Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Измерение перепада давлений и расхода потока

    Измерение и регулирование расхода жидкости и паров. Приборы, предназначенные для измерения расхода, называются расходомерами. Принцип действия простейшего расходомера основан на измерении перепада давления на дроссельном устройстве постоянного сечения. На трубопроводе устанавливают сужающее дроссельное устройство — диафрагму с соединительными импульсными трубками и измерителем перепада давлений —дифференциальным манометром. При истечении жидкого или газообразного вещества через сужающее устройство часть потенциальной энергии переходит в кинетическую, средняя скорость потока в суженном сечении повышается, а статическое давление уменьшается. Разность давлений (Р = Р —Р2) тем больше, чем выше расход жидкости, и может служить мерой расхода. [c.86]


    Измерение расходов потоков жидкостей и газов является важной технической задачей. Для ее решения разработан ряд методов, в том числе и такие, которые не приводят к возмущению потока (электрические, оптические и др.). Одним из распространенных в технике методов измерения расхода является гидравлический, основанный на измерении перепада давления по сечению потока, возникающего при обтекании потоком специальных устройств, устанавливаемых на трубопроводах, которые по сути являются местными сопротивлениями. Замеряя разность давлений до и после такого устройства и используя уравнение Бернулли, определяют расход потока. Приборы, основанные на этом принципе, называют дроссельными. К ним относятся мерные диафрагмы, мерные сопла, труба Вентури. С помощью дроссельных приборов измеряют среднюю скорость потока. [c.112]

    Измерение перепада давлений и расхода потока [c.53]

    Принцип работы диафрагмового расходомера заключается в измерении перепада давлений, создаваемого в трубопроводе специальной диафрагмой (рис. 58). Очевидно, что давление Р будет больше давления Р и величина перепада давления АР = Р—Р будет зависеть от скорости потока в трубопроводе и, следовательно, от количества (расхода) жидкости, пара или газа. Измеряя величину перепада давлений, можно судить о расходе жидкости, пара или газа, передвигающихся по трубопроводу. Перепад давления измеряется разного рода диференциальными манометрами (дифманометрами), которые присоединяют к трубопроводу по обе стороны диафрагмы при помощи импульсных трубок. [c.204]

    Этот впд расходомеров нашел чрезвычайно широкое применение в практике эксплуатации котельного оборудования для измерения расхода воды и пара. Основной деталью их является мерительная диафрагма, устанавливаемая в трубопроводе, по которому движется вода или пар. За счет гидравлического сопротивления диафрагмы создается разность (перепад) давлений до диафрагмы и за ней, причем чем выше скорости движения потока, тем больше перепад давлений на диафрагме. Скорость же движения пропорциональна расходу жидкости пли пара. Таким образом, замеряя разность давлений на диафрагме, мы можем замерить расход жидкости или пара. Измерение перепада давлений производится с помощью дифференциального манометра, подсоединенного к трубопроводу двумя трубками (одна до диафрагмы, другая после нее). Шкала дифференциального манометра градуируется в единицах расхода пара или воды (т/ч, кг/ч). [c.114]


    Широко распространенные расходомеры переменного перепада давления применяются для контроля расхода жидкостей и газов. Они состоят из дроссельного устройства — диафрагмы, сопло, трубы Вентури,— устанавливаемого на трубопроводе и создающего местное сужение потока. Перепад давления в сужающем устройстве измеряется с помощью дифманометра величина перепада давления является мерой скорости потока в дроссельном устройстве и, следовательно, мерой расхода. Методика расчета таких расходомеров приведена в Правилах 28—64 измерения расхода жидкостей, газов и паров стандартными диафрагмами и соплами . Верхний предел измерения расхода выбирается из ряда [c.184]

    Основная задача гидродинамического метода с дросселированием струи заключается в измерении перепада давления, возникающего при прохождении потоком диафрагмы, пропорционального скорости этого потока. Для этого прибегают к приборам, являющимся по существу обычными диференциальными манометрами со шкалой, градуированной в единицах расхода. [c.318]

    Реометры устанавливаются обычно на выходе из прибора. Принцип их действия основан на измерении перепада давлений газового потока до и после капилляра (или диафрагмы), пропорционального расходу газа, протекающего через реометр в единицу времени. Предварительно шкала реометра градуируется при пропускании через него газа, служащего газом-носителем. С методами градуировки реометров можно ознакомиться, например, в [Л. 161]. Не следует забывать, что показания реометра зависят от природы газа и при смене газа-носителя должен быть сделан пересчет шкалы или произведена новая градуировка. [c.140]

    Контроль за расходом воды, воздуха, газа и пара, движущихся по напорным трубопроводам, осуществляется с помощью расходомеров, действие которых основано на измерении перепада давления, создаваемого диафрагмой, соплом или трубой Вентури. Мерой скорости потока служит перепад давления. Давление среды после прохождения ею сужающего устройства уменьшается. Перепад давления растет с увеличением скорости потока среды. [c.7]

    Расход и количество воды в трубопроводах больших диаметров измеряют расходомерами переменного перепада (рис. 8.10). Принцип действия таких расходомеров основан на измерении перепада давления, образующегося в результате стеснения потока жидкости сужающим устройством. Согласно уравнению Бернулли, перепад давления пропорционален квадрату расхода, поэтому основное уравнение расхода для этих измерительных устройств имеет вид  [c.116]

    Расход жидкости, подаваемой по трубопроводам условным проходом более 100—200 мм, измеряют расходомерами различных типов. Наиболее распространенными являются расходомеры переменного перепада давления (рис. 8.11). Принцип действия таких расходомеров основан на измерении перепада давления, образующегося в результате стеснения потока жидкости сужающим устройством. Согласно уравнению Бернулли, перепад давления пропорционален квадрату расхода, поэтому основное уравнение расхода для этих измерительных устройств имеет вид  [c.192]

    Для измерения больших расходов ацетилена, протекающего по трубопроводам диаметром более 50 мм, могут быть использованы приборы, работающие по методу измерения перепада давления, возникающего в результате искусственного дросселирования газового потока. [c.264]

    Более широко распространено определение скоростей и расходов жидкостей с помощью дроссельных приборов, принцип работы которых основан на измерении перепада давлений при изменении поперечного сечения трубопровода. При искусственном сужении сечения потока посредством дроссельного прибора скорость и, соответственно, кинетическая энергия потока в этом более узком сечении возрастают, что приводит к уменьшению потенциальной энергии давления в том же сечении. Поэтому, измерив дифференциальным манометром перепад давлений между сечением трубопровода до его сужения и сечением в самом сужении [c.61]

    Другой вид погрешности при измерении расходов пульсирующих потоков связан с измерением перепада давления, так как при этом [c.331]

    В настоящее время для измерения расхода одно- и двухфазных углеводородных потоков в основном пользуются методом измерения перепада давления и тахометрическим методом. В первом случае используются дифманометры-расходомеры в комплекте с диафрагмами, во втором — турбинные расходомеры и счетчики количества флюида. Для этих измерительных устройств хорошо отработаны технические и метрологические требования по выполнению процедур сбора и обработки измерительной информации и проведения их проверки. Однако использование таких измерительных устройств на устье скважин сопряжено с рядом труднопреодолимых препятствий. Это объясняется тем, что первичные преобразователи устанавливаются внутри измерительного трубопровода и наличие в потоке песка и других примесей вызывает изменение их геометрии, а следовательно, и показаний. Кроме того, требуются сложные преобразовательные устройства, надежную работу которых в полевых условиях обеспечить достаточно сложно. [c.200]


    На рис. 29 представлена схема измерения расхода дроссельным прибором, где 1 — дроссельный орган — диафрагма с уменьшенным сечением, вызывающим сужение потока 2 — дифференциальный, т. е. определяющий разность, манометр для измерения перепада давления к— перепад давления (в мм рт. ст.), по которому подсчитывается расход стрелка указывает направление потока вещества в трубопроводе. [c.102]

    Известно, что среднее время пребывания твердых частиц в неподвижном псевдоожиженном слое (время удержания) примерно пропорционально перепаду давления в единице толщины слоя однако эта зависимость не учитывает распределения твердых частиц внутри слоя. В то же время неравномерное распределение частиц при каталитических реакциях может вызвать высокий расход катализатора, низкую конверсию, чрезмерную интенсификацию побочных реакций, понижение коэффициента полезного действия установки и т. д. Время удержания твердых частиц в псевдоожиженном слое можно определить путем измерения перепада давления, но этот метод недостаточно точен, поскольку значительная часть энергии газового потока расходуется на ускорение движения частиц и преодоление трения. Скорость перемещения частиц в реакционном пространстве является важной переменной, характеризующей протекание каталитических реакций. Однако определение этого параметра в условиях переноса катализатора представляет значительные трудности, если нет возможности непосредственно Измерить время удержания катализатора и установить его распределение в слое. [c.235]

    Из уравнения Бернулли следует, что в суженном сечении потока повышается скорость и понижается давление. Измерение перепада давления в сечениях I и II при различных расходах позволяет определить изменение скоростей, а следовательно, и расходов. [c.142]

    Расходы и количество воды в трубопроводах больших диаметров измеряют расходомерами переменного перепада (рис. 7.12). В качестве сужающих устройств применяют диафрагмы, сопла и трубы Вентури. Принцип действия таких расходомеров основан на измерении перепада давления, образующегося в результате стеснения потока жидкости сужающим уст- [c.133]

    Дроссельные приборы. Для измерения расхода по перепаду давлений наиболее часто применяют дроссельные приборы, к числу которых относятся диафрагмы, сопла и трубы Вентури. Принцип действия этих приборов основан на измерении внезапного перепада давления в трубе, создаваемого путем сужения сечения потока. При этом вследствие изменения скорости часть статического давления в трубе перед прибором превращается в скоростной динамический напор непосредственно за ним. [c.79]

    Дросселирующие Д. применяются в химич. пром-сти для измерения больших расходов жидкости, газа или пара и загрязненных вод. Д. этого типа основаны на измерении перепада давлений при протекании вещества в трубопроводе с местным сужением. Дросселирующие устройства исполняются трех видов (рис. 6) острая диафрагма (наиболее распространенная), сопло и труба Вентури. При прохождении среды через суженное отверстие увеличивается скорость потока, часть потенциальной энергии потока переходит в кинетическую. Величина перепада давления (Р1 и Ра) до и после сужения зависит от количества протекающего газа или жидкости, что дает воз-можпость вычислить их расход. Дросселирующие Д. монтируются с рас- [c.600]

    Дроссельные приборы. Для измерения расхода по перепаду давлений наиболее часто применяют дроссельные прибор] , к числу которых относятся диафрагмы, сопла и трубы Вентури. Принцнп действия этих приборов основан на измерении внезапного перепада давлений в трубе, создаваемого путем сужения сечения потока. При этом [c.76]

    Коэффициент расхода ц. находят экспериментально путем продувки клапанов стационарным потоком газа (воздуха). Методика нахождения зависимости коэффициента расхода клапана от положения пластины аналогична методике нахождения коэффициента давления В основе ее лежит измерение значений расхода газа через клапан, его плотности перед клапаном и перепад давления при продувке газом. [c.205]

    При измерении небольших скоростей газовых потоков приходится применять капилляры с узким отверстием. Однако, такие капилляры очень чувствительны к случайным загрязнениям. Лучше взять капилляр большей длины и измерять перепад давления наклонным манометром (рис. 84). Реометры этого типа удобны также для измерения расхода газа, имеющего малый запас давления. Наклон трубки манометра (диаметр 5 мм) выбирают таким, чтобы длина рабочего участка I в несколько раз превосходила высоту столба жидкости к. Нулевую метку ставят на шкалу после заполнения реометра рабочей жидкостью и установки его в нужном положении. Для правильной установки реометра используют уровень в виде кольцевой запаянной трубки, [c.142]

    Наиболее распространен метод измерения расхода жидкостей, газов и пара по перепаду давления в местах сужения трубопровода или канала, по которому протекает измеряемая среда. По разности статических давлений потока до сужения и в суженном сечении можно определить расход протекающей среды. Правила 28—64 устанавливают методику и формулы расчета сужающих устройств, требования к их установке [14] . [c.65]

    В напорных трубопроводах на канализационных очистных сооружениях применяются расходомеры переменного перепада давления. Они состоят из двух основных частей сужающего устройства, образующего перепад давления путем местного сужения напорного потока, и дифференциального манометра, измеряющего этот перепад. Эти элементы связаны соединительными линиями. В качестве сужающих устройств применяются диафрагмы с концентрическим отверстием, а также сегментные диафрагмы, сопла и трубы Вентури [6]. При измерении расходов загрязненных сточных вод лучшим способом защиты соединительных линий и дифманометра является постоянная продувка линий сжатым воздухом либо промывание чистой водой. Способ продувки воздухом рекомендован Международной организацией по стандартизации (150). [c.10]

    Выше было оговорено, что приведенный анализ течения через расходомерные устройства действителен только для скоростей, не превышающих скорости звука. Поскольку скорости в расходомерных устройствах иа практике могут иметь сверхзвуковые значения, следует рассмотреть условия движения газов и паров прн скоростях, превышающих скорость распространения звука, так как при таких скоростях коэффициент расширения е меняет свою величину. Характерной величиной здесь является критическое отношение давлений Рй1Р )кр при котором скорость течения в наиболее узком проходном сечении становится равной скорости звука. При дальнейшем понижении давления 2 расход среды не увеличивается, так как состояние потока в наиболее узком (критическом) сечении не изменяется, а происходит расширение газа с появлением сверхзвуковых скоростей за критическим сечением. Такая картина течения получается, например, при истечении газа в вакуум. При сверхкрнтическом перепаде давления следует измерять давление и температуру протекающей среды только перед дросселирующим органом, так как именно этими величинами определяется состояние среды в критическом сечении. Следовательно, отпадает необходимость измерений перепада давлений Рг—Р[. Изменение условий протекания обусловливается изменением начального Давления Рь [c.71]

    Нормальные диафрагмы и трубы Вентури имеют воспроизводимость результатов измерений в пределах 1—2% по отношению к стандартным приборам того же типа при условии, что 1) измерение перепада давлений произведено точно 2) коэффициент расхода выбран правильно 3) точно известна плотность жидкости 4) известны точн>1е размеры расходомера 5) поверхность диафрагмы со встречной потоку стороны гладкая 6) обеспечено правильное размещение расходомера по отношению к другим элементам системы, нарушающим поток (не допускается коррозия, а также засорение отверстий расходомера во время измерений). [c.134]

    Применение диафрагмы с ртутным манометром для определения подачи (фиг. 54) основывается на измерении перепада давления до и после местного сужения. Диафрагма устанавливается на прямолинейном участке трубопровода. Вследствие перехода части потенциальной энергии давления в кинетическую энергию средняя скорость потока повышается, в результате чего статическое давление в данном сечении становится меньше статического давления перед сужаюп им устройством. Разность этих давлений, измеряемая ртутным дифференциальным манометром, тем больше, чем больше расход протекаюш,ей жидкости. Этот перепад давления и определяет величину расхода жидкости. [c.130]

    Днафраг.мы являются дроссельны.мп устройствами. Принцип пх действия основан на измерении разности давления, создаваемого дроссельным устройством, устанавливаемым в трубопроводе. Диафрагма представляет собой плоский металлический диск с отверстием в середине, центр которого при ее установке должен совпадать с центральной осью трубопровода. При прохождении потока жпдкостн через дроссельное устройство скорость потока по сравнению со скоростью протекания в трубопроводе становится больше. Для одной и той же диафрагмы перепад давления зависит от количества проходящего через диафрагму потока чем оно больше, тем больше перепад. Перепад давления, создаваемый дроссельными устройствами, измеряется дифференциальными манометрами. Шкала дифференциального манометра может иметь деления как в единицах давления (мм рт. ст.), так и в единицах расхода (м ч, кг ч, т ч). [c.144]

    С целью замера количества конденсата и определения эффективности опытных образцов аппаратов, а также для измерения основных технологических параметров газового потока и жидкой фазы аппараты оснащены необходимым числом контрольно-измерительных приборов и средств автоматического регулирования. Так, для измерения расхода газа предназначен расходомер диафрагмового типа ДМПК-100 (перепад давления 0-04 кгс/см ) для замера и регулирования уровня конденсата — регуляторы типа РУКЦ-ШК-800-16 (шкала 0-800 мм) со вторичными приборами типа ПВ 10-13 (шкала 0-100%) для измерения давле- [c.80]

    Во время протекания мазута через частично открытое выходное отверстие 4 мазут дросселируется и действует сверху на поршень 5 с пониженным давлением, которое совместно с весом поршня и тарировочных грузов 10 уравновешивает повышенное давление мазута на поршень 5 снизу. Изменение расхода вызовет соответствующее изменение перепада давления и, следовательно, определит соответствующую степень открытия выходного отверстия, так как при установившемся потоке силы, действующие на поршень, уравновешиваются. Прибор действует как диафрагма переменного сечения, обеспечивающая постоянный перепад давлений. Поскольку вертикальное положение поршня и сердечника пропорциональны расходу мазута, это положение можно отсчитывать на вторичном приборе, имеющем соответствующую шкалу расхода мазута. Вторичные приборы могут быть показывающими или самопишущими. Максимальный предел измерения выпускаемых расходомеров равен 5000 кг/час. Точность измерения 2,5%. Прибор устанавливают горизонтально на прямом участке трубы диаметром 2 дюйма и длиной не менее 500 мм до и 400 мм после прибора. Значительная погрешность измерения (примерно 2,5% цредела измерения в 500 кг/час) делает невозможным применение этих расходомеров в малых печах с небольшим расходом мазута. [c.239]

    Принцип работы расходомера Вентури, служащего для измерения расхода жццкости в трубопроводе. Расходомер Вентури состоит из двух участков плавно сужающегося (конфузора) и плавно расширяющегося (диффузора). При прохождении жидкости скорость потока в суженном сечении возрастает, а давление на стенки снижается. Создается разность давления в сечении 1-1 и 2-2 (рис. П-4). Эта разность давления измеряется дифференциальным манометром. Для определения расхода жидкости расходомер градуируют, т.е. определяют опытным или расчетным путем взаимосвязь расхода и перепада давления, определяемого дифференциальным манометром. [c.61]

    Р. переменного перепада давлений (рис. 1,а). Действие их основано на зависимости перепада давлений на гидравлич. сопротивлении (диафрагмы, сопла и трубы Вентури, сопла Лаваля и др.), расположенном в потоке контролируемой среды, от ее расхода Q. Измерения разности давлений Ар = Pl — р2 осуществляются на прямолинейном участке трубопровода (длиной до 10 и не менее 5 диаметров соотв. до и после гидравлич. сопротивления). Р. данного типа особенно распространены благодаря след, достоинствам простоте конструкции и возможности измерений в и ироком диапазоне значений расхода и диаметров трубопроводов (от десятков до 3000 мм и более) возможности применения для различных по составу и агрессивности жидкостей и газов при т-рах до 350-400 °С и давлениях до 100 МПа возможности расчетным путем определять расход без натурной градуировки Р. в случае трубопроводов диаметрами 50-1000 мм. Недостатки небольшой диапазон измерений из-за квадратичной зависимости между расходом и перепадом давлений (3 1) значит, потери давления на гидравлич. сопротивлении и связанные с этим дополнит, затраты энергии. Погрешность 1,5-2,5% от макс. расхода. [c.196]

    Р. постоянного перепада давлений, или ротаметры (рис. 2, б). В этих приборах измеряется прямо пропорциональная расходу величина перемещения поплавка h внутри конич. трубки под воздействием движущегося снизу вверх потока контролируемой среды. Последний поднимает поплавок до тех пор, пока подъемная сила, возникающая благодаря наличию на нем перепада давлений, не уравновесится весом поплавка. Трубки ротаметров м. б. стекляш1ыми (рассчитаны на давление до 2,5 МПа) и металлическими (до 70 МПа). Поплавки в зависимости от св-в жидкости или газа изготовляют из разл. металлов либо пластмасс. Приборы работоспособны при т-рах от —80 до 400 °С, предпочтительны для трубопроводов диаметром до 150 мм, имеют равномерные шкалы, градуированные в единицах объемного расхода. Достоинства возможность измерений расхода жидкостей и газов от весьма малых значений (0,002 л/ч по воде, 0,03 л/ч по воздуху) до высоких (150-200 и до 3000 м /ч) широкий диапазон измерений (10 1) малые потери давления (до 0,015 МПа). Погрешность 0,5-2,5% от макс. расхода. [c.196]

    Капиллярные вискозиметры обладают и рядом недостатков, ограничивающих их возможности. Измерение происходит только в режиме установившегося течения, хотя поведение материалов в первый момент после приложения нагрузки и процесс релаксации напряжения также представляют большой интерес. Для исследования материалов при высоких скоростях деформации необходим их повышенный расход. При анализе таких высоковязких материалов, как каучуки и резиновые смеси, большую ошибку вносят входные потери (нежелательные перепады давления на начальном участке, где еще не развился профиль потока). Для целей контроля качества научный подход с использованием капиллярной реометрии и её идеальных условий испытаний слишком сложен и требует больших затрат времени. [c.452]

    Схема современного газового хроматографа изображена на рис. 4.1.5. Для создания перепада давления через колонку хроматограф подсоединяют к источнику со сжатым газом 1 (баллонная или лабораторная линия со сжатым газом). Через колонку поток газа-носителя должен проходить с постоянной и определенной скоростью, поэтому на входе в колонку на линии газа-носителя устанавливают регулятор и стабилизатор расхода газа-носителя 2 и измеритель расхода газа 3. Если газ-носитель загрязнен нежелательными примесями, то в этом случае устанавливается еще фильтр 4. Таким образом, на входе в колонку подключается ряд устройств, часто объединяемых в один блок (блок подготовки газа), назначение которого — установка, стабилизация, измерение и очистка потока газа-носителя. Перед входом в колонку устанавливается устройство для ввода анализируемой пробы в колонку — до-затор-испаритель 5. Обычно анализируемую пробу вводят микрошприцем 8 через самозатекаюшес термостойкое резиновое уплотнение в дозаторе, газовые пробы вводят дозирующим шестиходовым краном. [c.259]

    Этот способ, как будет показано ниже, позволяет получить высокую точность измерения. Ошибка составляет 0,5%. Возможны и другие методы определения расхода жидкости. Так, например в работе М. С. Таршиша приведено несколько принципиальных схем устройств, обеспечивающих определение расхода жидкости через форсунку (коэффициент расхода), основанных на непосредственной оценке этого параметра. В схеме а, представленной на рис. 91, жидкость подается насосом к испытываемой форсунке 2. Давление на входе в форсунку поддерживается равным заданному. Поток истекающей жидкости поступает в уравнительный бачок 3, конструкция которого должна обеспечивать атмосферное давление на выходе из форсунки. При этом избыточное давление, измеряемое манометром /, равно перепаду давления на испытываемой форсунке. Из бака жидкость направляется в перекидное устройство 4, которое может направлять поток либо в емкость 5, закрепленную на весах 6, либо на слив. [c.191]

    Величина топливной загрузки мельницы не поддается непосредственному измерению и может быть определена лишь косвенно одним из трех методов 1) по перепаду давления в мельнице Ям, 2) по уровню пыли в барабане, 3) по шуму шаров. Следует отметить, что третий метод широкого распространения не получил вследствие трудности наладки систем с авторегулятором загрузки мельницы топливом по шуму шаров. Определение топливной загрузки по Ям является наиболее простым и надежным способом и широко используется персоналом электростанций при ручном управлении пылесистемами. Так как Ям зависит не только от ( топл, но и ОТ скорости сушильного агента в барабане, то либо требуется дополнительный регулятор постоянства расхода сушильного агента, либо в качестве регулировочного параметра принимается не сопротивление мельницы (т. е. перепад давления до и после мельницы), а отношение га = Ям/Ядр перепадов давлений на мельнице и на измерительном дроссельном органе, установленном в обеспыленном потоке, причем Ядр должно быть не менее 0,39—0,49 кПа (40—50 мм вод. ст.). Отклонения воздушного режима при такой схеме не нарушают процесса регулирования загрузки, который в этом случае осуществляется одним регулятором. [c.321]

    В напорных хлораторах обычно применяется метод учета хлора, основанный на принципе искусственного сужения потока газа при помощи дроссельного устройства и измерения происходящего при этом перепада давлений (рис. 152). Для этого применяются дифференциальные жидкостные стеклянные манометры, работающие на малых перепадах давлений (напорный хлоратор системы Б. М. Ремесницкого). Однако более целесообразным оказался способ измерения расхода хлора дроссельными устройствами, в которых перепад давления измеряется металлическими манометрами (хлоратор ЛК-6 и хлоратор ЛК-7 большой производительности). Замена жидкостных измерителей металлическими манометрами значительно повысила точность [c.276]

    В аналитических хроматографах в подавляющем большинстве случаев используют проявительный вариант хроматографии, в котором инертный газ-носитель непрерывно продувается через хроматографическую колонку. Чтобы получить определенный расход газа, нужно создать перепад давления на входе и выходе колонки. С этой целью колонку подсоединяют к источнику со сжатым газом (баллоном или лабораторной линией со сжатым газом). Через колонку поток газа-носителя должен проходить с постоянной определенной скоростью, для этого на входе в колонку на линии газа-носителя устанавливают регулятар расхода газа-носителя 2 и измеритель расхода газа 5. Если газ-носитель загрязнен нежелательными примесями, то его пропускают через фильтр 4. Таким образом, на входе в колонку включается ряд устройств, часто объединяемых в один блок (блок подготовки газа), назначение которого — установление, стабилизация, измерение и очистка потока газа-носителя. Перед колонкой помещают еще устройство для ввода анализируемой пробы в колонку, так называемый дозатор-испаритель 5. Обычно анализируемую пробу вводят микро- [c.20]

    Измерение расхода среды методом переменного перепада давления среды на сужающем устройстве является одним из наиболее распространенных методов, благодаря строгой методологической базе, положенной в основу метода. При протекании потока среды через сужающее устройство гфоисходит преобразование потенциальной энергии потока в кинетическую энергию потока. Эго сопровождается перепадом статического и динамического давлений на сужающем устройстве. Перепад давления Др связан однозначной зависимостью с расходом среды Др =/(Сг). Основные правила измерения расхода жидкостей и газов стандартными сужающими устройствами изложены в [18.17, 18.18]. Процедура и модуль расчетов, программное обеспечение измерения расхода методом переменного перепада давления изложены в [18.19]. Стандарт устанавливает требования к параметрам и условиям применения следующих сужающих устройств диафрагмы сопла ИСА 1932, трубы Вентури. Стандартная диафрагма представляет из себя диск с крутым отверстием, соосным измерительному трубопроводу, и с острой входной кромшй. Сопло ИСА 1932 представляет собой сужающее устройство с круглым соосным отверстием, имеющее на входе плавно сужающийся участок с профилем, образованным двумя сопрягающимися дугами, переходящий в цилиндрический участок на выходе, называемый горловиной . Труба Вентури является сужающим устройством с круглым отверстием, соосным измерительному трубопроводу, имеющим на входе конический сужающийся участок, переходящий в цилиндрический участок, соединенный на выходе с расширяющейся шнотесюой частью, называемой диффузором . Стандарт накладьшает ряд ограничений при измерении расхода среды методом переменного перепада давления на сужающем устройстве, установленном в трубопроводах круглого сечения  [c.474]

    Гидродинамические методы измерения расхода основаны на появлении перепада давления по сечению и длине трубопровода при размещении в потоке среды какого-либо тела обтекания. Рассмотрим подробней одну из реализащ1Й этой группы методов метод измерения расхода среды по перепаду давления в лобовой и кормовой частях профилированного тела. В настоящее время отсутствует математическая модель, позволяющая строго описывать подобные процессы. В частности указанный метод реализован в датчиках фирмы Honeywell . Схема датчика приведена на рис. 18.3. [c.479]


Смотреть страницы где упоминается термин Измерение перепада давлений и расхода потока: [c.127]    [c.39]    [c.645]    [c.44]    [c.298]   
Смотреть главы в:

Аппараты со стационарным зернистым слоем -> Измерение перепада давлений и расхода потока




ПОИСК





Смотрите так же термины и статьи:

Давление в потоке

Давление измерение

Измерение потока

Перепад давления

Расход измерение

Расход потока под давлением



© 2025 chem21.info Реклама на сайте