Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Изоэлектрическая

    Цель работы-, определение изоэлектрической точки раствора желатины по зависимости вязкости и мутности от pH среды. [c.151]

    Цель работы определение изоэлектрической точки золя гидроксида железа методом электрофореза исследование влияния высокомолекулярных соединений на изоэлектрическую точку. [c.99]


    Из сказанного выше следует, что прибавление электролита к коллоидному раствору, сопровождающееся специфической адсорбцией частицами коллоида ионов одного вида, может привести не только к уменьщению заряда частиц, но и к полной их нейтрализации и даже к перемене знака заряда коллоида. Все это действительно наблюдается на опыте. Состояние коллоида, в котором частицы его нейтрализованы, называется изоэлектрическим состоянием. В таком состоянии система обычно не бывает устойчивой. [c.523]

    Модель двойного электрического слоя, отвечающая этим простейшим представлениям, ириводит к двум возможным значениям -потенциала. Если предположить, что все заряды, находящиеся в растворе, способны перемещаться вместе с жидкостью или при движ( нии твердого тела относительно жидкости пе увлекаться вместе с ним, то -потенциал по величине -будет совпадать с -потенциалом, и его изменение с концентрацией электролита должно подчиняться формуле Нернста. Если заряды, находящиеся в растворе, при относительном движении жидкости и твердого тела связаны только с последним и перемещаются вместе с ним, то -потенциал всегда будет равен нулю. Ни одно из этих следствий, вытекающих из теории Гельмгольца, не согласуется ни с экспериментально установленным соотно1дением между (или й м.ь) и -потенциалами, ни с найденной экспериментально зависимостью -потенциала от концентрации (если не считать, что -потенциал лзожет быть равен нулю в очень концентрированных растворах электролнтов и ири определенном составе раствора, отвечающем изоэлектрической точке). Теория Гельмгольца не объясняет также причины изменения заряда повер> ности металла в присутствии поверхностно-активных веществ при заданном значении -потенциала. Вместе с тем теория конденсированного двойного слоя позволяет получить значения емкости двойного слоя, согласующиеся с опытом, а при использовании экспериментальных значений емко- [c.262]

    Работа 16. ОПРЕДЕЛЕНИЕ ИЗОЭЛЕКТРИЧЕСКОЙ ТОЧКИ ЗОЛЯ ГИДРОКСИДА ЖЕЛЕЗА МЕТОДОМ ЭЛЕКТРОФОРЕЗА [c.99]

    Точнее, через изоэлектрическую точку. [c.328]

    Нри изоэлектрической точке не происходит передвижения молекул под действием внешнего электрического поля, наблюдается минимальная вязкость раствора, максимальное светорассеяние и набухание, наибольшее осмотическое давление. [c.152]

    Если потенциалопределяющими ионами являются ионы Н+ и ОН , то отсутствие заряда на поверхности (например, оксидов элементов) будет соответствовать определенному значению pH, называемому изоэлектрической точкой. В этой точке числа положительных и отрицательных зарядов одинаковы — общий заряд поверхности равен нулю. Очевидно, что изоэлектрическая точка зависит от кислотно-основных свойств вещества. Сродство к протону можно представить следующими константами диссоциации  [c.50]


    Отсюда ясно, что в процессе титрования заряд частиц изменяется на обратный, проходя через так. называемую изоэлектрическую точку, отвечающую нулевому заряду частиц. В этой, и только в этой, точке осадок не содержит ни избытка Ag+, ни избытка 1 и точно соответствует своей формуле Agi. [c.326]

    Степень ионизации каждой группы зависит от pH среды и ионной силы раствора. Для полиамфолитов характерным является такое состояние, когда число ионизированных кислотных групп равно числу ионизированных основных, т. е. суммарный заряд макромолекул равен нулю. Это наблюдается при определенной концентрации ионов водорода, отвечающей изоэлектрической точке. В изоэлектрическом состоянии макромолекула стремится свернуться в наиболее плотный клубок. [c.152]

    Для более основных оксидов наблюдается увеличение положительного заряда на поверхности с ростом кислотности среды. Гидроксильные группы уходят с поверхности и в растворе нейтрализуются ионами водорода. Например, золь оксида железа более устойчив в кислой среде, в которой частицы имеют положительный заряд. Менее основные оксиды, такие, как кремнезем, приобретают в кислой среде положительный заряд (ниже изоэлектрической точки) в результате адсорбции ионов водорода на гидроксильных группах поверхности. [c.339]

    У некоторых групп животных имеются свойственные только им соединения — специфические ферменты, дыхательные пигменты, переносчики электронов и др. Даже гемоглобин у разных млекопитающих имеет свою специфику (меняются форма кристаллов, изоэлектрическая точка, соотношение метионина и цистина и др.). Отмечена направленная эволюция ряда биохимических систем, которая совершается с одинаковой последовательностью в разных филогенетических ветвях. Виды и роды по ряду биохимических параметров различаются между собой. [c.189]

    В результате анионные ВМС очень сильно уменьшают диффузионную подвижность влаги и миграцию ионов в торфяных системах (рис. 4.14) [230]. Действие катионных ВМС при малых концентрациях аналогично действию КПАВ. По мере увеличения содержания катионных ВМС в торфяных системах коэффициент диффузии воды и, следовательно, интенсивность миграции ионов увеличиваются, проходят через максимум, соответствующий изоэлектрическому состоянию материала (минимуму содержания в нем связанной воды), а затем снижаются [c.80]

    Исходный золь кварца в воде был агрегативно устойчивым, изоэлектрическая точка частиц 5102, оцененная методом микроэлектрофореза, находилась при pH = 2 [24]. Методом поточной ультрамикроскопии было показано, что золь 5102 в обла- [c.174]

    Увеличение концентрации ЦТАБ в системе после достижения изоэлектрического состояния (>2,5-10 М) приводит к росту положительных значений электрокинетического потенциала. Однако степень агрегации частиц (вплоть до концентрации ЦТАБ Ю М) вновь начинает расти, что может быть обусловлено разрушением ГС при появлении заряда на поверхности частиц, а также некоторой гидрофобизацией поверхности при [c.179]

    Отмечено [218], что применением соответствующим образом подобранных поверхностно-активных веществ и электролитов, снижающих величину дзета-потенциала, можно интенсифицировать процесс разделения тонкодисперсных суспензий фильтрованием. Наиболее хорошие результаты достигаются при уменьшении дзета-потенциала до изоэлектрической точки, что во многих случаях приводит к агрегации твердых частиц. Так, при добавлении к водной суспензии пигмента желтого 2К, частицы которого имеют отрицательный дзета-потенциал, катионного электролита (нитрата алюминия) величина этого потенциала уменьшалась до нуля или даже изменялся его знак при этом частицы размером до 2 мкм образовывали прочные агрегаты размером 7—10 мкм. [c.195]

    Иногда, например при исследовании белков, оказывается необходимым создавать условия, в которых аминокислота при диссоциации дает одинаковую концентрацию как положительных (ЫН КСООН), так и отрицательных (NH2R 00 ) ионов. В чистой воде такое условие невыполнимо, так как константы диссоциации обеих ступеней неодинаковы. Чтобы одну ступень дисссщиации усилить, а другую — подавить, необходимо создать в растворе соответствующую концентрацию водородных ионов, добанляя либо кислоту, либо основание. Значение pH, при котором амфолит образует одинаковые концентрации положительных и отрицательных ионов, называется изоэлектрической точкой. В изоэлектрической точке, очевидно, соблюдается условие [c.511]

    Таким образом, чем менее кислыми свойствами обладает вещество (поверхностный слой), помещенное в какой-либо растворитель, тем больше значение его изоэлектрической точки в данном растворителе. Соотношение (11.79) более точно отражает зависимость в разбавленных растворах, когда активности можно приравнять концентрациям. Понятие изоэлектрической точки широко применяется также и для растворенных электролитов. [c.50]


    Необходимо отметить, что эти условия отвечают некоторому критическому потенциалу двойного электрического слоя, а не изоэлектрической точке, как считали раньше. Для многих золей критический потенциал, остающийся на частицах к моменту коагуляции, находится в пределах 25—40 мВ. [c.334]

    Наличие на поверхности частиц групп, способных образовывать водородные связи, определяет возможность эпитаксиального механизма образования ГС. Так, исключительно высокая устойчивость золя SIO2 вблизи изоэлектрической точки [24, 502, 503] может быть также объяснена наличием граничных слоев значительной толщины, образованных при ориентации молекул воды за счет водородных связей около незаряженной поверхности, несущей недиссоциированные силанольные группы. [c.173]

    Аналогичным образом определяют изоэлектрическую точку золя в присутствии желатины. Для приготовления растворов в 50 мл золя вначале вводят раствор желатины, смесь тщательно перемешивают и затем добавляют раствор щелочи или кислоты  [c.101]

    Результаты исследования электроноверхностных свойств и устойчивости дисперсии аморфного кремнезема [514] и расчеты энергии взаимодействия частиц по теории ДЛФО показали, что эта дисперсия более устойчива по сравнению с дисперсией кварца той же дисперсности. Наблюдаемые различия в устойчивости обеих систем при одном и том же составе дисперсионной среды (в том числе и при pH, соответствующих изоэлектрическому состоянию) объяснены разным вкладом структурной составляющей, т. е. структурными отличиями ГС у поверхности исследуемых частиц. [c.182]

    Е5 кислой среде (относительно изоэлектрической точки), например в присутствии НС1, диссоциация карбоксильных групп подавлена и макромолекулы содержат в основном положительно заряженные группы -РМН . [c.152]

    Опыт показывает, что изоэлектрическая точка может не совпадать с точкой эквивалентности ц()и титровании. Например, вблизи точки эквивалентности осадок Agi адсорбирует I- сильнее, чем Ag+. Поэтому, если смешать эквивалентные количества растворов KI и AgNOa, то образуется осадок, содержащий некоторый избыток (около 0,1%) I- по сравнению с содержанием Ag+. Соответственно и концентрации Ag+ и 1 в растворе не будут равны 10 г-ион/л каждая, как это должно бы быть в точке эквивалентности титрования при ПРа х 10 , а составляют [Ag+] = = 10 г-ион/л и [1 ] = 10 г-ион/л. Следовательно, при титровании раствора KI раствором AgNOa избыток А +-ионов в растворе создается несколько преждевременно, т. е. титрование заканчивается прежде достижения точки- эквивалентности. Наоборот, при титровании раствора AgNOa растЕюром KI избыток 1 -ионов, вследствие более сильной адсорбции их осадком, обнаружится после достижения точки эквивалентности, т. е. раствор будет несколько перетитрован. [c.326]

    Как изменяется заряд частиц Ag l при титровании раствора хлорида раствором нитрата серебра При обратном порядке тнтрования Что такое изоэлектрическая точка  [c.341]

    Некоторую особенность имеют растворы полиэлектролнтов. Если для растворов незаряженных полимеров приведенная вязкость линейно экстраполируется в характеристическую вязкость при с = О, то для водных растворов полиэлектролитов наблюдается постоянный рост приведенной вязкости с уменьшением концентрации. Такая особенность обусловлена увеличением диссоциации полиэлектролитов при разбавлении, вызывающей рост заряда н соответственно объема макромолекулы (отталкивание заряженных функциональных групп). Для растворов полиэлектролитов характерна зависимость вязкости от pH среды. Минимальная вязкость наблюдается в изоэлектрической точке. Уменьшению отмеченных эффектов способствуют низкомолекулярные электро-литы, [c.372]

    Следует подчеркнуть, что эффект разрушающе-структури-рующего влияния ионов на ГС должен зависеть от концентрации ионов вторичная гидратация наиболее ярко проявляется при достаточно высоких константах комплексообразования и вдали от изоэлектрической точки, а также на поверхностях, активные группы которых не способны (или обладают слабой способностью) образовывать водородные связи с молекулами воды. Приведенные выше возможные механизмы влияния ионов на ГС необходимо учитывать при рассмотрении устойчивости конкретных дисперсных систем. [c.173]

    Принимая, что посадочная площадка иона ЦТА+ составляет 0,2 нм [510] и учитывая развитые в работе [511] представления, можно найти степень покрытия поверхности частиц кварца ионами ПАВ вблизи изоэлектрической точки. Как показал расчет, она составляет около 0,1%. Учитывая этот факт, низкую степень агрегации и ее обратимый характер можтто объяснить на основе концепции ГС. При нейтрализации поверхностного заряда ионами ЦТАБ вблизи изоэлектрической точки образуются, вероятно, более прочные и протяженные ГС, что может быть связано с возникновением более благоприятных условий для развития водородных связей на силанольных группах теперь уже незаряженной поверхности SIO2. Это некоторым образом аналогично случаю увеличения протяженности ГС при снижении степени диссоциации силанольных групп на поверхности кварца при приближении к изоэлектрической точке [24]. [c.178]

    Другим объектом исследования была водная дисперсия приходного алмаза (ПА) со средним размером частиц 0,5 мкм 515]. Результаты потенциометрического титрования порошка алмаза в фоновых растворах Ь1С1, КС1, СзС1, КХЮз и ВаСЬ в широком интервале pH (3,5—10,5) и ионных сил (10 , 10 , 10 ) приведены в работе [516]. Из полученных зависимостей электрофоретической подвижности и -потенциала частиц ПА от pH в растворах электролитов 1 1 и 2 1 (при ионных силах 10 , 10 2 и 5-10 2) следует, что во всем исследованном интервале pH частицы ПА заряжены отрицательно и изоэлектрическая точка лежит в сильнокислой области (pH = 2). В случае [c.182]

    Электрокинетические явления, происходящие в неводных дисперсных системах, в частности влияние постоянного однородного электрического поля на суспензии твердых углеводородов нефти в органических растворителях, описано в работах [104, 114]. В качестве дисперсионной среды были взяты органические растворители разной природы, многие из которых широко применяются в процессах производства масел, парафинов и церезинов (н-гексан, н-гептан, изооктан, бензол, толуол, метилэтилкетон, ацетон и др.). Поведение суспензий в электрическом поле исследовали при 20 °С в стеклянной ячейке с плоскими параллельными никелевыми электродами в интервале напряженностей до 12,5 кВ/см. Установлено, что в алифатических растворителях происходит перемещение частиц дисперсной фазы (твердых углеводородов) в сторону катода, в то время как в ароматических растворителях эти же частицы перемещаются к аноду. Для твердых углеводородов, очищенных от ароматических компонентов и смол, в дисперсных системах с той же дисперсионной средой наблюдается явление двойного электрофореза, т. е. частицы дисперсной фазы перемещаются в сторону как положительного, так и отрицательного электрода. В суспензиях твердых углеводородов, где дисперсионной средой являются полярные растворители (МЭК, ацетон), явление электрофореза выражено слабо. Для таких систем характерна можэлектродная циркуляция, сопровождаемая агрегацией частиц. Эти электрокинетические явления в суспензиях твердых углеводородов объясняются существованием двойного электрического слоя на границе раздела фаз. Двойной электрофорез и меж-электродная циркуляция объясняются [115] поляризацией частиц твердой фазы и свойственны частицам, не имеющим заряда или находящимся в изоэлектрическом состоянии с мозаичным распределением участков с различным знаком заряда. Таким образом, у частиц дисперсной фазы как в полярной, так и в неполярной среде, отсутствует электрический заряд, а если он и есть, то весьма неустойчив. [c.187]

    Гидроксид алюминия — ам-фотериое вещество, способное к адсорбции и обмену ионов из раствора. Активные группы в этом обмене — гидроксилы н протоны гидроксильных групп. Относительная сила и способ- ность к обмену с другими ионами зависит от рН среды, в которой образовался осадок гидроксида, и от pH раствора, в котором происходит взаимодействие с посторонними ионами. В щелочной среде (pH 9) преобладает адсорбция катионов, в кислой предпочтительно адсорбируются анионы поэтому при осаждении из раствора алюмината натрия, осадок, полученный в щелочной среде, содержит примесь натрия, а осажденный в кислой среде — хемосорбирует анион кислоты, взятой для осаждения. В изоэлектрической точке (точка нулевого заряда, pH л 9,0), адсорбция катионов и анионов. эквивалентна и осадок наименее загрязнен примесями. [c.70]

    Диссоциация функциональных групп способствует растворе-ншо, так как в результате диссоциации рост частиц в системе приводит к возрастанию энтропии. У амфотерных полиэлектролитов (полиамфолитов) степень набухания и растворимость зависят от pH раствора. Наименьшее набухание и растворимость отвечают изоэлектрической точке (значение pH, при котором средний суммарный заряд макромолекул полиамфолита равен нулю). Выше и ниже этой точки набухание и растворимость увеличиваются заряжение макромолекул приводит к расталкиванию одноименно за-ряжсниы.х частиц, что способствует набуханию полимера. [c.319]

    В дисперсных системах, где потенциалобразующими ионами являются ионы Н+ и ОН , изоэлектрическому состоянию соответствует определенное значение pH среды, которое называется изоэлектриче ской точкой. Изоэлектрическая точка рНиэт зависит от кислотно-основных свойств вещества дисперсной фазы. Для большинства гидрозолей гидроксидов (кремния, титана, железа, алюминия и др.) pH иэт определяется соотношением констант равновесия реакций отш.енления и нрисоедине-ния протона Н+  [c.100]

    Частицы гидрозоля диоксида кремния, имеющие положительнь,"i заряд при pH < 2, перемещаются в процессе электр(5фореза к катоду, а при pH > 2 — к аноду. Таким образом, изоэлектрическая точка может быть найдена по экспериментальной зависимости -1лектрофоретиче ской скорости частиц золя от рИ среды. Изоэлектрической точке соответствует то значение pH, при котором электрофоретическая скорость и электрокинетический потенциал равны нулю. [c.100]

    Изоэлектрическая точка золя может быть изменена в результате адсорбции на иоверхности частиц полиамфолитов (ПАВ или высокомолекулярных соединений). Поскольку при значениях рИ среды, близких к изоэлектрической точке, золи, как правило, становятся неустойчивыми, адсорбционное модифицирование поверхиости частиц часю применяют для защиты их от коагуляции. Нри такой стабилизации поверхность частиц приобретает свойства адсорбата. При этом заряд частиц и изоэлектрическая точка зависят не только от природы стабилизатора, но и концентрации электролитов. [c.100]

    При использовании в качестве модификаторов поверхности белков частицы золя в кислой среде вследствие диссоциации основных i pynn белка (диссоциация кислотных групп подавлена) приобретают положительный заряд. В щелочной среде, когда диссоциируют иреимущественно карбоксильные группы белка, частицы золя заряжены отрицательно. При значениях pH, отвечающих изоэлектрической точке белка, электрофоретическая подвил иость золя равпа пулю. [c.100]


Смотреть страницы где упоминается термин Изоэлектрическая: [c.75]    [c.175]    [c.178]    [c.179]    [c.196]    [c.259]    [c.354]    [c.63]    [c.100]   
Физическая Биохимия (1980) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте