Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гидрофильные поверхност

    Вблизи гидрофильных поверхностей плотность воды повышена и давление на стенке выше Рй- Структурная составляющая расклинивающего давления здесь положительна (П8>0). Резкое возрастание структурных сил отталкивания при утончении водных прослоек препятствует слипанию частиц гидрофильных коллоидов и обеспечивает устойчивость тонких пленок воды на гидрофильных поверхностях. В тех случаях, когда состояние поверхности является промежуточным между гидрофильным и гидрофобным, структура воды в граничных слоях изменена незначительно и структурное взаимодействие практически не проявляется. В этом случае взаимодействие м жду поверхностями, разделяющими водную прослойку, определяется, в соответствии с теорией Дерягина — Ландау—Фервея — Овербека (ДЛФО), молекулярной и электростатической составляющими расклинивающего давления [42, 43]. [c.16]


    Значения кажущихся энергий активации деалкилирования толуола в присутствии водяного пара на различных катализаторах близки (138—167 кДж/моль). Считают [264, 265], что это является косвенным подтверждением однотипности механизма реакции деметилирования на различных катализаторах. Предполагаемый механизм включает стадию разрыва связи Сар—СНз, адсорбированной на поверхности металла, с образованием молекулы бензола и метиленового радикала, который реагирует с молекулами воды, адсорбированными на гидрофильной поверхности носителя. [c.176]

    Под влиянием электролита происходит изменение не только заряда и -потенциала латексных частиц [28], но и уменьшение степени гидратации их [39] и превращение гидрофильной поверхности раздела фаз в гидрофобную, что имеет место в момент разделения фаз в начале коагуляции. Роли дегидратации поверхности раздела фаз при коагуляции водных дисперсий придается большое значение [40]. [c.256]

    Повышение вязкости тонких прослоек воды между гидрофильными поверхностями кварца — хорошо установленный экспериментальный факт, следующий не только из этих измерений, но и из более ранних экспериментов [15], а также измерений на глинах [16], на силикагелях [17], экспериментов с ядерны-ми фильтрами [18] и пористыми стеклянными мембранами [19-21]. [c.9]

    При наличии в среде твердых частиц в результате воздействия на них акустического поля изменяются гидрофобность (гидрофильность) поверхности [310], ее электрический потенциал и инициируется триболюминесценция [148]. [c.50]

    Большая часть исследований выполнена с гидрофильными поверхностями и дисперсиями. Для них характерна пониженная тангенциальная подвижность молекул воды, на макроскопическом уровне проявляющаяся в повышении вязкости граничных слоев, и измененная плотность. Однако масштаб изменений вязкости и плотности различен. Если вязкость повышается в 1,5—2 раза, то изменения плотности не превышают нескольких процентов. [c.6]

    В прослойках воды между гидрофильными поверхностями структурные силы вызывают отталкивание поверхностей, здесь П5>0. Гидрофобные поверхности испытывают в воде силы структурного притяжения (Ш>0). Из экспериментов и теоретического рассмотрения следует, что структурные силы экспоненциально зависят от толщины прослойки  [c.15]

    В этой главе исследуется влияние структурно измененных граничных слоев воды на взаимодействие частиц гидрофильных дисперсий (оксид кремния, алмаз, латексы) и силы, действующие в смачивающих пленках водных растворов на гидрофильной поверхности стекла и кварца. [c.168]


    Другим характерным свойством связанной воды — воды граничных слоев вблизи гидрофильных поверхностей, по современной терминологии, — является ее пониженная, по сравнению с объемной водой, растворяющая способность. Это также является следствием измененной структуры воды. Как известно, под действием внешнего давления и температуры меняется растворяющая способность и объемной воды. Пониженную растворяющую способность граничных слоев воды использовали, в частности, для количественных оценок содержания связанной воды в дисперсных системах. При этом в качестве индикаторов, слабо проникающих в связанную воду, брали электролиты и сахарозу [1]. [c.9]

    Вид изотерм определяется при этом не только гидрофильностью поверхности, но и составом водного раствора, влияющим на электростатические и структурные силы и, в меньшей степени, на молекулярные. Так, концентрационное подавление граничных слоев (несмотря на исходно гидрофильную поверхность, например, кварца) приводит к ослаблению сил структурного отталкивания в водных пленках, что вызывает переход от изотерм типа 1 к изотермам 2 или от изотерм типа 2 к изотермам 3. Так как устойчивость толстых -пленок определяется, в основном, электростатическими силами, изменение концентрации и состава водного раствора, влияющее на электрические потенциалы обеих поверхностей пленки, сказывается на виде изотерм П(/г). При повышении концентрации электролита или (и) снижении pH уменьшаются силы электростатического отталкивания, что приводит к сдвигу изотерм П(/1) [c.17]

    Для объяснения структурных особенностей тонких прослоек воды, ограниченных монослоями диполей, привлекается нелокальная электростатика (раздел 9). Этот подход учитывает не-локальность действия на среду электрического поля, а именно влияние на состояние диэлектрика напряженности электрического поля не только в данной точке, но и в ее окрестности. Этот эффект оказывается особенно значительным в случае воды в тонких прослойках, вызывая появление в них сил отталкивания гидрофильных поверхностей (структурные силы). Их действием удается количественно объяснить устойчивость тонких слоев воды между бислоями липидов, являющихся физической моделью биологических мембран. [c.117]

    На рис. 1.5 показаны результаты экспериментов [34], выполненных в более широком, чем ранее, интервале температур от О до 90 °С. Это позволяет совместить кривые теплового расширения воды в тонких порах (1) и объемной воды 2) в области температур 80—90 °С. Теперь, зная плотность объемной воды, можно было построить шкалу плотностей р. В результате оказалось, что средняя плотность воды в тонких (г = 5 нм) порах вблизи гидрофильной поверхности кварца при 20 °С была выше примерно на 1,5%. При повышении температуры отличия плотности уменьшаются, составляя около 1% при 35°С. [c.13]

    Анализ изотерм П(/г) для ос-пленок воды на поверхности кварца показал, что приближенно они следуют экспоненциальной зависимости (1.1) [47]. При этом параметр К для пленок на подложках из стекла, кварцы и слюды сохраняет примерно то же значение, что и для симметричных водных прослоек (1-ьЗ) 10 " Н/см2, но длина корреляции I выше, составляя до 10 нм для наиболее гидрофильных поверхностей и снижаясь до 1 нм при уменьшении степени гидрофильности. Повышение температуры приводит, главным образом, к падению значений I от 3,3 нм — при 20 °С до 0,8 нм — при 40 °С для пленок на слюде. Для почти гидрофобной поверхности пиролитического углерода (краевой угол 0 = 72°) меняется, как и в случае симметричных прослоек, знак параметра К —2-10 Н/см ) прп сохранении обычного порядка значений / = 0,7 нм. [c.18]

    Анизотропия тонких прослоек воды между гидрофильными поверхностями следует и из результатов исследований другими, независимыми методами. Так, для граничных слоев воды вблизи поверхности сферических частиц кремнезема радиусом от 10 до 80 нм методом спиновой релаксации ядер Ю и Н обнаружено снижение трансляционной подвижности молекул воды в тангенциальном направлении на порядок, а в направлении по нормали к поверхности — на два порядка по сравнению с объемной водой [39]. [c.14]

    Согласно трехслойной модели строения гидратной оболочки элементарных пластинчатых частиц слоистых силикатов [71, 72], граничный слой воды толщиной 8—10 нм состоит из двух частей более прочно связанного адсорбционного и анизотропно-доменного слоев. Авторы [120] также выделили непосредственно прилегающую и более прочно связанную с гидрофильной поверхностью часть граничного слоя (по нашей терминологии—адсорбционно связанную воду), состояние которой менее чувствительно к изменениям концентрации электролита. В работе [121] для описания изменения структурной составляющей расклинивающего давления в системе мусковит — связанная вода использована двойная экспонента Пз = Д ехр (—h/l) + + /(оехр(—Н/1о) со значениями / = 0,95ч-1,1 нм и /о = 0,17-ь - 0,30 нм. Толщина внутренней части граничного слоя для мусковита составляет 1 нм [121], что совпадает с толщиной адсорбционно связанного слоя воды в трехслойной модели гидратной оболочки пластинчатых частиц слоистых силикатов [71]. [c.41]


    Экспериментально обнаружено образование жидких пленок на поверхности лед — пар [308—312], а также на границе между льдом и твердыми поверхностями [31, 313—317]. В последнем случае толщина незамерзающей прослойки тей больше, чем выше гидрофильность твердой подложки. Так, для гидрофобного тефлона толщина прослойки не превышает 0,5 нм при —3°С, в то время как для гидрофильной поверхности частиц силикагеля она приближается при той же температуре к 3 нм. Эти измерения были выполнены методом ЯМР для замороженных дисперсий аэросила [315]. Толщина /г определялась как частное от деления объема жидкой фазы в замороженной системе (по площади узкого сигнала) на суммарную поверхность частиц. [c.102]

    Капиллярный осмос. Явление капиллярного осмоса, открытое Б. В. Дерягиным [57], состоит в том, что жидкость в капиллярах и порах способна перемещаться под действием градиента концентрации раствора. Причи.чой капиллярного осмоса является диффузность адсорбционных слоев растворенного компонента. Увлечение потоком жидкости подвижной части диффузных слоев с повышенной (или пониженной) концентрацией С х) растворенного вещества приводит к возникновению градиента концентрации. В соответствии с уравнениями термодинамики необратимых процессов это обусловливает, возможность перекрестного эффекта, а именно — течения жидкости под действием перепада концентраций. В связи с тем что граничные слои воды вблизи гидрофильных поверхностей обладают пониженной растворяющей способностью, толщина диффузных слоев того же порядка, что и толщина граничных слоев. В соответствии с теорией [57], это может заметно увеличивать скорость капиллярно-осмотического скольжения, равную [c.24]

    Таким образом, электростатическое взаимодействие гидрофильных поверхностей на малых расстояниях в водном электролите имеет явно выраженный экспоненциальный характер, причем основной вклад в это взаимодействие вносят поверхностные диполи, а не поверхностные заряды. Легко показать, что ди-польное слагаемое на порядок больше зарядового слагаемого даже для максимально заряженных липидов. Следовательно, такое электростатическое взаимодействие будет значительным и в случае нейтральных гидрофильных поверхностей, так как оно почти не зависит от величины поверхностного заряда. Столь необычный, на первый взгляд, результат является следствием нелокальной поляризуемости среды, благодаря которой поверхностные диполи (в противоположность классической электростатике) создают электрическое поле. Естественно предположить, что именно это взаимодействие измеряется в экспериментах как гидратационные силы. [c.165]

    Глинистые минералы составляют группу слоистых и слоисто-ленточных силикатов и состоят в основном из двух структурных элементов - кремнекислородного тетраэдра и алюмокислородного октаэдра. Они характеризуются гидрофильной поверхностью, способностью к сорбции и ионному обмену [1,2]. Из-за изоморфного замещения атомов кремния и алюминия на катионы более низкой валентности плоские грани кристаллической решетки глинистых минералов приобретают отрицательный заряд. Его компенсация происходит за счет адсорбции ионов Mg Са, Ре", К и На" . Эти катионы представляют ионообменный комплекс глин. Сила взаимодействия катионов ионообменного комплекса с кристаллической решеткой глин обусловливает их физико-химические и механические свойства, в частности, набухаемость. При контакте глин с водой молекулы воды проникают в межплоскостное пространство структурных [c.199]

    Как видим, распределение потенциала вблизи гидратированной (ЬфО) гидрофильной поверхности существенно отличается от классического выражения Гуи — Чепмена  [c.152]

    Теоретический анализ структуры ДЭС вблизи поверхностей, источники электрических полей которых (заряды и диполи) заполняют определенный поверхностный слой, показывает, что она существенно зависит от толщины этого слоя L. Основным результатом является вывод о том, что поверхностные диполи вносят значительный вклад в электрическое поле, образующееся вблизи поверхности. Поэтому вблизи электрически нейтральной гидратированной гидрофильной поверхности существует электрическое поле, обусловленное поверхностными диполями. Ири дегидратации поверхности (т. е. при L- 0) это поле исчезает. Отметим, что этот результат справедлив только в рамках классической электростатики. В нелокальной электростатике поле вблизи нейтральной гидрофильной поверхности не исчезает и при ее полной дегидратации. [c.153]

    СМАЧИВАНИЕ ВОДОЙ ТВЕРДЫХ ГИДРОФИЛЬНЫХ ПОВЕРХНОСТЕЙ [c.210]

    Таким образом, изменения краевых углов, устойчивости коллоидов и пленок на гидрофильных поверхностях имеют во многих случаях общую причину — изменение структуры и толщины граничных слоев воды. [c.169]

    Б. В. Дерягиным была выдвинута концепция, согласно которой между коллоидными частицами или поверхностями при их сближении и перекрытии граничных слоев жидкой среды возникают силы взаимодействия, получившие наименование структурных сил [415, 421, 519]. В случае гидрофильных поверхностей появляется структурное отталкивание (структурная составляющая расклинивающего давления). [c.189]

    ВЗАИМОДЕЙСТВИЕ ВОДЫ С ГИДРОФИЛЬНОЙ ПОВЕРХНОСТЬЮ ПО ДАННЫМ ЯМР [c.229]

    Спектроскопия ЯМР является мощным методом получения информации о структуре и динамике воды вблизи гидрофильных поверхностей различной природы [573—580]. Энергетическое возмущение исследуемой системы в спектроскопии ЯМР чрезвычайно мало Это выгодно отличает данный [c.229]

    Здесь будут обсуждены основные результаты исследований состояния воды вблизи гидрофильных поверхностей методом ЯМР. [c.229]

    Sq и — параметры ориентационного порядка, определенные в [579]). Для вычисления абсолютных значений So и необходимо использовать все три уравнения для S( H), S( H) и S( 0), так как экспериментально определяются только абсолютные значения параметров анизотропии. Практически значения и вычисляются с большой степенью неопределенности [604], так как величина 5( Н) может содержать большой вклад, связанный с протонным обменом, а вид приближенных уравнений для S( H) и 5( Ю) зависит от геометрии молекулы воды вблизи гидрофильной поверхности и величины ц для нее. [c.235]

    Основные направления экспериментальных исследований структуры и динамики воды вблизи гидрофильных поверхностей [c.240]

    Как известно [171—173, 216—227], в зоне контакта двух фаз, например жидкости и твердого тела, действуют поверхностные силы, такие, как силы прилипания, поверхностного натяжения, молекулярного притяжения. Поэтому граничный слой жидкости, связанный с материалом мембраны, по структуре и, следовательно, по физико-химическим свойствам, может значительно отличаться от подобных характеристик жидкости в объеме. Так, граничные слои полярных жидкостей вблизи гидрофильных поверхностей (на расстоянии 10- —10- мкм) обладают [c.200]

    Модельные образцы представляют собой искусственные керны с жесткой структурой порового пространства, однородные по пористости и проницаемости, с гидрофильной поверхностью, близкие по своему минералогическому составу к естественным песчаникам. Связывающим материалом служила каолиновая глина, которая стабильна к набуханию в воде [100, 179]. Химический состав образцов, используемых в опыте, приведен ниже. [c.189]

    До начала формирования нефтяных залежей продуктивные пласты были полностью водонасыщены и обладали гидрофильной поверхностью. Формирование нефтяных залежей происходит за счет вытеснения воды нефтью, т. е. менее смачивающей жидкостью. Следовательно, вначале на поверхности пор остается непрерывная пленка воды. Однако существование этой пленки не может быть длительным, под действием активных компонентов нефти, содержащей растворенный газ, происходит ее разрыв и частичное оттеснение воды с поверхности пор. Вследствие этого поверхность поровых каналов становится неоднородной не только по сечению, но и по характеру смачиваемости — наряду с гидрофильной появляются участки с гидрофобной поверхностью. Микронеоднородность пористой среды усложняется еще энергетической неоднородностью, так как в различных точках пор граница раздела фаз (мениска) будет находиться под влиянием различного баланса энергии. [c.40]

    Микроскопическими исследования.ми процесса заводнения гидрофильных пород установлено, что вытеснение нефти водой за счет поверхностно-молекулярных сил может происходить в двух формах (видах) вытеснение нефти, вызванное течением воды по пленке, находящейся на гидрофильной поверхности пор — пленочное внедрение воды в нефтенасыщенную зону пласта вытеснение нефти из мелких поровых каналов, соединенных с крупными порами, движущимися менисками — менисковое внедрение воды в нефтенасыщенную зону пласта. [c.42]

    При введении адсорбентов в водные растворы ПАВ молекулы ПАВ адсорбируются на границе вода — твердая поверхность. Согласно правилу Ребиндера при адсорбции ПАВ разность полярностей между адсорбентом и растворителем уменьшается. Все полярные гидрофильные поверхности адсорбируют ПАВ из неполярных и слабополярных жидкостей. Неполярные сорбенты, такие, как уголь или некоторые полимерные материалы, наоборот, хорошо адсорбируют ПАВ из полярных жидкостей. [c.41]

    Интересным фактом является возможность стабилизацип эмульсий с помощью высокодисперсных порошков. Механизм нх действия аналогичен механизму действия ПАВ. Порощки с достаточно гидрофильной поверхностью (глина, кремнезем и др.) стабилизируют прямые эмульсии. Гидрофобные порошки (сажа, гидрофобизированный аэросил и др.) способны к стабилизации обратных эмульсий. Частицы порошка на поверхности капель эмульсий располагаются так, что большая часть их поверхности находится в дисперсионной среде. Для обеспечения устойчивости необходимо плотное покрытие порошком поверхности частицы. Очевидно, что, если смачивание частиц порошка-стабилизатора средой и дисперсной фазой будет сильно различаться, то стабилизации не произойдет и весь порошок будет находиться в объеме фазы, которая его хорошо смачивает. [c.348]

    В случае прослоек, ограниченных гидрофильными поверхностями, ситуация меняется. Так, вблизи поверхности ионного кристалла Na l диполи воды ориентируются нормально к поверхности — главным образом за счет электростатического притяжения между ионами Na+ и отрицательно заряженными атомами кислорода воды [5]. Аналогичный вывод следует также из других численных экспериментов [6, 8]. В отличие от гидрофобных стенок, здесь имеет место некоторое повышение плотности воды и снижение тангенциальной подвижности ее молекул в слоях толщиной в несколько нанометров, что должно проявляться макроскопически как рост вязкости граничных слоев воды. [c.8]

    Разрушение граничных слоев воды происходит также и при повышении температуры, когда тепловое движение размывает упорядоченную под влиянием гидрофильной поверхности сетку водородных связей. На рис. 1.3 показана температурная зависимость вязкости воды в тонких гидрофильных капиллярах (кривые / и 2) в сравнении с температурной зависимостью вязкости объемной воды (пунктир). При повышении температуры до 65—70 °С отличия вязкости от объемных значений перестают ощушаться, что означает резкое уменьшение толщины граничных слоев. Как было показано ранее, при этом прекращается также термоосмос воды в тонких порах [23] и заметно растет (из-за снижения вязкости) скорость фильтрации воды в пористых телах и мембранах [18, 20]. [c.10]

    В результате проведенного выше анализа данных по плотности прочно связанной воды можно сделать вывод, что высокая энергия взаимодействия ее молекул с активными центрами гидрофильной поверхности и, как следствие, друг с другом еще не предопределяет повышенной по сравнению с объемной плотности связанной воды. Поверхность навязывает адсорбционным слоям структуру, зависящую от топографии и природы активных центров, т. е. в определенном смысле оказывает разу-порядочивающее действие на связываемую воду. Конечно, подвижность адсорбированных на гидрофильных поверхностях молекул воды, как это следует из анализа изменений энтропии при адсорбции [85] и данных ЯМР (см., например, [86]), намного ниже, чем в жидкой воде. Но приспособление адсорбционного водного слоя к топографии активных центров приводит к нарушению в нем целостности сетки межмолекулярных водородных связей в ИК-спектрах сорбированной воды полосы валентных колебаний слабо нагруженных ОН-групп воды существенно выше, чем в жидкой воде [66]. [c.35]

    В связи с приведенными термодинамическими результатами следует заметить, что на любой гидрофильной поверхности молекулы воды адсорбируются локализованно. Постулируемая в работе [98] нелокализованная модель адсорбции воды в межслоевых промежутках монтмориллонита объясняется [85] некорректностью использования обычного термодинамического подхода для анализа состояния связанной набухающими сорбентами воды. [c.37]

    Таким образом, с привлечением обобщенной теории ДЛФО классификация молекулярно связанной воды на адсорбционно (прочно связанную) воду, воду граничных слоев и осмотически связанную воду получает надежное теоретическое обоснование. Первые две категории воды в теории ДЛФО рассматриваются как внутренняя, более прочно связанная с гидрофильной поверхностью, и внешняя часть граничного слоя, обладающего измененной по сравнению с объемной водой структурой. Формирование слоя осмотически связанной воды регулируется ионноэлектростатической составляющей расклинивающего давления. [c.45]

    Согласно Пешли, гидратные (точнее, структурные) силы могут возникать как на гидрофильных поверхностях с гидратированными полярными или ионными группами, так и на поверхностях, которые вначале не являются гидрофильными, но могут изменяться при адсорбции гидратированных форм и вести себя как гидрофильные ( вторичная гидратация ) [121]. В основе теории гидратных сил лежит положение о поверхностной адсорбции гидратированных ионов. Анализ явления показывает, что действие гидратных сил определяется не только плотностью адсорбированных катионов, но и изменением свободной энергии, связанным с замещением катионом иона Н3О+. Силы гидратации проявляются в достаточно концентрированных растворах (более 10 моль/л), и их величина определяется положением ионов в лиотропном ряду. Этот механизм, согласно которому взаимодействие гидратированных катионов приводит к возникновению сил отталкивания между поверхностями с достаточно высокой плотностью поверхностного заряда и слабой способностью к образованию водородных связей, может объяснить высокие пороговые концентрации, необходимые для коагуляции амфотерных частиц латекса полистирола [501] и золя SIO2 [502]. [c.173]

    Равновесные краевые углы, рассчитанные на основе баланса сил, действующих по периметру смачивания, определяются уравнением Юнга (1.13). Если поверхностное натяженне на границе твердое тело— газ сГг-г больше, чем поверхностное натяжение на границе твердое тело — жидкость ат-м<, то краевой угол 0р < 90°, поверхность твердого тела является лиофильной (при смачивании водой — гидрофильной), К материалам с гидрофильной поверхностью относятся, например, кварц, стекло, оксиды металлов. Жидкость не смачивает поверхность, если Стт-г < огт-ж н Эр > 90°. В этом случае поверхность является лио-фобной (гидрофобной). К материалам с гидрофобной поверхностью относятся металлы, у которых поверхность не окислена, большинство полимеров, а также все органические соединения, обладающие иизко11 диэлектрической проницаемостью. [c.21]

    Оказалось, что все жидкости обладают модулем сдвиговой упругости и модуль сдвига таких полярных жидкостей, как вода и спирты, при приближении к поверхности пьезо-кварца на расстояние, меньшее 0,1 мкм, повышается во много раз. По мнению авторов, это также является следствием структурных изменений в пристенных слоях полярных жидкостей. Повышение значения сдвиговой прочности граничных слоев обнаружено также при исследовании электроосмоса в капиллярах при высоких градиентах потенциала [228]. Установлено, что вблизи гидрофильных поверхностей в воде на расстоянии нескольких мономолеку-лярных слоев имеется атюмалия диэлектрических свойств. Например, значительное понижение диэлектрической проницаемости у воды (прн толщине слоя 0,07 мкм — до 4,5), что свидетельствует о снижении свободы вращения молекул воды в тонких прослойках. Теплопроводность жидкости с уменьшением толщины граничной пленки при этом резко возрастает, в то время как ее электрическая проводимость снижается. [c.201]

    При адсорбции поверхностно-активных веществ (ПАВ) на поверхности твёрдого тела характер смачивания меняется если они ориентируются своими полярными группами к твёрдой поверхности, то поверхность становится гидрофобной если ориентируются неполярными группами,- гидрофильной. Поэтому обработка поверхностей твёрдых тел раотворами ПАВ мохет изменить её х рактер - гидрофобизировать гидрофильные поверхности или гид рофйлизировать гидрофобный [c.58]

    Работами Беннета и Бартена [199] установлено, что даже при наличии пленки воды на поверхности породы в результате адсорбции активных компонентов из нефти пленка разрывается, в результате происходит гидрофобизация гидрофильной поверхности. [c.96]


Смотреть страницы где упоминается термин Гидрофильные поверхност: [c.18]    [c.105]    [c.189]    [c.229]   
Коллоидная химия (1959) -- [ c.78 , c.79 ]

Коллоидная химия (1959) -- [ c.78 , c.79 ]




ПОИСК





Смотрите так же термины и статьи:

Поверхность гидрофильная



© 2025 chem21.info Реклама на сайте