Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Процессы конденсации и охлаждения

    По мере протекания процесса конденсации фигуративная точка жидкого конденсата будет двигаться от точки Н, отвечающей первой капле конденсата, вниз по вертикали НВ, приближаясь к точке В. Когда фигуративная точка остаточного пара придет в точку Е и его состав станет равным эвтектическому составу у , фигуративная точка равновесного конденсата достигнет точки В при этом появится первая капля второй жидкой фазы, представляющей практически чистый компонент а, фигуративная точка которого есть точка А. Дальнейшее охлаждение пара уже не изменяет его состава у , но в конденсат переходят оба компонента а и Z, образующие две несмешивающиеся фазы. [c.85]


    Аналогично протекают процессы испарения и конденсации е системах гомогенных азеотропов, образующих постоянно кипящие смеси с максимумом точки кипения. Здесь также, если состав перегоняемого раствора равен уе (фиг. 27), то выкипание системы будет происходить при постоянной температуре и неизменном составе жидкой и паровой фаз во все время испарения начального раствора, пока не выкипит его последняя капля. Также н при охлаждении насыщенного пара состава уе процесс конденсации будет протекать при неизменной температуре и постоянном составе образующейся жидкой и остаточной паровой фаз, пока не перейдет в жидкость последний пузырек пара. Если же начальный состав системы отступает в ту или другую сторону от азеотропического, то перегонка и конденсация протекают с изменением температуры и состава жидкой и паровой фаз. Так, если состав а меньше Уе, то процесс перегонки сопровождается повышением температуры и обогащением остаточной жидкой фазы компонентом ау, который на интервале концентраций 0<а<уе играет роль высококипящего. Если же состав а начальной системы больше азеотропического состава Уе, то в ходе перегонки, сопровождающейся постепенным повышением температуры, состав остатка прогрессивно обогащается компонентом а, который на интервале концентраций уе <я<Г1 играет роль высококипящего. [c.66]

    При расчете конденсаторов-холодильников снимаемое тепло (в ккал/ч) в процессе конденсации и охлаждения смеси паров из ректификационных колонн определяется по формуле  [c.180]

    В процессе конденсации хлоргаза прн удовлетворительном анализе газа из общего коллектора степень сжижения в зависимости от интенсивности охлаждения в каждой системе может быть различной и концентрация водорода в абгазах отдельных агрегатов может достичь взрывоопасных пределов. [c.54]

    Для предупреждения образования взрывоопасной концентрации водорода и возможного взрыва в производстве жидкого хлора применяют системы автоматического регулирования оптимальной степени сжижения поагрегатно, непрерывный контроль состава исходного хлора и абгазов после каждой системы конденсаторов, автоматическую систему противоаварийной защиты, обеспечивающую быстрое разбавление и охлаждение газовой среды во всей системе аппаратов и трубопроводов при образовании взрывоопасных концентраций водорода. На рис. 12 показана локальная схема автоматизации процесса коНденсации. [c.54]


    Для обеспечения безопасности при проведении процесса конденсации этилацетата с ацетоном рекомендуется предусматривать сигнализацию уровня и автоматическую загрузку этилацетата строгий контроль загрузки металлического натрия автоматическую подачу охлажденного керосина в рубашку аппарата при перегреве реакционной массы  [c.347]

    Теплообменные аппараты являются составной частью практически всех технологических установок на нефтеперерабатывающих и нефтехимических заводах. Их стоимость составляет в среднем 15% от общей стоимости оборудования технологических установок. Теплообменные аппараты используют для нагрева, испарения, конденсации, охлаждения, кристаллизации, плавления и затвердевания участвующих в процессе продуктов, а также как парогенераторы или котлы-утилизаторы. [c.253]

    При адсорбции сжижаемые компоненты поглощаются адсорбентом и после насыщения десорбируются из него при регенерации. Благодаря этому увеличивается концентрация компонентов в газе и повыщается эффективность конденсации. Поэтому адсорбция является процессом, с помощью которого контролируется концентрация вещества в потоке, поступающем на сжижение. Дальнейшее повышение эффективности процесса конденсации может быть достигнуто за счет охлаждения. [c.13]

    При пересчете процессов конденсации с зоной охлаждения перегретого пара в рабочих формулах используются средние значения К, а п, i и Оуэ с учетом поверхностей, на которых их распределение можно считать равномерным. [c.52]

    Характерность изменения параметров Q по длине секций АВО, охлаждающих и конденсирующих парогазовые смеси, показана на рис. IV-4, отражающем результаты испытаний трех АВО типа АВЗ. В восемнадцати секциях аппаратов осуществляется процесс конденсации и охлаждения смеси, состоящей из 72% Oj и водяного пара (28% Н2О). Основные параметры работы аппарата в период испытаний приведены в табл. IV-3. [c.89]

    На рис. V-3 приведена зависимость Fp = f ti), построенная по результатам испытаний системы охлаждения из одиннадцати АВО типа АВЗ с поверхностью теплообмена 7500 м . Характеристика отражает изменение требуемой поверхности теплообмена системы воздушного охлаждения в процессе конденсации аммиака при расчетных температурах /к = 35°С, t — = 25 °С. Как видно из приведенного графика, потребность в поверхности теплообмена при снижении температуры охлаждающего воздуха с 25 до 1 °С резко снижается. Если при t = 25 °С все одиннадцать АВО эксплуатируются с полной нагрузкой вентиляторов, то уже при /i = 10° с полной нагрузкой должны работать всего пять АВО. [c.121]

    В присутствии примесей процесс теплопередачи определяется уже не скоростью отвода тепла, выделяющегося при конденсации, а, главным образом, интенсивностью движения частиц пара из центральной части трубок к поверхности, на которой происходит конденсация. Движение пара обусловлено как диффузией, так и конвективным обменом. Скорость движения пара к поверхности определяется разностью парциальных давлений у поверхности и в основной массе. В процессе конденсации воздух концентрируется у поверхности охлаждения и создает дополнительное сопротивление движению пара к поверхности. Ограниченный приток пара к поверхности постепенно вызывает увеличение толщины экранирующего слоя инертных газов, поэтому коэффициент теплоотдачи снижается. В парогазовой смеси всегда присутствует некоторое количество инертных примесей даже после эффективного их удаления, что приводит к уменьшению парциального давления водяного пара н снижению температуры к. а следовательно плотности теплового потока на теплообменных секциях. [c.135]

    Процесс конденсации продолжается до участка поверхности, на котором достигается равенство = I t. После конденсации и охлаждения один или несколько компонентов выводятся из системы, а обращаемая часть возвращается в технологический процесс. Неконденсирующиеся компоненты препятствуют эффективной конденсации, но высокие скорости движения газовых составляющих способствуют удалению конденсата из застойных зон в деформированных участках труб. Для таких случаев на зависимостях д = f(l) и Q = = /(/) не всегда отмечается характерный участок со сниженной плотностью теплового потока. После выпадения конденсата охлаждение газовых компонентов происходит в присутствии экранирующего слоя конденсата, поэтому процесс охлаждения идет не столь эффективно. По условиям технологии производства часто охлаждают только обращаемую составляющую парогазовой смеси, а другие компоненты смеси направляют в атмосферу или дренаж. В этом случае аппарат целесообразно эксплуатировать только в режиме конденсации с дальнейшим разделением газа н жидкости. Доохлаждение газа или жидкости возможно в отдельных АВО, в которых обеспечиваются высокие скорости движения продукта по всему сечению труб. [c.147]

    Использование аппаратов воздушного охлаждения позволяет осуществить автоматическое регулирование процессов конденсации и охлаждения. [c.148]


    В одних случаях представляет интерес интенсификация процесса конденсации путем создания условий, при которых наряду с конденсацией пара на поверхности охлаждения значительное его количество может конденсироваться в ядре парогазового потока с последующим выделением образующегося при этом тумана методом сепарации газожидкостной смеси. В других случаях, когда процесс конденсации осуществляется с целью тонкой очистки газа от конденсирующейся примеси, важно выявить условия протекания процесса вдоль всей поверхности тепло- и массообмена с тем, чтобы исключить или по возможности ослабить влияние факторов, способствующих пересыщению и объемной конденсации пара. Объясняется это тем, что туман, представляющий собой мелкодисперсную жидкую фазу, распределенную в газе, трудно удаляется сепарацией. Остающиеся в газе капельки жидкой примеси в зоне более высоких температур испаряются, вследствие чего существенно снижается эффективность очистки газа. [c.168]

    Уравнения (5.90) — (5.93) были получены при учете только физического тепла охлаждения теплоотдающей среды и допущении постоянства коэффициента теплопередачи К и водяных эквивалентов W, Wo iя вдоль всей поверхности теплообмена. Эти допущения не вносят существенной погрешности при расчете температур теплообменивающихся потоков для зоны конденсатора, где происходит только охлаждение парогазовой смеси до точки росы. На участке же конденсации коэффициент теплопередачи К и водяной эквивалент парогазовой смеси W изменяются вдоль поверхности тепло-и массообмена тем значительнее, чем выше концентрация пара в смеси исходного состава. Поэтому уравнениями (5.90) — (5.93) можно пользоваться при расчете изменения температур теплообменивающихся потоков также и для зоны конденсации только в случае парогазовых смесей с малым исходным содержанием пара. При повышенных и больших содержаниях пара доля теплового потока, обусловленного фазовым превращением пара, становится ощутимой в общем тепловом потоке, поэтому пользование уравнениями (5.90) — (5.93), не учитывающими эту составляющую теплового потока, становится уже неправомерным. Указанными уравнениями нельзя пользоваться и в случае, когда процесс конденсации осуществляется в условиях охлаждения парогазовой смеси до весьма низких (криогенных) температур, т. е. когда доля тепло-притока, обусловленного теплообменом с окружающей средой, [c.179]

    Современные химико-технологические системы (ХТС) представляют собой ряд взаимосвязанных подсистем, в которых осуществляются процессы нафева, химических преобразований, разделения, конденсации, охлаждения и транспорта материальных потоков с различным агрегатным состоянием. При разработке технологических проектов, для упрощения расчетов технологических процессов переработки сырья, ХТС подвергаются Декомпозиции. [c.216]

    Различие между процессами умеренного и глубокого охлаждения заключается в том, что в процессе умеренного охлаждения сжатые до определенного давления газы конденсируются, отдавая тепло окружающей среде (во.здуху или воде), а в процессе глубокого охлаждения для конденсации хладагента его необходимо охлаждать до температуры более низкой, чем температура окружающей среды. [c.123]

    В процессе низкотемпературной конденсации охлаждение продолжают до заданной степени конденсации газовой фазы, которая определяется необходимой глубиной извлечения целе- [c.134]

    Если процесс конденсации осуществляется при давлении и температуре ниже критических значений компонентов, которые подлежат конденсации, то одновременно с конденсацией этих компонентов имеет место частичная конденсация даже тех компонентов, у которых критическая температура ниже, чем температура смеси. Это обусловлено тем, что углеводородные газы способны растворяться в углеводородных жидкостях. Например, смесь, состоящая из метана (молярная доля 10 %) и пропана (молярная доля 90 %), может быть полностью сконденсирована при охлаждении газовой смеси до 10 °С при давлении 2,0 МПа [7]. Таким образом, метан, критическая температура которого = -82 °С, в присутствии пропана превращается в жидкость при температуре существенно выше критической. [c.135]

    Экстрактный раствор с низа К-1, не содержащий парафиновых углеводородов, поступает в отпарную колонну К-3, работающую при умеренном вакууме. В этой колонне проводится отгонка ароматических углеводородов рт растворителя, Для облегчения процесса отгонки в нижнюю часть К-3 вводится острый пар. Поток ароматических углеводородов, выходящий из верхней части К-3 после конденсации, охлаждения и отделения от воды в сепараторе Е-2, частично возвращается в верхнюю часть колонны К-3, образуя орошение, а избы- [c.288]

    Пример. В производстве метанола после его синтеза в колонне пары метанола поступают в водяной конденсатор при температуре 410 °С и охлаждаются водой до температуры 50 °С. Охлаждение осуществляется через стенку при средней разности температур 132 °С. Значения соответствующих индексов процесс конденсации, /г = 2 /д = 8 теплообмен через стенку, /г=1 /д = 8 для Кз величина /к = 3. [c.255]

    Тепловые процессы связаны с передачей тепла от одного тела к другому. К ним относятся следующие основные процессы нагревание, охлаждение, испарение, конденсация, плавление, затвердевание (кристаллизация). [c.8]

    В основе метода получения кислорода и азота лежит процесс глубокого охлаждения и конденсации предварительно сжатого воздуха при теплообмене его с охлажденным, за счет расширения (дросселирования), воздухом с последующей ректификацией жидкого воздуха  [c.229]

    Конденсация паров происходит в объёме закрученного потока, а также на внутренней охлажденной поверхности труб или, как их еще называют, камер энергетического разделения. Процесс конденсации паров на охлаждаемой поверхности зависит от скорости перемещения пара к поверхности, от коэффициента конденсации (отношение числа конденсирующихся молекул к общему числу молекул этого вещества в потоке, достигающем поверхности конденсации) и скорости отвода тепла от охлаждаемой поверхности. Пленочная конденсация определяется термическим сопротивлением пленки жидкости, которая зависит от режима её течения и толщины. Конденсация паров сопровождается двумя процессами -теплообменом и массообменом. В нашем случае следовало учесть, что при переносе вещества с большей интенсивностью, чем интенсивность теплообмена, парциальное давление паров будет меньше давления, соответствующего насыщенному состоянию. Конденсация на охлаждаемой поверхности будет происходить, если её температура не превышает точку росы. [c.231]

    Пусть фигуративная точка Е на изобарной равновесной диа-г1>амме изображает перегретый пар начального состава у , большего, чем у . Процесс постепенного охлаждения этого пара изобразится вертикальным отрезком ЕС, и в точке С, лежащей на кривой конденсации ОЕ, нар придет в насыщенное состояние, и появится первая капля жидкости, представляющая собой нракти-чес1 п чистый компонент Дальнейшее охлаждение уже насыщенного нара повлечет за собой постепенную его конденсацию, причем выделяющаяся жидкость будет все время состоять из практически чистого компонента 2. В связи с этим но мере конденсации состав остаточного пара будет прогрессивно обедняться [c.84]

    Необходимо разработать межотраслевые обобщенные модули расчета коэффициента теплоотдачи для основных процессов (нагрева, охлаждения, конденсации, кипения чистых веществ и мпоюкомпонентных смесей), различных форм поверхностей (плоских, трубчатых, гладких, шероховатых, оребренных, профилированных, горизонтальных, вертикальных, каналов, пучков, паке ов и т. п.) и веществ с разными интенсификаторами. [c.316]

    В табл. П-1 приведены сравнительные данные двух схем обвязки параллельной с тремя АВО типа АВЗ по рис. 1-10 и параллельно-последовательной по рис. П-6. Обе схемы предназначены для конденсации и охлаждения парогазовой смеси, состоящей из СО2 и насыщенного водяного пара. В схеме по рис. 1-10 осуществляется процесс конденсации и совместное охлаждение конденсата и СО2. В схеме по рис. П-6 в 14 секциях АВО конденсируется водяной пар, в ресивере происходит разделение флегмы и СО2, конденсат доохлаждается в четырех последовательно соединенных секциях одного из АВО [c.46]

    Современная нефтеперерабатывающая промышленность оснащена сложным оборудованием, предназначенным для осуществления разнообразных процессов — нагрева, охлаждения, конденсации, массопередачи, перекачки, компримировання, фильтрации и ряда других операций с нефтью и продуктами ее переработки. [c.302]

    Конденсация. Все методы конденсации, или конденсационные методы, сводятся к тому, что частицы предельно раздробленного вещсства, т. е. вещества, находящегося в растворенном состоянии или в виде пара, когда его молекулы разобижены, подвергаются укрупнению, соединяясь друг с другом и образуя более крупные агрегаты. Процесс коггденсации вещества в состоянии отдельных молекул (или нонов) может произойти только в том случае, если это вещество пересыщает раствор или газовую смесь. Таким образом, кондеисациоиный процесс образования гетерогенной дисперсной системы происходит в две стадии 1) образование пересыщенного раствора или пара и 2) собственно конденсация из пересыщенного раствора или пара. Конденсационные методы отличаются от дисперсионных тем, что раз начавшийся процесс конденсации идет далее самопроизвольно и сопровождается отдачей энергии. Все усилия при искусственном иолучении гетерогенных дисперсных систем иосредством метода конденсации сводятся к получению пересыщенного раствора или пара, что может быть достигнуто двумя способами 1) понижением растворимости или давления пара путем охлаждения или замены растворителя или 2) образованием [c.189]

    В модели Уарда приняты два основных допущения I) состав активных и инертных компонентов парогазовой смеси таков, что в процессе ее охлаждения отсутствуют условия для объемной конденсации пара в ядре потока (образования тумана) 2) вдоль всей поверхности конденсации обеспечивается фазовое равновесие. [c.201]

    Холодильники и конценсаторы служат для охлаждения потока или конденсации паров с применением специальных хладоагентов (воды, воздуха, испаряющегося аммиака, пропана, хлористого метила, фреонов и т. д.). Происходящие при этом нагрев и изменение агрегатного состояния (испарение) охлаждающего агента являются побочными процессами. Окончательное охлаждение продуктов до температур, обеспечивающих их безопасное хранение и транспортировку, происходит в холодильниках. [c.175]

    Низкотемпературная конденсация (НТК) - это процесс изобарного охлаждения газа (при постоянном давлении) до температур, при которых при данном давлении появляется жидкая фаза. Разделение углеводородных газов методом НТК осуществляется путем охлаждения их до заданной температуры при постоянном давлении, сопровождающегося конденсацией извлекаемых из газов компонентов, с последующим разделением в сепараторах газовой и жидкой фаз. Высокой четкости разделения углеводородных газов путем однократной конденсации и последующей сепарации добиться практически невозможно. Поэтому современные схемы НТК включают колонну деэтанизации или деметанизации. Газовая фаза при этом выводится с установки с последней ступени сепарации, а жидкая фаза после теплообмена с потоком сырого газа поступает на питание в колонну деэтанизации или деметанизации. В этом случае ректификация, как правило, предназначается для отделения остаточных количеств растворенных газов из жидкой фазы, например, этана из пропан-бутановой фракции (деэта-низаторы) или метана из фракции С, (деметанизаторы). [c.133]

    Увеличение производительности достигается и при применении нового метода — х р о м а д и с т и л л я ц и и, различные варианты которого предложены Жуховицким с сотрудниками. Этот метод находится на стыке хроматографии и ректификации, когда хроматография осуществляется с использованием в качестве неподвижной фазы компонентов разделяемой смеси. В трубку с инертным наполнителем — стекляннзши или металлическими шариками— вводят разделяемую смесь и пропускают газ-носитель. При этом на заднем фронте жидкости происходит испарение, а на переднем при охлаждении обеспечивается процесс конденсации. [c.92]

    Задачи обеспечения взрывобезопасности паро-газовой смеси на последующих стадиях процесса — после ее охлаждения и конденсации части избыточного горючего и аналогичных смесей с кислородом —решаются существенно различно. Окислитель во взрывчатой смеси — окислы азота — здесь не расходуется в основной реакции технологического процесса. При охлаждении парогазовой системы, следующем за стадией нитрования, смесь неизбежно становится взрывчатой, если содержание окислов азота в ней достаточно велико. Поскольку перерабатываемая смесь не только охлаждается, но и дросселируется, следует учесть, что предельная температура, при которой становится возможным образование взрывчатой смеси, тем ниже, чем меньше общее давление. Сопоставление пределов взрываемости и составов продуктов нитрования (окисления) приводит к заключе- [c.82]

    Ректификация смесей полициклических ароматических углеводородов — один из наиболее простых и эффективных способов их разделения. Ее особедность определяется высокими температурами кипения и высокими температурами кристаллизации полициклических ароматических углеводородов. Это создает трудности, связанные с подводом тепла высоких параметров для обогрева низа колонны, опасностью осмоления и коксования в нижией части аппарата, выбором соответствующей системы конденсации (охлаждение горячим маслом или водой, кипящей под давлением). Ректификация в вакууме повышает эффективность разделения и снижает опасность осмоления сырья, по з то же время сближает температуры конденсации и кристаллизации, что осложняет ведение процесса. Осложняет ректификацию и сублимация полициклических ароматических углеводородов, приводящая к забиванию коммуникаций, воздушников , вентиляционных систем. [c.296]

    Современная химическая промыш.тенность выпускает десятки тысяч продуктов. Все многообразие химико-технологических процессов молено свести к пяти основным группам механическим, гидродинамическим, тепловым, диффузионным (массообменным) и химическим. Механические — это процессы дробления, измельчения, агломерации, транспортирования твердых материалов, гранулирования и т. п. Гидродинамические — это процессы перемещения жидкостей и газов по трубопроводам, перемешивания, псевдоожижения, очистка газов от пыли и тумана и др. Тепловые — это процессы нагревания, охлаждения, конденсации, выпаривания и т. д. Диффузионные (массообменные) — это процессы сорбции, ректификации, растворения, кристаллизации, сушки и т. д. [c.178]

    С целью комплексного использования всех положительных эффектов течения закрученных газовых потоков в вихревых трубах бьш разработан вихревой тепломассообменный аппарат, предназначенный для комплексной очистки сжатых технологических газов. Разработка конструкции основывалась на максимальном использовании низкотемпературного разделения газа в вихревых трубах для интенсификации процесса конденсации и сепарации, что достигалось за счет охлаждения труб хладагентом с предварительным захо-лаживанием этого хладагента газом холодного потока. Доочистка газа в межтрубном пространстве аппарата обеспечивалась через его контактирование в пенном режиме с хладагентом — абсорбентом. [c.199]


Смотреть страницы где упоминается термин Процессы конденсации и охлаждения: [c.234]    [c.51]    [c.164]    [c.164]    [c.9]    [c.33]    [c.237]    [c.261]    [c.176]    [c.57]    [c.175]    [c.9]   
Смотреть главы в:

Технологические расчеты процессов нефтепереработки -> Процессы конденсации и охлаждения




ПОИСК





Смотрите так же термины и статьи:

Анализы по контролю процесса охлаждения коксового газа и конденсации смолы и водяных паров Анализ каменноугольной смолы

Контроль процесса охлаждения и конденсации коксового газа

Теплообменные процессы — нагревание, выпаривание, охлаждение, конденсация



© 2025 chem21.info Реклама на сайте