Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

взаимодействие мутаротация

    Так же, как циклопентан по сравнению с циклогексаном, тетрагидрофуран по сравнению с тетрагидропираном является гораздо менее выгодной конструкцией из-за наличия заслоненных взаимодействий, которые отсутствуют для. кресловидных конформаций обеих шестичленных систем. Этим объясняется преобладание пиранозных форм моносахаридов над фуранозными в таких обратимых реакциях, как мутаротация и гликозидирование в. кислых спиртовых растворах (синтез гликозидов по Фишеру). [c.46]


    Известно, что моносахариды существуют в виде двух аномеров (а и р), между которыми в растворах устанавливается равновесие мутаротации. Поэтому коэффициенты у22, по мнению авторов [13], в первом приближении следует рассматривать как взвешенное среднее индивидуальных коэффициентов каждого аномера и учитывать их взаимодействие путем введения перекрестных членов разложения  [c.57]

    Хотя метил глюкозиды образуются при взаимодействии с I молем метанола, тем не менее они являются полными ацеталями, поскольку в роли второй молекулы спирта выступает гидроксильная группа С-5 самой о-(+)-глюкозы. Глюкозиды не подвергаются мутаротации, поскольку, будучи ацеталями, они [c.952]

    Можно привести много подобных примеров использования уравнения Бренстеда к ним относятся мутаротация глюкозы [35], иодирование ацетона [27], бромирование ацетоуксусного эфира [36] и дегидратация 1,1-дигидро-ксиэтапа в ацетальдегид [37] и многие другие подобные реакции [27]. Обычно две кислоты, сильно отличающиеся по строению, не удовлетворяют одному уравнению Бренстеда. Это неудивительно, если принять во внимание специфические взаимодействия, которые могут иметь значение для катализа. Однако данные явления еще не достаточно хорошо изучены. [c.487]

    Уже давно были известны свойства моноз, которые не могли быть объяснены предложенными для них формулами окси-альдегидов и оксикетонов. В частности, казалось непонятным, что альдозы не дают реакции с фуксинсернистой кислотой и очень медленно взаимодействуют с гидросульфитом натрия. В то же время наблюдалась повышенная реакционная способность одной из гидроксильных групп, наличие в два раза большего числа изомеров, чем предсказывает формула Фишера, мутаротация — изменение угла вращения свежеприготовленных растворов и др. [c.459]

    Наличие в растворах сахаров значительных количеств фураноз обусловливает сложный характер их мутаротации (см. рис. 11). Высокое содержание фураноз наблюдается в растворах тех сахаров, которые способны дать сравнительно устойчивые конформации этих таутомеров. Такими являются конформации, характеризующиеся небольшим числом 1,2-г ыс-взаимодействий. Отношение количеств а- и Р-фураноз также определяется конформационными факторами в большинстве случаев преобладает аномер с преимущественно , 2-транс-расположением гидроксилов (как уже упоминалось, 1,2-цис- взаимодействия для фураноз — наиболее сильно действующие факторы нестабильности, стр. 53). В некоторых случаях значительный дестабилизующий эффект оказывают и 1,3-цис-взаимодействия. Так, хотя а-идоза имеет 1,2-/иранс-расположение гидроксилов, она обладает [c.69]


    Тщательный анализ кинетических уравнений реакций мутаротации глюкозы и энолизации некоторых кетонов привел Свена [424] к выводу о том, что и при реакциях в водных растворах процессы протекают чаще всего по этому же механизму согласованного взаимодействия. О роли такого механизма при реакциях, обычно причисляемых к типу Se2, уже говорилось выше. [c.485]

    Как показал Прелог [6, И], асимметрический синтез может быть объяснен на основе нормальных несвязанных взаимодействий в переходном состоянии. Те же факторы, что влияют на ход кинетически контролируемых асимметрических реакций присоединения (рис. 1-1 и 1-2), могут проявляться также и в термодинамически контролируемых реакциях мутаротации (7 8), и соответствующие результаты поэтому могут быть сопоставлены друг с другом. [c.70]

    Трипсин и химотрипсин, очевидно, имеют второй активный центр, содержап ий гистидин. Второй участок удален от первого, но на спиральной цепочке они сближены. Установление активной роли гистидина основывалось частично на изменении скорости ферментативной реакции в зависимости от pH, что соответствовало предположению о стратегическом расположении слабоосновного остатка, имеющего характер гистидина. Даже сам имидазол также катализирует гидролиз простейших сложных эфиров (БрюИ С" и Шм Ир 1965—.19i57 Бендер, 1957). 7 о, что фермент в 10 раз эффективнее, чем имидазол, имеет аналогию в модельных опытах по мутаротации глюкозы — реакции, катализируемой кислотами и основаниями. о -Оксипиридин, содержащий кислотный и основной центры (оба относительно слабые), более эффективен как катализатор, чем смесь пиридина и фенола (Свайн, 1952). И в а-окси-пиридине, и в протеолитическнх ферментах бифункциональность повышает каталитическую активность, поскольку протоны могут быть одновременно поданы и отщеплены в сопряженной реакции. Механизм действия, предложенный, Нейратом (1957) для химотрипсина, сводится к следующему. При взаимодействии гидроксильной группы серина с имидазольным кольцом гистидина отщепляется протон и образуется активированный комплекс П, имеющий электрофильный и нуклеофильный центры. [c.714]

    В работах Пчелина и Кульмана [89—91] показана роль электростатических взаимодействий и pH среды в формировании адсорбционных слоев желатины, обнаруженная при исследовании поверхностного натяжения статическим методом. Полученные результаты для желатины (с = 0,5 г/100 мл) при 40 °С на границе с воздухом показали, что при формировании адсорбционных слоев в отсутствие соли электростатические взаимодействия приводят к замедленному образованию слоя. Однако конечные величины поверхностного натяжения в кислой области pH не зависят от заряда макромолекул. Отсутствие вклада в поверхностную активность желатины полярных остатков при подавлении их ионизации, а также неизменность поверхностного натяжения, характеризующего адсорбционные слои желатины в статических условиях десорбции при изменении pH, не может объясняться с классических позиций изменением поверхностной активности и ионизацией полярных групп. Авторы предположили, что аналогично известному аффекту мутаротации поли-/ -пролина в кислой области pH имеет место протонизация имидных связей в молекулах желатины. При этом снижается заторможенность вращения вокруг таких связей и повышается общая гибкость цепи, что способствует дифференциации сегментов по полярности и обусловливает существенно ббльшую поверхностную активность но сравнению со щелочной областью pH, где цени более жесткие. [c.179]

    Оптически деятельные изомеры глицеринового альдегида представляют собой сиропы, не показывающие мутаротации и гладко димери-зующиеся. Рацемическая смесь образует кристаллы (т. пл. 70°), также превращающиеся в димер (т. пл. 142°). Строение последнего аналогично строению димера гликолевого альдегида. В водном растворе преобладают мономеры, вступающие во многие характерные реакции моносахаридов например, при взаимодействии с бромистым водородом в уксусной кислоте образуется ацетобромпроизводное [c.240]

    Группа СНа, смежная с СО-группой камфоры, взаимодействует с хлором и бромом, давая смеси а- и а -галоидкамфор эндо- и экзоформы). В спиртовом растворе в присутствии следов этилата натрия эти соединения обнаруживают мутаротацию вследствие взаимного превращения экзо-эндо-форж до установления равновесия (Лоури, 1898 г.). [c.855]

    В нитрометане реакцию мутаротации катализируют кислоты и основания [37]. Четвертичные аммониевые карбоксилаты существенно более эффективны, чем незаряженные основания (пиридин). Перхлорат натрия обладает очень слабым ускоряющим действием. Одновременное присутствие солей и незаряженных кислот или оснований приводит к возникновению новых типов взаимодействий, причем вызываемые ими эффекты (ускорение или замедление реакции) неаддитивны. R.N+Ar 07 подавляет каталитическое действие АгСО Н почти в [c.186]

    Действительно, как показали Свэн и Браун, молекула 2-оксипиридина является необычайно эффективным ускорителем мутаротации глюкозы (точнее, тетраметил-производного). В присутствии этого в целом амфотерного соединения скорость мутаротации увеличивается в 5000 раз но сравнению с тем случаем, когда для ускорения реакции того же соединения используют эквимолекулярную смесь фенола и пиридина. Хотя в обоих слз аях в актах переноса участвуют функциональные группы одной и той же химической природы (гидроксил и атом азота), совмещение этих двух групп в одной молекуле 2-окси-ниридина оказывается более выгодным. И дело здесь не только в том, что два последовательных столкновения глюкозы с фенолом и пиридином заменяются одним столкновением — глюкоза + оксипиридин (хотя это тоже немаловажный фактор по статистическим соображениям). Вероятнее всего, эффективность работы 2-оксиниридина достигается за счет эффекта согласованности переноса протонов между двумя парами взаимодействующих центров гидроксил пиридинового кольца + циклический кислород азот пиридинового кольца + гидроксил нри глюкозы. [c.50]


    Существует много явлений, которые неадекватно описываются в рамках первоначальной концепции солевых эффектов, но в водных растворах имеется широкая область концентраций, где первичные солевые эффекты можно исключить, а вторичные удовлетворительно описать теорией межионного взаимодействия. Так обычно обстоит дело в случае растворов с ионной силой меньшей, чем 0,1, не содержащих многозарядных ионов, а также ионов Ag+ и Т1+. Иное положение в неводных растворителях с низкой диэлектрической постоянной, где электростатическое взаимодействие гораздо сильнее. Мы уже видели в гл. 4, какое большое влияние оказывает на кислотно-основные равновесия в неводных растворителях образование ионных пар. Как следует из работу Уинстейна и его сотр. [8], образование ионных пар играет также важную роль в реакциях сольволиза многих органических соединений, приводя к большим и специфическим солевым эффектам. В определенной степени сходную ситуацию наблюдал Истхэм [9] при изучении катализируемых основанием мутаротаций тетраметил- и тетраацетилглюкозы в пиридине и нитрометане. Каталитический эффект незаряженных оснований очень мал, но он значительно увеличивается при введении целого ряда солей. Например, 0,02 М раствор ЫС104 повышает каталитический эффект пиридина в 10 раз. Однако величина эффекта существенно меняется при переходе от одной соли к другой. В отсутствие соли механизм реакции (которая протекает через промежуточное образование альдегидной формы глюкозы) можно было бы изобразить в [c.165]

    Тем не менее в настоящее время представляется сомнительным, является ли кинетика тре ьего порядка, полученная Свейном и Брауном [29], строгим доказательством согласованного механизма кислотно-основного катализа и является ли аномально высокая активность некоторых бифункциональных катализаторов простым следствием наличия кислотного и основного центров в одной молекуле. Покер [31] -впервые указал на то, что пропорциональность скорости произведению концентраций амина и фенола может быть связана с основным катализом феноксил-ионом в ионной паре типа НЬО--МНзК. Это подтверждается недавно обнаруженным фактом [32], касающимся того, что ионные пары типа РЬ0--+МК4 являются эффективными катализаторами мутаротации тетраметилглюкозы в бензоле, хотя и не содержат кислотных групп. Ясно также [30, 33], что бифункциональные катализаторы эффективны только при том условии, если они могут взаимодействовать с субстратом без образования биполярных интермедиатов с высокой энергией. Это предполагает, что катализаторы могут существовать в двух таутомер-ных формах, сравнимых по энергии. Таким образом, катализ мутаротации карбоновыми кислотами, 2-оксипиридином, пен-тандионом-2 и пиразолом можно представить следующими схемами  [c.186]

    Отклонения от корреляционного соотношения Брёнстеда могут наблюдаться в том случае, если переходное состояние характеризуется специфическими взаимодействиями. Вследствие небольшого размера протона обычные стерические затруднения почти не влияют на кислотно-основное равновесие. Вместе с тем наличие объемных групп у одного или обоих реактантов, сказывается на кинетике реакции, поскольку такие группы препятствуют сближению частиц А] и В2 в переходном состоянии. Известно несколько примеров, отчетливо демонстрирующих этот эффект в реакциях, катализируемых кислотами или основаниями. Так, стерические затруднения проявляются при катализе замещенными пиридинами и их катионами гидратации ацетальдегида [45], когда наличие заместителей в положениях 2 и 6 приводит к уменьшению каталитической активности. Аналогично замедление процесса, обусловленное пространственными затруднениями, наблюда-. ют при катализе алкилпирилннами или их катионами галогенирования кетонов [46], мутаротации глюкозы [47] и инверсии ментона [47]. Противоположный эффект был обнаружен в катализируемых анионами реакциях галогенирования различных кетонов и эфиров [48]. Для большинства субстратов и карбоксилат-анионов соотношение Брёнстеда выполняется точно. Однако, если и катализатор и субстрат содержат вблизи реакционного центра заместители большого размера (алкильную или арильную группу или бром), наблюдаемая скорость реакции превышает ожидаемую на величину, достигающую 300%. Это означает, что близкое расположение в переходном состоянии двух больших групп должно понижать его энергию. Стабилизация переходного состояния, вероятно, определяется не столько энергетикой любого непосредственного притяжения между группами, сколько эффектом образования полости в растворителе путем подавления некоторых взаимодействий между молекулами воды. Две находящиеся на близком расстоянии группы будут приводить к разрыву меньшего числа связей между молекулами воды при образовании полости, чем группы, удаленные друг от друга. Этот фактор оказывает стабилизующее действие на переходное состояние. Порядок величины указанного эффекта можно проиллюстрировать, воспользовавшись данными из работы Батлера по изучению изменения растворимости в воде последовательно расположенных членов некоторых гомологических рядов. Батлер нашел [49], что каждая дополнитель- [c.261]

    Вернемся к рассмотрению одностадийных дроцессов переноса протона. В гл. 9 -мы видели, что перенос протона от СН-кислот к основаниям является лимитирующей стадией многих реакций с участием этик соединений. За последние 15 лет кинетичеокие изотопные эффекты были подвергнуты всестороннему изучению, особенно в работах Лонга, Джонса, Белла и их сотрудников. Из полученного очень большого экспериментального материала мы остановимся лишь на некоторых примерах. В ряде случаев лроцеос ионизации удается исследовать непосредственно, как в реакции СНзМОг и СОзМОг с гидроксил-ионами. Однако чаще скорость образования аниона измеряют косвенным методом, на.П ример добавляя в систему реакционноспособные частицы (скажем, молекулы галогена), которые взаимодействуют с анионами сразу же, как они образуются. Другой. косвенный метод — изучение рацемизации или мутаротации оптически активных соединений. Можно также исследовать кинетику изотопного обмена, причем для определения концентрации частиц с легким изотопом наиболее удобен метод протонного магнитного резонанса, а для определения концентрации таких же частиц, содержащих тритий, — метод радиоактивности. [c.310]

    Свейн и Браун [30] показали, что та же тетраметилглюкоза в бензольном растворе в присутствии добавок фенола и пиридина подвергается мутаротации по закону третьего порядка, первого порядка по глюкозе, фенолу и пиридину. Еще больше в пользу высказанного предположения говорит обнаруженный ими факт, что амфотерные частицы, например 2-гидрокси-ииридин, взаимодействуют с глюкозой по суммарному закону второго порядка, первого порядка по глюкозе и первого порядка по катализатору. При концентрации 0,001 М 2-гидроксипиридин как катализатор приблизительно в 7000 раз активнее, чем смесь 0,001 М пиридина и 0,001 М фенола, хотя он в 100 раз более слабая кислота, чем фенол, и в 10000 раз более слабое основание, чем пиридин. Строениз 2-ОН-пиридина исключительно благоприятно для того, чтобы это соединение могло подвергаться постулированному выше двойному переносу водорода в реакции с глюкозой (3-ОН-и4-ОН-пи-ридины — вещества, структурно менее подходящие и являющиеся гораздо худшими катализаторами). Хотя такой тримолекулярный механизм кислотно-основного катализа кажется очень привлекательным и был наглядно продемонстрирован в ряде примеров, он не обязательно выполняется во всех случаях действительно, Белл с сотрудниками [32] приводят ряд специфических примеров, в которых стот механизм неприменим. [c.484]


Смотреть страницы где упоминается термин взаимодействие мутаротация: [c.166]    [c.184]    [c.198]    [c.479]    [c.698]    [c.477]    [c.491]    [c.479]    [c.30]   
Аналитическая химия Том 2 (2004) -- [ c.2 , c.238 ]




ПОИСК





Смотрите так же термины и статьи:

Мутаротация



© 2024 chem21.info Реклама на сайте