидных пленок или очистки поверхности (в случае полимеров). К X. п. примыкают также процессы фотохимии (напр., получение озона). Здесь фотохимический процесс протекает в той же плазме, которая служит источником излучения. [c.275]

    Электродиализ находит себе широкое применение как препаративный метод для удаления электролитов из различных суспензий, коллоидных растворов и т. д. Большое применение имеет электродиализ лечебных сывороток. При получении иммунных сывороток было выяснено, что основные иммунологические свойства лечебных сывороток связаны с определенной фракцией белков крови, а именно с глобулинами. Остальные компоненты, такие как форменные элементы крови, фибрин, альбумин, являются балластом и для лучшего иммунологического действия должны удаляться из крови. Для этого используют то обстоятельство, что в нолунасыщенном растворе сернокислого аммония выделяется глобулин, а остальные компоненты плазмы крови остаются в растворе. После осаждения глобулина сернокислым аммонием последний обычно удалялся диализом, и этот процесс представлял собой весьма громоздкую по аппаратуре и длительную но времени операцию. А. В. Маркович первый ввел электродиализ в широкую практику очистки сывороток и разработал технологию его промышленного использования. В настоящее время этот метод в Советском Союзе является общепринятым для бактериологических институтов. [c.182]


    Сорбционные методы удаления токсических веществ из организма. С 60-х годов сорбционные методы используются для прижизненного удаления токсических веществ нз биологических жидкостей. С этой целью через слой сорбента пропускают кровь, плазму и лимфу. Соответственно эти процессы называют гемо-, плазмо-и лимфоперфузией. Иногда их называют гемо-, плазмо- и лимфосорб-цией. Гемосорбция была первым методом, использованным для лечения отравлений. Техника этой процедуры достаточно проста цельную кровь, взятую из артериальной системы организма, пропускают через колонку с адсорбентом, после чего вновь возвращают в организм. Интенсивность процесса очистки крови от токсических веществ, подобно мембранным методам детоксикации [c.80]

    Белки-рецепторы могут служить лигандами для связывания гормонов п других низкомолекулярных эффекторов, транспортные белкп плазмы и белки-переносчики клеточных мембран — для связывания и очистки своих низкомолекулярных партнеров. Белки-регуляторы и участники процессов матричного синтеза, используемые в качестве лигандов, позволяют решать задачи по вычленению регуляторных участков нуклеиновых матриц и выявлению других компонентов синтезирующих систем. То же самое относится к системам выработки и транспорта энергии. [c.362]

    Лектинами называют белки или гликопротеиды растительного (фитогемагглютинины) или животного происхождения, проявляющие более или менее избирательное сродство к остаткам индивидуальных сахаров или групп сходных сахаров. Разнообразие остатков сахаров, часто встречающихся в природе, невелико, но они входят в салшх различных колхбинациях во множество биологически важных соединений полисахаридов, мукополисахаридов, гликопротеидов, глико-липидов и др. Многие из этих соединений участвуют в построении клеточных мембран. Подобно антителам, лектины обладают более чем одним участком связывания сахаров, что обусловливает их сио-собностъ агглютинировать эритроциты и другие клетки, отбирая их по классам, напрпмер опухолевые или эмбриональные. Используемые в качестве аффинных лигандов, лектины позволяют решать важные задачи очистки содержащих сахара компонентов плазмы, гликопротеидов клеточных мембран и др. [c.363]

Рис. 138. Очистка гаптоглобина из плазмы аф- А финной хроматографией на гемоглобин-сефарозе [Delers et al., 1981] > Рис. 138. Очистка гаптоглобина из плазмы аф- А финной хроматографией на гемоглобин-сефарозе [Delers et al., 1981] >
    При анализе содержания в физиологических жидкостях свободных аминокислот встает задача предварительной полной очистки их от белков. Для малых объемов плазмы (5—25 мкл) была описана элегантная методика осаждения белка холодным (—30°) ацетоном в капилляре (100 X 0,6 мм) с последующим центрифугированием в нем же, после чего кончик капилляра с осадком белка просто обламывали [Arola et al., 1977]. [c.483]

    Подложки (пластины) получают разрезкой монокристаллов 81 (или др. материала) на пластины, к-рые затем шлифуют, подвергают травлению и полируют (см. Полирование), чтобы получить повить без наруш. слоя. Обработанные пластины тщательно очищают хим. или плазменным (сухим) способом. Для хим. очистки применяют смеси сильных окислителей (напр., НКОз, Н О с к-тами (напр., с Н ЗО ), а также водный р-р КНз. После хим. очистки пластины промывают в деионизир. воде и сушат в центрифуге. Отмывка-одна из наиб, часто повторяющихся операций П. т., при этом чистота воды имеет решающее зиачение. Сухая очистка в кислородной плазме применяется в осн. для удаления с пов-сти пластин оставшегося после фотояитогра- [c.556]

    Д-эпокси-З-феноксипропаном). Сильный ингибитор Р.-пеп-статин (пентапептид, продуцируемый штаммом Streptomy es), к-рый используют для очистки Р. при выделении его из плазмы крови. [c.238]

    Благодаря таким свойствам, как низкое атомное число, хорошее сопротивление термическому удару, высокие термостойкость и теплопроводность, волокнистое углеродное вещество может применяться р производстве зеркал , работающих в контакте с лазерными лучами, отражательных параболических антенн для радиотелескопов, композитов , контактирующих с плазмой, катализаторов дожигания , электродов для твэлов, фильтров и теплоизоляции , материалов гасящих резонансную шумовую вибрацию, мембран для микрофильтрации газов, адсорбентов для извлечения благородных металлов из растворов сложного солевого состава, для тонкой очистки и разделения трудносорбируемых газовых смесей, а также [c.97]

Рис. 10.3-9. МСВИ Масс-спектр вторичных ионов полимерной поверхности, полученный в режиме статического распыления (Аг" ") [10.3-5]. а — исходная поверхность поликарбоната, полученная методом литья т/е = 93, 117, 133, 211—фрагменты полимерной цепи т/е = 205 — изооктилфенолят (концевая группа) т/е = 255 — пальмитат-анион т/е = 183 — стеарат-анион б — поверхность после обработки кислородной плазмой в — после обработки кислородной плазмой и очистки водой. Рис. 10.3-9. МСВИ <a href="/info/190094">Масс-спектр вторичных</a> <a href="/info/133090">ионов полимерной</a> поверхности, полученный в режиме статического распыления (Аг" ") [10.3-5]. а — исходная поверхность поликарбоната, <a href="/info/1827640">полученная методом литья</a> т/е = 93, 117, 133, 211—фрагменты <a href="/info/56634">полимерной цепи</a> т/е = 205 — изооктилфенолят (<a href="/info/511">концевая группа</a>) т/е = 255 — пальмитат-анион т/е = 183 — стеарат-анион б — <a href="/info/581680">поверхность после</a> <a href="/info/1509977">обработки кислородной</a> плазмой в — <a href="/info/268982">после обработки</a> кислородной плазмой и очистки водой.
    Мощность современных генераторов плазмы - плазмотронов прп сравнительно небольших габаритах достигает 10 МВт. При этом удельная производительность газофазных илазмохимических ироцессов может составлять до 10 м /ч газа - продукта па 1 см активного объема илазмы, что значительно превышает соответствующий показатель традиционных хими-ко-технологических ироцессов. Так для ироцесса аминовой очистки на 1 см объема абсорбера расход газа составляет 0,3-0,5 м /ч. [c.450]

    Как правило, современные исследования по фармакокинетике флавоноидных соединений с использованием ВЭЖХ включают разработку методов экстракции этих соединений из плазмы животных, методы очистки плазмы и собственно хроматографические исследования по подбору фаз, условий хроматографирования и разделения изучаемых веществ от метаболитов и эндогенных субстратов. [c.606]

    Авторы работы [288] предложили новый метод выделения аминокислот из биологических жидкостей свободный от недо статков ионообменной очистки Метод быстр, удобен при анали зе большого количества образцов и позволяет получить амино кислоты в форме, удобной для последующего ГХ и ГХ—МС анализа Физиологическая жидкость (например, плазма) под кисляется до pH = 2 и экстрагируется диэтиловым эфиром для [c.197]

    Уголь и графит являются наиболее подходящими материалами для изготовления электродов они легко обрабатываются механически, имеют высокую степень чистоты и обладают спектром с малым числом линий. При необходимости угольные стержни могут быть подвергнуты дополнительной очистке от примесей нагреванием до 2700 °С электрическим током при плотности тока около 500 А/см . Углерод из-за его высокого по-Т нщ1ала ионизации и высокой температуры сублимации способствует образованию высокотемпературой плазмы. С увеличением степени графитизации улучшаются обрабатываемость материала и его электро- и теплопроводность. Степень фафитизации однозначно связана с величиной удельного электросопротивления. Материалы с удельным сопротивлением ниже 1750 мкОм-см называют графитом, а с удельным сопротивлением выше 4500 мкОм-см— спектральными углями. [c.373]

    СУМС-1 Сорбент для очистки биологически активных жидкостей (лимфы, плазмы, крови) от высокомолекулярных соединений,токсинов и микробов Углерод-минераль-ный сорбент Гранулы сферической формы 0,6-1,2 700-800 [c.557]

    Образцы физиологических жидкостей (крови, плазмы, мочи, спинномозговой жидкости) освобождают от белков, осаждая их пикриновой или сульфосалициловой кислотой [75—77]. Осадок удаляют на центрифуге, надосадочную жидкость используют в последующей работе. Белки можно удалять, используя катиониты в Н+-форме [78] или центрифугируя смеси при высоких скоростях [43]. Аналогичным образом готовят для анализа экстракты гомогенатов тканей, также с использованием три-хлоруксусной и хлорной кислот [79]. Иониты используют для очистки от белков экстрактов большинства растительных тканей [80]. [c.352]

    Ограниченные запасы витаминов и гормонов в- животных привели к развитию механизмов адсорбции, транспорта и консервации этих веществ в следовых количествах. В таких процессах важную роль играют специфические транспортные или связывающие белки, предотвращающие быстрое выведение витаминов и гормонов с мочой, которое происходило бы, если витамины и гормоны не были бы связаны в плазме в соответствующих комплексах. Связывающие белки присутствуют в очень низких концентрациях. Например, белки, прочно связывающие витамин В12, траноко баламины I и И, находятся в плазме крови человека в концентрациях соответственно 80 и 20 мг на 1000 л. Однако они обычно имеют высокое сродство к комплементарным витаминам и гормонам. Константы диссоциации этих комплексов находятся в интервале от 10 до 10 моль/л [35]. Из-за низких концентраций эти белки нельзя выделить классическими методами очистки наличие специфических взаимодействий с высоким сродством позволяет использовать аффинную хроматографию, которая допускает работу с большими объемами исходного материала. Как и для взаимодействий антитело — антиген, трудности заключаются в последующем выделении белка из комплекса с аффинными сорбентами. [c.124]

    Например, для отработки методик выделения определённого пептида из биологических жидкостей необходимо получить его тритиймеченый аналог, при использовании которого можно проследить эффективность выделения данного пептида на разных стадиях очистки. Показано, что пептидный пул более высокой степени очистки можно получить, используя твердофазную экстракцию, когда биологический материал дополнительно очищают, адсорбируя его на патроне с соответствущим сорбентом и селективно смывая искомую фракцию. Таким методом концентрацию тафцина (Thr-Lys-Pro-Arg) определяли в плазме человеческой крови или ликворе [62]. При использовании твердофазной экстракции удаётся отделить данный пептид от неорганических солей, белков, клеток и клеточных мембран. [c.532]


Смотреть страницы где упоминается термин Плазма, очистка: [c.81]    [c.80]    [c.257]    [c.364]    [c.364]    [c.375]    [c.414]    [c.451]    [c.546]    [c.7]    [c.203]    [c.203]    [c.181]    [c.198]    [c.203]    [c.127]    [c.68]    [c.30]    [c.232]    [c.438]    [c.276]   
Практическая химия белка (1989) -- [ c.288 ]




ПОИСК





Смотрите так же термины и статьи:

Плазма



© 2025 chem21.info Реклама на сайте