Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Рибонуклеиновые кислоты строение

    Показано [161], что аденин с формальдегидом образует метилольное производное и метилен-быс-аденин. Хотя этим соединениям было приписано строение Ne-замещенных, однако строгие доказательства отсутствовали. Левин [162] подробно исследовал эту реакцию. Так как формальдегид взаимодействуете аденозином [161] и рибонуклеиновой кислотой [163—168], нахождение места, по которому он присоединяется к пуриновой части молекулы, представляет в настоящее время значительный интерес с точки зрения биохимии. На основании спектральных данных можно сделать вывод, что продукт реакции аденозина с формальдегидом имеет Ne-оксиметильную структуру. Это вещество устойчиво только в присутствии избытка формальдегида. [c.285]


    При отделении нуклеиновых кислот от других составных частей клетки получают очищенные кислоты в виде волокнистых осадков. Гидролиз очищенных нуклеиновых кислот дает три типа продуктов группу, состоящую из четырех оснований, сахар и фосфорную кислоту. Известны нуклеиновые кислоты двух видов, отличающиеся главным образом по строению сахара, образовавшегося в результате гидролиза. Рибонуклеиновая кислота (РНК) дает о-рибозу, в то время как дезоксирибонуклеиновая кислота (ДНК) — 2-дезокси-с-рибозу [c.316]

    В роли мономерных единиц при хранении генетической информации выступают молекулы азотистых оснований — производных пурина и пиримидина. Полимерная молекула, осуществляющая как хранение, так и передачу генетической информации,— это дезоксирибонуклеиновая кислота (ДНК). Близкий ей по строению полимер, рибонуклеиновая кислота (РНК), помогает при [c.105]

    Существует два различных типа нуклеиновых кислот — рибонуклеиновые кислоты (РНК) и дезоксирибонуклеиновые кислоты (ДНК), разница между которыми заключается в строении моно-сахаридного остатка. В результате гидролиза РНК в зависимости от условий получают соединения производных пиримидина или пурина с рибозой и фосфорной кислотой — нуклеотиды или соединения производных пиримидина или пурина с рибозой — нуклеозиды. Конечными продуктами гидролиза являются урацил, тимин, цитозин, аденин, гуанин, D-рибоза и фосфорная кислота. [c.712]

    Тот же самый принцип активации карбоксильной группы используется н в синтезе белков in vivo. Карбоксильная группа аминокислоты активируется, реагируя с АТР с промежуточным образованием ангидрида. Однако следующая стадия не сводится просто к атаке такого ангидрида второй аминокислотой, поскольку синтез белков включает строго определенное последовательное присоединение многих (до нескольких сотен) аминокислот. Матрица, или организующая поверхность , должна участвовать в этом процессе для того, чтобы обеспечить правильную последовательность белковой молекулы. Макромолекулой, выполняющей функцию такой матрицы, является полинуклеотидтранс-портная рибонуклеиновая кислота (тРНК) строение полинуклеотидов описано в следующей главе. [c.56]

    Элементарной физической единицей живого является клетка это наименьшая жизнеспособная единица. По своему химическому составу все живые существа очень сходны. Основные компоненты всякой клетки-это дезоксирибонуклеиновая кислота (ДНК), рибонуклеиновые кислоты (РНК), белки, липиды и фосфолипиды. Изучение тонкого строения различных типов клеток позволило, однако, выявить заметные различия между бактериями и цианобактериями, с одной стороны, и животными и растениями (включая также их микроскопически малых представителей)-с другой. Различия между теми и другими настолько глубоки, что эти две группы организмов противопоставляются друг другу как прокариоты и эукариоты. Прокариот мы вправе рассматривать как реликтовые формы, сохранившиеся с самых ранних времен биологической эволюции, а появление эукариотических форм, возникших из прокариот,-как величайший скачок в истории жизни. [c.11]


    ОСНОВНЫЕ ЧЕРТЫ СТРОЕНИЯ РИБОНУКЛЕИНОВЫХ КИСЛОТ [c.371]

    Спирин А. С. Рибонуклеиновые кислоты (состав, строение и биологическая роль). XIX Баховские чтения, М. Наука, 1964. [c.132]

    Дезоксирибонуклеиновые кислоты (ДНК) и рибонуклеиновые кислоты (РНК) построены из чередующихся фрагментов нуклеозидов и остатков фосфорной кислоты, т. е. являются полимерными эфирами фосфорной кислоты. Ниже показан фрагмент такого полимера (подробнее о строении нуклеиновых кислот см. в гл. 28). [c.23]

    Спирин А. С. Рибонуклеиновые кислоты (состав, строение и биологическая роль). Наука , 1964. [c.24]

    Рибонуклеиновые кислоты клетки, построенные из одинаковых структурных элементов (аденина, гуанина, цитозина, урацила, рибозы и фосфорной кислоты) отличаются по своим физико-химическим свойствам, химическому строению и биологической роли, которую они выполняют в клетке. В настоящее время различают информационную РНК (и-РНК, стр. 344), растворимую или транспортную РНК (т-РНК, стр. 346) и рибосомную РНК (р-РНК, стр. 346). [c.61]

    Нуклеиновые кислоты являются как бы каркасом,на котором фиксируются аминокислоты, причем фиксирование это происходит в определенном порядке. Аминокислоты, фиксированные на нуклеиновых кислотах, затем освобождаются и связываются в таком же определенном порядке друг с другом, образуя специфический белок, характерный для данной ткани. Специфичность расположения аминокислот при биосинтезе определяется строением частицы рибонуклеиновой кислоты (РНК), на которой происходит формирование полипептидной цепи, [c.230]

    В зависимости от строения моносахарида, входящего в состав нуклеиновых кислот (НК), различают дезоксирибонуклеиновые кислоты (ДНК) и рибонуклеиновые кислоты (РНК). Необходимость подобной классификации определяется не только различным химическим строением ДНК и РНК, но и различием выполняемых ими биологических функций. Дезоксирибонуклеиновые кислоты ответственны за передачу наследственных признаков в ряду поколений живых организмов, поэтому конкретное строение ДНК каждого вида животных организмов будет строго специфично, однако общая структура ДНК одинакова для многих типов клеток. Рибонуклеиновые кислоты участвуют в процессе биосинтеза белка. [c.613]

    Рибонуклеаза — фермент, выделенный из поджелудочной железы, печени, селезенки и т. д. Вызывает деполимеризацию рибонуклеиновой кислоты. Молекулярный вес 13 500. Содержит 124 аминокислотных остатка. Строение изучалось в основном двумя группами исследователей — Муром с сотрудниками и Аффинсеном с сотрудниками. Представляет одну полипептидную цепь. Восемь цистеиновых остатков образуют [c.528]

    Рибонуклеиновые кислоты содержатся и синтезируются в основном в тех местах, где происходит более интенсивный синтез белковых веществ. Специфичность синтеза рибонуклеиновых кислот в свою очередь зависит от строения дезоксирибонуклеиновых кислот (ДНК). [c.231]

    Строение и свойства РНК. Рибонуклеиновая кислота содержится как в ядре (главным образом в ядрышке), так и в цитоплазме клетки. Основная масса РНК находится в цитоплазме, на долю цитоплазматической РНК приходится около 90% всей клеточной РНК. Все органы, синтезирующие большое количество белка, богаты РНК, сосредоточенной в цитоплазме и ядрышке. Между количеством РНК и интенсивностью белкового синтеза имеется прямая зависимость. [c.60]

    Установлено строение белкового гормона инсулина, регулирующего сахарный обмен в организме, а также строение рибонуклеазы — катализирующего гидролитическое расщепление рибонуклеиновых кислот (стр. 433) на простые нуклеотидные остатки. Молекула рибонуклеазы, имеет цепь из 124 аминокислотных остатков. Эта цепь сложена определенным образом и удерживается в этом состоянии четырьмя дисульфидными мостиками (за счет содержащей такие мостики аминокислоты цистина). В 1969 г. появилось сообщение о синтезе этого фермента. [c.427]

    Цитоплазма представляет собой коллоидный раствор, дисперсной фазой которого являются сложные белковые соединения и вещества, близкие к жирам, а дисперсионной средой — вода. У некоторых форм бактерий в цитоплазме содержатся включения — капельки жира, серы, гликогена и др. Постоянными составляющими бактериальных клеток являются особые выросты цитоплазматической мембраны — мезосомы, в которых содержатся ферментные окислительно-восстановительные системы. В этих образованиях идут в основном процессы, связанные с дыханием бактерий. В мелких включениях — рибосомах, содержащих рибонуклеиновую кислоту, осуществляется биосинтез белка. Большинство видов бактерий не имеет обособленного ядра. Ядерное вещество, представленное ДИК, у них не отделено от цитоплазмы и образует нуклеоид. Транспортировка веществ, необходимых для жизнедеятельности клетки, и отвод продуктов обмена осуществляется по особым каналам и полостям, отделенным от цитоплазмы мембраной, имеющей такое же строение, как и цитоплазматическая. Это структурное образование называется эндоплазматической сетью (ретикулум). [c.203]


    Почти все, кто упомянут в этой книге, живы и продолжают активно работать. Герман Калькар приехал в США и преподает биохимию в Гарвардском медицинском училище, а Джон Кендрью и Макс Перутц остались в Кембридже, где продолжают рентгеноструктурные исследования белков, за которые в 1962 году получили Нобелевскую премию по химии. Лоуренс Брэгг, перебравшись в 1954 году в Лондон, где он стал директором Королевского института, сохранил свой живой интерес к структуре белков. Хью Хаксли, проведя несколько лет в Лондоне, снова вернулся в Кембридж, где исследует механизм сокращения мышцы. Фрэнсис Крик, проработав год в Бруклине, тоже вернулся в Кембридж, чтобы изучать сущность и механизм действия генетического кода, — в этой области он последние десятилетия считается ведущим специалистом мира. Морис Уилкинс еще несколько л ет продолжал исследование ДНК, пока вместе со своими сотрудниками не установил окончательно, что основные признаки двойной спирали были найдены верно. Потом, сделав важный вклад в изучение структуры рибонуклеиновой кислоты, он изменил направление своих исследований и занялся строением и деятельностью нервной системы, Питер Полинг сейчас живет в Лондоне и преподает химию в Юниверсити-колледже, Его отец, недавно оставивший преподавание в Калифорнийском технологическом институте, сейчас занимается строением атомного ядра и теоретической структурной химией. Моя сестра, проведя много лет на Востоке, живет со своим мужем-издателем и тремя детьми в Вашингтоне, [c.128]

    По принципу строения различают два типа полинуклеотидов дезоксири-бозы или дезоксирибонуклеиновые кислоты (ДНК) с молекулярным весом до 10 миллионов и рибозы или рибонуклеиновые кислоты (РНК) с молекулярным весом до 300 ООО. [c.436]

    Последние годы ознаменовались огромными успехами в изучении строения и функций важнейших биологически активных полимеров. Благодаря развитию новых методов разделения н очистки веществ (различные методы хроматографии, электрофореза, фракционирования с использованием молекулярных сит) и дальнейшему развитию методов рентгеноструктурного анализа и других физико-химических методов исследования органических соединений стало возможным определение строения сложнейших природных высокомолекулярных соединений. Изучено строение ряда белков (работы Фишера, Сейджера, Стейна и Мура). Установлен принцип строения нуклеиновых кислот (работы Левина, Тодда, Чаргаффа, Дотти, Уотсона, Крика, Белозерского) и экспериментально доказана их определяющая роль в синтезе белка и передаче наследственных признаков организма. Определена последовательность нуклеотидов для нескольких рибонуклеиновых кислот. Широкое развитие получили работы по изучению строения смешанных биополимеров, содержащих одновременно полисахаридную и белковую или липидную части и выполняющих очень ответственные функции в организме. [c.53]

    Из компонентов клетки было выделено три типа рибонуклеиновых кислот. Все они обладают общим химическим строением и отличаются по составу, нуклеотидной последовательности и молекулярному весу. До настоящего времени мало что известно о конформации этих молекул. Белки синтезируются на рибонуклеопротеид-ных частицах цитоплазмы (безъядерная часть протоплазмы), РНК этих частиц называется рибосомальной РНК iB отличие от тра н1опорт,ной РНК, лереносящей аминокислоты. Дохи (1961) цредположил наличие и -формационной РНК, в которой закодирована (Последовательность ам иио-.кислот белка, синтезирующегося под действием рибосомальной РНК. [c.735]

    Эти два подкласса четко различаются как по строению входящих в них нуклеотидов, так и по их биологической функции. Нуклеиновые кислоты (обычно сокращенно обозначаемые НК) являются полимерными соединениями с кочень высоким молекулярным весом, достигающим 6 500 000—13 000 000. В зависимости ст того, содержат ли они в своем составе в качестве углеводного комионеита рибозу плп дезоксирибозу, онп называются рибонуклеиновыми кислотами (РНК) или дезоксирибонуклеиновыми кислотами (ДНК). Необходимость такого раздсотеиия диктуется не только различиями в химическом поведении РР1К и ДНК, но и различием их биологических функции. Н клениовые кислоты в комплексах с белками, известных под общи.м названием нуклеопротеидов, играют ключевую роль в процессах жизнедеятельности самых различных организмов. ДНК являются тем первичным химическим материалом, который лежит в основе сложного и далеко еще полностью не выясненного процесса передачи наследственных признаков при делении клетки, а следовательно, и всех процессов, связанных с размножением. Хотя о механизме такой передачи, механизме в чисто химическом смысле этого слова, еще мало что известно, однако решающая роль ДНК в процессе передачи биологического кода не вызывает никакого сомнения и может считаться в настоящее время экспериментально установленным фактом. [c.174]

    Более сложным оказался вопрос о строении полимерной цепи в рибонуклеиновых кислотах. РНК также являются высокомолекулярными соединениями, цепь которых состоит из рибонуклеозидов. Полимер при гидролизе распадается на соответствующие мономеры — рибонуклеоти-ды и, следовательно, РНК являются, подобно белкам и полисахаридам, продуктами поликонденсации мономеров, происходящей с отщеплением иппн Молекулярный вес РНК ниже молекулярного веса ДНК и колеблется в значительных пределах, достигая 1 000 000. РНК, будучи кислотами, при титровании показывают присутствие только первичного кислотного гидроксила. Так как известно, что пирофосфатная связь в них также отсутствует, то единственным возможным типом построения полимерной цепи является тип  [c.248]

    Нуклеиновые кислоты вместе с белками в очень тесной, неразрывной связи с ними являются носителями Жизни, входят в состав всех живых клеток. Вперэые они выделены из клеточных ядер в 1869 г. В настоящее время изучены их состав, строение и функции. Существую два вида нуклеиновых кислот — рибонуклеиновые кислоты (РНК) и дезоксирибонуклеиновые кислоты (ДНК), отличающиеся друг от друга строением углевода рибозы. В состав обоих кислот входят азотистые основания (урацил, тимин, гуанин, цитозин и аденин, производные пиримидина и пурина, связанные ковалентной связью с полуацетальный гидроксилом в положении 2 циклической формы углевода — рибозы (РНК) или 4-дезоксирибозы (ДНК). При этом пара азотистое основание + углевод образует так называемые нуклеозиды  [c.728]

    В клетках, составляющих живое вещество, содержатся особые высокомолекулярные нуклеиновые кислоты, связанные с белком, видимо, водородными связями. В течение последних десятилетий были изучены состав и строение нуклеиновых кислот и установлена их роль в биосинтезе белка. Ядра клеток содерл<ат дезоксирибонуклеиновую кислоту (ДНК), анализ продуктов гидролитического расщепления которой показал, что это слол ное вещество, содерлощее 1>-дезоксирибозу, фосфорную кислоту и смесь веществ гетероциклической структуры — производных пурина — аденина и гуанина и производных пирами-дина — тимина и цитозина. В плазме же клеток содержатся рибонуклеиновые кислоты (РНК), в составе которых обнарул<ены /З-рибоза, фосфорная кислота и гетероциклы — аденин, гуанин, цитозин и урацил (вместо тимина). [c.264]

    Нуклеиновые кислоты — молекулы, состоящие из отдельных мононуклеотидов. Функцией нуклеиновых кислот является запись и запоминание (хранение) биологической информации. Особенно важны два типа нуклеиновых кислот дезоксирибонуклеиновая кислота (ДНК) и рибонуклеиновая кислота (РНК). ДНК находится в ядре клетки и является главной информирующей молекулой клетки. Таким образом, функцией ДНК является снабжение клетки информацией для точного воспроизводства каждого вида клетки, включая синтез необходимых ферментов, а также дополнительного количества молекул ДНК. Иными словами ДНК участвуют в процессах деления клетки и передаче наследственных признаков. Следует отметить, что по своей структуре ДНК каждого из организмов отличаются друг от друга. Молекулы ДНК представляют собой длинные цепи, находящиеся в виде спаренных или двухнитяных спиралей. Длина двух таких молекул составляет примерно 20 А. Молекулярный вес ДНК колеблется в пределах 100 000 000—4 000 000 000. Каждое из звеньев цепи ДНК составляют четыре различных повторяющихся мононуклеотида. Такая последовательность называется кодом. Строение нитей ДНК представлено на схеме 16. Следует отметить, что в скелете [c.333]

    РНК, рибонуклеиновая кислота. Биологический полимер, очень близкий к ДНК по своему химическому строению. Способен образовывать двойную спираль, но в природе, как правило, существует в виде одиночной нити. У некоторых вирусов является носителем генетической информации, т. е. подменяет ДНК. В клетке генетической ролн не играет. Играет важную роль при передаче информации от ДНК к белку. По выполняемым функциям различают три типа РНК информационная или матричная (мРНК), рибосомальная (рРНК) и транспортная (тРНК). [c.158]

    Строение нуклеиновых кислот. Участие их в синтезе клеточных белков. Синтез белков лежит в основе построения новых клеточных структур. Организмы синтезируют свои собственные гбелки, отличающиеся от белков других видов характером чередования аминокислот. Первичная структура белков определяет многие их биохимические особенности. Изменение чередования аминокислот в молекулах ферментов в некоторых случаях приводит к потере свойств катализатора. Чем же определяется последовательность расположения аминокислот при синтезе белков Для ответа на этот вопрос была выдвинута теория матриц. Согласно этой теории, в клетках имеется нечто подобное типографским матрицам или штампам, каждый из которых штампует белок определенного вида или точнее белок со строго определенным порядком расположения аминокислот в его полипептидной цепи. Роль матриц выполняют нуклеиновые кислоты. Нуклеиновые кислоты имеются во всех без исключения клетках. Различают две группы нуклеиновых кислот—дезоксирибонуклеиновые кислоты (ДНК) и рибонуклеиновые кислоты (РНК). ДНК содержится главным образом в клеточном ядре, РНК — Э ядре и цитоплазме. [c.122]

    В отличие от протеидов других классов простетические группы нуклеопротеидов— нуклеиновые кислоты, или полинуклеотиды, — являются макромолекулярными соединениями. Они имеют сложное строение и дают в результате гидролиза фосфорную кислоту, пентозу и пиримидиновые и пуриновые основания. Строение нуклеиновых кислот будет описано ниже (см. Нуклеиновые кислоты ). В плазме клетки (цитоплазме) было обнаружено также очень большое число шарообразных частиц, называемых микросомами, с молекулярными весами порядка нескольких миллионов, также состоящих из нуклеиновых кислот (рибонуклеиновой кислоты) и белков, В этих микросомах происходит синтез белков. Нуклеиновые кислоты микросомов действуют как матрицы или клише (гены), служащие для синтеза специфичных белков и для своего собственного воспроизведения (Н. Е, Паладе, 1955 г,), В этом синтезе участвуют также и ферменты, связывающие аминокислоты с аденозиимонофосфорпой кислотой (М, Хогланд, 1956 г.). [c.455]

    Молекула рибонуклеиновой кислоты, что и скрывается за сокращением РНК, весьма сходна по своему химическому строению с молекулой дезоксирибонуклеиновой кислоты, т. е. ДНК. Она тоже представляет собой полимерную цепочку, построенную из мономерных звеньев — нуклеотидов. Как и ДНК, РНК строится из нуклеотидов четырех сортов. Их химические формулы, которые, следует признать, выглядят довольно устрашающе, приведены на р1 с. 6. Чем отличаются нуклеотиды ДНК от нуклеотидов РНК Для Ц, А и Г это отличие состоит только в том, что Б каждом из них самая нижняя и самая правая ОН-группа заменяется в ДНК на Н (отсюда и приставка дезокси ). Случай уридинового нуклеотида (У) несколько сложнее, так как для него при переходе к, ДНК не только происходит замена ОН на Н, но и в шестичленном кольце водород в верхней группе СН заменяется на метильную группу СН3. Этим и объясняется отличие в названиях РНКового нуклеотида (уридиновый) и ДНКового (тимидиновый), хотя они [c.25]

    Расшифровано строение и ряда еЩе более сложно построенных белков-ферментов (рибонуклеазы, лизоцйма). Оказалось, что фермент рибонуклеаза (расщепляющий рибонуклеиновую кислоту) Содержит одну полйпептидную цепь из 124 остатков аминокислот (молекулярная масса 13 500). Участки этой цепи в четырех местах фиксированы четырьмя дисульфидньши мостками. Недавно завершена расшифровка еще более сложного белка — пищеварительного фермента — химо-трипсиногена, содержащего 246 аминокислотных остатков с молекулярной массой 27 ООО, а также карбоксипептидазы (255 остатков, молекулярная масса 34 ООО) и некоторых других белков. [c.384]

    Нуклеиновые кислоты имеют первостепенное значение в биосинтезе белка. На основании имеющихся данных строение дезоксирибонуклеиновой кислоты, повидимому, определяет специфичность синтеза рибонуклеиновой кислоты на поверхности последней при участии ряда энзимов и кофакторов в соответствии с ее структурой располагаются в определенной последовательности активированные аминокислоты, которые затем соединяются друг с другом кислотноамидными (пептидными) связями в полипептидную цепь. Такое формирование полипептидной цепи на частице рибонуклеиновой кислоты, имеющей определенную структуру, приводит к образованию специфической белковой молекулы, как бы отлитой на рибонуклеиновой модели. [c.328]

    Строение рибонуклеиновых кислот РНК. Данные о строении рибонуклеиновых кислот,, более лабильных, обладающих меньшими молекулярными массами (от 20 ООО до 15 ООО ООО), чем дезоксирибонуклеиновые кислоты, являются менее полными. Как уже говорилось, в состав РНК в отличие от ДНК входит О-рибоза вместо 0-2-дезоксирибозы и урацил вместо тими-на. Молекула РНК обычно состоит из одной полинуклеотид-ной цепи, которая приблизительно наполовину имеет спиральное строение остальная часть может существовать в виде беспорядочно расположенной в пространстве одиночной цепи или клубка с некоторым числом двуспиральных фрагментов. [c.624]

    Часть промежуточных продуктов, образующихся при действии рибонуклеазы на рибонуклеиновые кислоты, составляют пиримидиновые нуклеозид-2, 3 -циклофосфаты, которые при дальнейшей обработке рибонуклеазой дают исключительно З -фосфаты [68, 69]. При гидролизе рибонуклеиновой кислоты под действием карбоната бария [68] или лучше трет-бугклата калия [70] были выделены пуриновые и пиримидиновые нуклеозид-2, 3 -циклофосфаты. Они образуются также при нагревании раствора нуклеиновой кислоты в формамиде с аммиаком [7П- На основании данных титрования этих веществ, их поведения при хроматографировании на бумаге и электрофорезе, кислотного и щелочного гидролиза их до 2 - и З -фосфатов, а также из сравнения их с синтетическими образцами этим соединениям было приписано строение 2, 3 -циклофосфатов [52, 53]. [c.133]

    Как и в случае адениновых нуклеотидов, широкое распространение имеют 5 -фосфаты, 5 -пирофосфаты и 5 -трифосфаты цитидина, гуанозина и уридина [13—16]. Они являются промежуточными соединениями при биосинтезе рибонуклеиновых кислот. Трифос-фаты участвуют также в биосинтезе ряда диэтерифицированных пирофосфатных производных кроме того, они заменяют АТФ в качестве фосфорилирующего агента или кофермента в некоторых ферментативных реакциях [17—21]. Полифосфаты дезоксинуклеозидов также выделены [22—25], и снова, помимо функции непосредственных предшественников дезоксинуклеиновой кислоты, второй нх главной функцией является, вероятно, участие в биосинтезе промежуточных соединений, таких, как тимидин-5 -пирофосфат-глюкоза и дезоксицитидин-5 -пирофосфатхолин. Строение всех этих нуклеозидполифосфатов установлено методами, аналогичными примененным для определения строения АТФ, и подтверждено синтезом. [c.189]

    После того как было установлено, что рибонуклеиновые кислоты состоят в основном из четырех мононуклеотидных единиц, в течение многих лет отсутствовали точные сведения относительно характера межнуклеотидных связей и поэтому было высказано множе- ство предположений. Многие предполагаемые структуры включали пирофосфатные, полифосфорные, эфирные и фосфоамидные связи, но относительно простая тетрануклеотидная структура, предложенная Левиным [65, 66] и содержавшая фосфодиэфирные связи между углеводными компонентами нуклеозидов, лучше всего, как позже было выяснено, соответствовала действительности. Хотя в настоящее время тетрануклеотидная теория строения нуклеиновых кислот полностью оставлена, уместно, быть может, упомянуть, что эта теория была в свое время значительно точнее тринуклеотидной теории [67, 68], с которой она находилась в оппозиции, и что, как писал сам Левин, с другой стороны, нужно иметь в виду, что истинный молекулярный вес нуклеиновых кислот до сих пор еще неизвестен. Тетрануклеотидная теория (заметьте) — это минимальный молекулярный вес, а нуклеиновая кислота может представлять кратное его умножение [69]. Кроме того, возможно, что материал, названный тогда нуклеиновой кислотой, был очень низкого молекулярного веса и средняя длина его цепи составляла пять или [c.371]

    В то время было известно, что рибонуклеиновые кислоты могут быть гидролизованы щелочью до мононуклеотидов, которые, как тогда считали, были исключительно нуклеозид-3 -фосфатами. Общий план строения нуклеиновых кислот с 2 —З -фосфодиэфирными связями был предложен Левиным и Типсоном [71], причем было сделано допущение, что 2 -связь гораздо менее устойчива, чем З -фос-фоэфирная связь, и обусловливает таким образом образование при щелочном гидролизе исключительно нуклеозид-З -фосфатов. Однако, когда рибонуклеиновую кислоту обработали змеиным ядом (который содержит фосфомоноэстеразу, специфичную для нуклеозид-З -фосфатов), то получили неорганический фосфат и нуклеозиды [72, 73]. Далее, изучение рибонуклеиновой кислоты методом дифракции рентгеновских лучей, проведенное Астбери, позволило предположить, что основной межнуклеотидной связью является скорее 2 —5 или 3 —5, чем 2 —3 [74]. С другой стороны, прямого химического доказательства наличия 5 -фосфатной связи не существовало, и отсутствие 5 -фосфорилированных производных в кислых гидролизатах рибонуклеиновой кислоты, несмотря на их известную стабильность, действительно находилось в явном противоречии с предположением о 2 (или 3 ) — 5 -межнуклеотидной связи. Устойчивость дезоксирибонуклеиновой кислоты (неизбежно 3 —5 -связанной) по отношению к щелочи в противоположность неустойчивости рибонуклеиновой кислоты также указывало, как считали в то время, на различие в типах связи. В противоположность этому при действии панкреатической рибонуклеазы на рибонуклеиновую кислоту получается смесь олигонуклеотидов, устойчивых к перио- [c.372]

    Проблема основной схемы строения нуклеиновых кислот была решена в 1952 г. Брауном и Тоддом, которым удалось примирить казавшиеся противоречивыми данные [81]. Предварительно в исследованиях с применением радиоактивного фосфора было показано, что катализируемая кислотой изомеризация а- или Р-глицерофосфа-тов впутримолекулярна и проходит через образование промежуточного циклического фосфата [82]. Было также известно, что, хотя а-глицерофосфат устойчив к щелочи, его метиловый эфир при гидролизе щелочью или разбавленной кислотой легко превращается в метанол и смесь а- и Р-глицерофосфатов. Для объяснения значительно меньшей устойчивости таких диэфиров фосфорной кислоты, содержащих остаток глицерина (или этиленгликоля), по сравнению с простыми фосфодиэфирами, не имеющими смежной гидроксильной группы, было постулировано образование промежуточного три-этерифицированного ортоэфира циклофосфата [83, 84]. Фоно предположил (в 1947 г.), что быстрая деградация рибонуклеиновой кислоты при обработке щелочью, в противоположность устойчивости дезоксирибонуклеиновой кислоты, зависит от присутствия цис-гидроксильной группы при атоме Сг рибозного остатка (отсутствую- [c.373]


Смотреть страницы где упоминается термин Рибонуклеиновые кислоты строение: [c.53]    [c.55]    [c.110]    [c.247]    [c.494]    [c.196]   
Химия природных соединений (1960) -- [ c.248 ]




ПОИСК





Смотрите так же термины и статьи:

Кислота строение

Основные черты строения рибонуклеиновых кислот

Рибонуклеиновые кислоты



© 2025 chem21.info Реклама на сайте