Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Строение механическое группы

    Главное различие между цепями белка и полиэтилена или полиэтилен-терефталата (дакрона) заключается в том, что в молекуле белка не все боковые группы одинаковы. У фибриллярных белков определенная повторяющаяся последовательность боковых групп придает конкретному белку-кератину или коллагену-вполне конкретные механические свойства. Глобулярные белки имеют еще более сложное строение. Эти молекулы обычно содержат от 100 до 500 аминокисло г, полимеризованных в одну длинную цепь, и полная последовательность аминокислотных остатков в каждой молекуле одного глобулярного белка одинакова. Эти остатки могут быть углеводородными, кислыми, основными, нейтральными или полярными. Свертывание белковой цепи в компактную глобулярную моле- [c.313]


    Строение клеточной мембраны показано на рис. 45. Мембрана состоит из липидного бислоя /, полярные группы 2 которого обращены наружу (липиды — макромолекулы, образованные из молекул жирных кислот). На внешних поверхностях мембраны адсорбирован первичный слой 3 белковых молекул, взаимодействие которых друг с другом придает мембране механическую устойчивость и прочность. Мембраны пронизаны особыми липопротеиновыми (комплекс липидов и белков) каналами 4, при помощи которых, по-видимому, осуществляется селективный ионный транспорт. Раствор внутри клетки содержит относительно большие концентрации ионов К+ и низкие концент- [c.138]

    При вальцевании или перетирании смеси нескольких полимеров длинные молекулярные цепи сравнительно легко разрываются — образуются макрорадикалы. Если механическая деструкция полимера происходит в отсутствие кислорода, то из макрорадикалов в результате их рекомбинации (взаимодействия) создаются макромолекулы блоксополимера. Если деструкцию вести в присутствии мономера другого строения, то макрорадикалы взаимодействуют с радикалами мономеров и создаются макромолекулы блоксополимера. Таким путем могут быть синтезированы высокомолекулярные соединения, которые не удается получить обычными методами, например сополимеры природных высокомолекулярных соединений (целлюлозы, крахмала) с синтетическими полимерами (полиакрилонитрилом, полистиролом). Низкомолекулярные полимеры (со степенью полимеризации 10—50), содержащие определенные функциональные группы, можно получить поликонденсацией (стр. 461), теломеризацией (стр. 449), ступенчатой полимеризацией (стр. 444). [c.459]

    На рис. 166 показано влияние химического строения органических групп в хлорсилановых аппретурах на водостойкость и механическую [c.315]

    Изучалась зависимость между молекулярным строением ряда полиэтиленов и их физическими и механическими свойствами [91]. Кристалличность полиэтилена неносредственно связана с линейностью строения и плотностью полимера [84]. От кристалличности полимера, а следовательно, и от его плотности зависят также некоторые другие свойства полиэтилена. К таким свойствам относятся температура плавления, жесткость при многократном изгибе и предел текучести ири растяжении. Взаимная зависимость этих свойств показана в табл. 1. Линейность полимера определяют из соотношения метильных и метиленовых групп. Хотя высококристаллические полиэтилены обычно обладают большей жесткостью и прочностью, чем полиэтилен более разветвленного строения, их сопротивление разрыву практически непосредственно зависит от молекулярного веса и распределения ио молекулярным весам. В табл. 2 приведены некоторые свойства ряда образцов полиэтилена. Непосредственное сравнение возможно лишь для результатов, полученных из одного и того же источника. [c.291]


    В связи с расширением областей применения парафинов, церезинов и разработкой на их основе восковых композиций большое значение приобретают физико-механические свойства этих продуктов, такие как твердость, прочность, пластичность, адгезия, усадка и др. Прочностные и пластичные свойства твердых углеводородов могут быть оценены по остаточному напряжению сдвига, температуре хрупкости и показателю пластичности. Результаты работ [16, 22] показали, что физико-механические свойства твердых углеводородов обусловлены их химическим составом, структурой молекул отдельных групп компонентов и связанной с ней плотностью упаковки кристаллов твердых углеводородов, а также фазовым состоянием вещества. Сопоставление физико-механических свойств со структурой твердых углеводородов проведено [16] на молекулярном уровне с использованием температурных зависимостей показателей преломления и ИК-спектров в области 700—1700 см-. На рис. 33 и 34 приведены результаты исследования грозненского парафина, состоящего из парафиновых углеводородов нормального строения, и углеводородов церезина 80 , не образующих комплекс с карбамидом и содержащих разветвленные и циклические структуры. [c.126]

    В работе [28] приведены результаты исследования состава и строения поверхностно-активных веществ, присутствующих в стабилизаторах нефтяных эмульсий. Авторы делают вывод о том, что поверхностная активность стабилизаторов (эмульгаторов) нефтяных эмульсий определяется не только порфиринами, но и другими компонентами с полярными функциональными группами. Вместе с этими веществами на межфазной поверхности адсорбируются микрокристаллы парафина, церезина и высокодиспергированные механические примеси нефти. [c.30]

    Для получения представления об электронном строении пептидной, сложноэфирной и цианамидной групп у изолированных молекул и о происходящих изменениях при ассоциациях необходим перевод обсуждаемых геометрических и механических параметров на язык квантовой химии, что требует знания зависимостей между длинами и силовыми постоянными связей N0 и СО, с одной стороны, и порядками связей и гибридизацией атомов - с другой. Для их получения использован полуэмпирический подход, подробно изложенный в работах [11, 33] и монографии [37]. На рис. 11.2 и П.З показаны изменения длин и силовых постоянных связей СС, СМ и СО с увеличением тс-порядка от О до 2,0. Как видно из рис. П.2, три кривые параллельны друг другу с экспериментальной точностью ( 0,01 А). Кривая СМ отстоит от кривой СС на расстоянии 0,06 А, а кривая СО —0,11 А. Анализ имеющихся экспериментальных данных и результатов расчета колебательных спектров и электронной структуры простейших модельных молекул позволил получить значения длин и силовых постоянных а-связей СС, СМ и СО нулевого тс-порядка при всех возможных комбинациях гибридизации атомов углерода, азота и кислорода [c.146]

    Механические — составляют наиболее обширную группу методов исследования граничных слоев жидкости, так как их механические свойства непосредственно связаны со строением аномальных слоев и действующими на них молекулярными силами. Именно из-за тесной связи со структурой механические (реологические) параметры получили в физико-химической механике название структурно-механических. [c.73]

    Металлы с гексагональной упаковкой атомов в кристаллической решетке (например, титан и некоторые его сплавы) в отношении механических свойств при низких температурах занимают промежуточное положение между двумя предыдущими группами, приближаясь к металлам с объемноцентрированной кубической решеткой. Однако металлы последней группы при низких температурах ведут себя так, как будто у них отсутствует диапазон превращения [137, 138]. Схематично строение элементарных кристаллических ячеек различного типа представлено на рис. 43 [141]. [c.132]

    Важную группу синтетических материалов образуют полиамиды — высокомолекулярные соединения, в которых мономерные звенья соединены группами СОМН. По своему строению полиамиды родственны белковым веществам. Сырье для получения полиамидов менее доступно, чем простые виниловые мономеры. Это делает полиамиды более дорогими материалами. Несмотря на это, из-за исключительно ценных физико-механических свойств полиамиды производятся в больших количествах. Их главная область применения — изготовление искусственных волокон. [c.332]

    Физика и механика полимеров широко использует идеи и методы физики твердого тела, физики жидкого состояния, термодинамики и статистической физики. Так, например, и физику твердого тела, и физику полимеров интересует связь между физическими свойствами и строением веществ. Любые твердые тела, в том числе и полимеры, представляют собой сложные системы, из которых можно выделить ряд важнейших подсистем (решетка, атомы с соответствующими электрическими квадрупольными и магнитными моментами ядер, электроны и ядра с соответствующими спинами, фононы, атомные группы, сегменты, макромолекулы и др.). Хотя указанные подсистемы связаны между собой, различные силовые поля (механические, электрические и магнитные) воздействуют на них не одинаково. Этим определяется эффективность изучения взаимосвязи строения и физических свойств различных твердых тел методами электронного парамагнитного и ядерного магнитного резонансов (ЭПР и ЯМР), диэлектрическими и ультразвуковыми методами. [c.9]


    Как уже упоминалось, пептидная группа имеет лабильное электронное строение. В предыдущем разделе рассмотрено проявление этого свойства в геометрии группы - длинах химических связей, валентных углах и конфигурации. Не менее показательным здесь являются и колебательные спектры, в частности инфракрасные спектры поглощения, частоты которых отражают механические характеристики молекул, а интенсивности полос - дипольные моменты связей и их чувствительность к естественным колебательным координатам (Э 1,/Э Э Л.,/Эа где и соответственно отклонения длин связей и валентных углов от равновесных значений). И то и другое, помимо кинематики, определяется динамикой колебания, непосредственно связанной с электронным строением - поляризацией связей и миграцией зарядов в процессе нормальных колебаний молекул В силу этого в колебательных спектрах заключена богатейшая информа- [c.140]

    Световое и проникающее излучения являются важными видами физических воздействий на полимеры, способных вызвать химические реакции в них. Это приводит к глубоким изменениям химического строения, а следовательно, физических и механических свойств полимеров. Одним из главных направлений химических превращений является образование свободных радикалов при разрыве связей С—С в главных цепях полимеров или отрыве водорода от углеродных атомов. Дальше развивается серия химических превращений, приводящих к деструкции, сшиванию, отщеплению боковых групп и другим химическим изменениям макромолекул полимеров. [c.242]

    Химическая стойкость, значение обменной емкости, селективность, механическая прочность и другие свойства иопитов зависят от природы и концентрации ионогенных групп, структуры макромолекул, прочности связи между полимером и ионогенной группой. Поскольку макромолекулы ионитов имеют пространственное строение, растворитель вызывает только набухание ионита, степень которого определяется структурой полимера, природой и концентрацией ионогенных групп и составом раствора электролита. Как правило, иониты поликонденсационного тина имеют худшие показатели химической стойкости, чем иониты полимеризационного типа. [c.96]

    Порошок. Диагностическое значение имеет строение отдельных слоев семенной кожуры, особенно механического и пигментного. Чаще всего слои кожуры семени в микропрепарате порошка лежат пластами, что соответствует микроскопической картине препаратов кожуры с поверхности, иногда встречаются каменистые клетки (небольшими группами и отдельно). Нередко в порошке встречается сочетание двух [c.260]

    Не только строение отдельных групп, входящих в состав макромолекул, их взаимодействие (виутримолекулярное взаимодействие) и взаимодействие отдельных макромолекул между собой (межмолекулярное взаимодействие), но и строение и форма макромолекул определяют физико-механические свойства материала, обусловливающие области его применения и методы пе-реработки. [c.20]

    Граничные, смазочные слон обладают истинной упругость формы и подчиняются закону Гука. Их механические свойства определяются условиями всестороннего сжатия. Правильно ориентированный адсорбционный слой цепных молекул углеводородов, находящийся между двумя твердыми поверхностями, обладает огромной упругостью на поперечное сжатие ( = 10 кгс/см-). Его сопротивление сжатию определяется не структурной упругостью слоя, а модуле.м Юнга алмазоподобной структуры метиленовых цепей, работающих на осевое сжатие [75, 109]. Смазочные слои ПАВ между поверхностями трения, обладающие благодаря строению концевых групп хорощими смазочными свой-ства1ми, в то же время обладают бс> ьщим сопротивлением сжатию и разрыву пленки. Большая грузоподъемность граничных слоев обусловлена большой энергией адсорбционной связи граничного слоя с поверхностью металла — адгезионной связью и большой энергией когезионной связи между ориентированными молекулами адсорбента. [c.46]

    В заключение следует сказать, что эффект Максвелла — двойное лучепреломление в потоке — сложное многогранное физическое явление, отражающее оптические, гидродинамические и механические свойства растворенных макромолекул. Высокая чувствительность оптической анизотропии молекулы к тонким деталям химического строения мономерного звена и молекулы в целом позволяет использовать это явление при анализе сложных конформационных переходов в молекуле. Доказано резкое изменение внутримолекулярного ориентационного порядка в молекуле при изменении строения боковой группы (полиарил- и полиалкилизо-цианаты, полимеры с мезогенными боковыми группами). [c.31]

    Состав и строение концевых групп полиэфиров также оказывают заметное влияние на механические свойства отвержденных продуктов [16, 22]. Так, жесткость сополимеров полиэфиров со стиролом возрастает с увеличением концентрации концевых СООН и снижением содержания ОН-групп [16]. Изучение физико-механических свойств продуктов сополимеризации ненасыщенных полиэфиров с преимущественно карбоксильными концевыми группами и сравнение их со свойствами сополимеров обычных полиэфиров (синтезированных с 5—10% (мол.) избытком гликоля) показало, что повышенное содержание концевых СООН-групп приводит к значительному повышеннию Е, Н я Осж [5]. Исследовано влияние межмолекулярного взаимодействия, обусловленного наличием полярных концевых групп в молекулах полиэфиров, на механические свойства их сополимеров со стиролом [22]. На примере сополимеров политриэтиленгликольмалеинатсебацината, модифицированного янтарным ангидридом, который в различных количествах присоединяется к концевым ОН-группам, было показано, что характер зависимости Ор от соотношения концевых групп неодина- [c.144]

    Механическим свойствам полимерных мембран на ранних стадиях их разработки уделяли мало внимания особое значение придавалось эксплуатационным характеристикам, таким как проницаемость, селективность. В результате не удалось добиться повышения прочности патронных фильтров, особенно тех, которые содержат микрофильтры с максимальной пористостью (а следовательно, с минимальной прочностью). Механические свойства зависят от строения химических групп, макромолекул, микрокристаллического и коллоидного уровней. Рассмотрим, например, значение структуры для одного из основных механических свойств — эластичности. Аморфные полимеры типа поликарбонатов и полисульфонов имеют характерную эластичность как в плотном, так и в пористом состоянии. Сильнокристаллические и сильносшитые полимеры, с другой стороны, имеют тенденцию к хрупкому состоянию. Поликристаллические полимеры могут быть отнесены к любому из этих классов в зависимости от природы сил молекулярного взаимодействия и способа, которым их перерабатывают. Например, разветвленный полиэтилен низкой плотности со слабыми когезионными силами проявляет соответствующую эластичность, поскольку подвижные аморфные области, не содержащие поперечных сшивок, проявляются как одна из форм внутренней пластификации со снятым напряжением. С другой стороны, поликристаллические полимеры, проявляющие склонность к образованию водородных связей, имеют тенденцию к повышению хрупкости, поскольку межмолекулярные и внутримолекулярные связи являются эффективными поперечными связями, а хрупкость пропорциональна плотности поперечных связей. Если набухшие в воде мембраны из целлюлозы и найлона 6,6 высушить, то капиллярные силы будут способствовать высокой концентрации эффективных поперечных связей, и в результате мембрана уплотнится и хрупкость ее повысится. Однако в том случае, когда сушку проводят, заменяя растворитель (например, часто заменяют изопропанол гексаном), плотность поперечных связей минимальна, а эластичность будет сохраняться и в сухом состоянии. [c.117]

    Высокомолекулярные полимеры —обширная группа материалов, объединенных по признаку химического строения. Эта группа включает натуральный и синтетический каучуки и их вулкани-заты, пластмассы, шерсть, искусственное волокно и многое другое. Среди различных свойств высокомолекулярных полимеров особенно большое значение имеют механические свойства. Выбор полимера как материала для изделия во многих случаях определяется механическими свойствами. Когда главное значение имеют химические, электрические или другие свойства полимера, все же приходится учитывать и механические свойства, так как всякое изделие неизбежно подвергается механическим воздействиям. [c.7]

    Можно было полагать, что модификация — введение функциональных полярных групп в молекулу синтетического полиизопре-на — придаст ему ряд важных свойств, повысит его сходство с НК при сохранении основного комплекса физико-механических показателей, но при этом имелось опасение некоторого ухудшения свойств, связанного с нарушением регулярности строения макромолекул. [c.228]

    Ковалентная вулканизация карбоксилсодержащих каучуков придает резинам свойства, аналогичные эластомерам без карбоксильных групп. Поэтому для карбоксилсодержащих каучуков важное значение приобретает вулканизация с помощью окисей, гидроокисей и других соединений металлов за счет реакции соле-образования. Получаемые при этом резины уже при относительно низком содержании звеньев метакриловой кислоты в сополимере (1—3%) характеризуются высокими механическими и эластическими свойствами. Рентгенографически в солевых резинах при растяжении обнаружен сильный ориентационный эффект. Тем самым установлено, что дефекты в структуре полимерной цепи, обусловленные неоднородностью ее строения, и отсутствие вследствие этого склонности к ориентации и кристаллизации, могут быть компенсированы за счет изменения природы вулканизационной сетки [1]. [c.400]

    Сплавы. Характерной особенностью металлов является их способность смешиваться друг с другом в расплавленном состоянии и образовывать гомогенные смеси. Они остаются гомогенными и после охлаждения. Системы, образующиеся при загверде-нии расплавленной смеси металлов, называются сплавами. В более широком смысле сплавы можно рассматривать как макроскопически однородные системы, состоящие из двух или нескольких металлов (реже — металлов и неметаллов). Строение сплавов может быть различным. Составные части сплавов могут образовать твердый раствор, либо макроод-нородную механическую смесь, или же химическое соединение -(интерметаллические соедниения). Образование того или иного типа сплава зависит от активности металлов. Системы в виде твердых растворов образуются между металлами одной и той же группы или же металлами, у которых близки радиусы атомов. [c.261]

    Для приготовления бентонитовых смазок используют амини-рованные бентонитовые глины — кристаллические продукты минерального происхоадения, у которых атомы кремния, кислорода, гидроксильные группы и катионы металлов (А1, Ре, Мп и др.) составляют кристалличёскую решетку. Ее строением обусловлены важнейшие свойства бентонитовой глины как загустителя — на-бухаемость, катионообменная способность, дисперсность и т. п. Процесс гидрофобизации бентонитовых глин заключается в обмене катионов поверхностного слоч на органические аминные радикалы. Наиболее эффективными модификаторами являются производные четвертичных аммониевых оснований, в частности хлорид диметилбензилалкиламмония. Производство бентонитовых смазок, подобно силикагелевым, основано на интенсивном механическом диспергировании загустителя в масле. [c.378]

    Специфическими молекулярными характеристиками полимеров являются молекулярная масса, определяющая размеры цепочек и гибкость макромолекулы, зависящая от ее строения и природы мел молекулярпоп и внутримолекулярной связи. Гибкость макромолекул — это способность полимерных цепей изменять свою конформацию в результате внутримолекулярного (мнкро-броунова) теплового дви кепия звеньев равновесная, или термодинамическая гибкость) илп же под влиянием внешних механических сил (кинетическая, или механическая гибкость). Конформация — это пространствеппое распределение атомов и атомных групп в макромолекуле, определяемое длиной соответствующих связей II значениями валентных углов такое распределение, которое может меняться без химических реакций. [c.48]

    Интересно, что структура силикат-ионов оказывает определяющее влияние на такое механическое свойство силикатов, как сопротивление разрущению. Среди силикатов имеется группа асбестов с характерным волокнистым строением (см. рис. 22.8) эти минералы имеют двухтяжевую цепочечную структуру или структуру, в которой листы свиты в цепи. Волокниста.я текстура минералов группы асбестов обусловлена тем, что электростатические силь[ взаимодействия между цепочками намного слабее, чем ковалентные связи внутри цепочек. Тальк М з8140,о (ОН)2 имеет структуру, образованную плоскими листами. Относительно слабые силы взаимодействия между листами позволяют им скользить друг по другу подобно тому, как скользят друг по дру- [c.344]

    Молекулы нафтеновых и жирных кислот имеют асимметричнополярное строение и состоят из полярной группы СООН и длинного неполярного углеводородного радикала. Такие молекулы при адсорбции ориентируются своими полярными группами к частицам цемента и зернам заполнителей, адсорбировавших ионы кальция углеводородные же радикалы при этом обращены наружу. Эти углеводородные цепи гидрофобны, не смачиваются водой, между их концами, образованными метильными группами, существуют лишь сравнительно слабые силы притяжения. Плоскости, образованные метильными группами, являются плоскостями скольжения, если внешняя сила действует касательно к плоскостям (рис. 44), что имеет место при перемешивании, вибрировании, прокате и других механических воздействиях на бетонную смесь. [c.169]

    Химическим индивидом следует назвать наименьшее количество вещества, повторением которого в различном порядке можно воспроизвести данное вещество. Химическими индивидами являются атомы в атомной решетке простого вещества (С в решетке графита) или группы атомов в составе сложного (51С в решетке карбида кремния), молекулы в веществе молекулярного строения (Н2О в воде), ионные пары или более сложные конные комплексы в ионном веществе (НаС в поваренной соли, ЫагСОз-ЮНгО в кристаллической соде) и т. д. При таком определении изменение агрегатного состояния, полимор фный переход, механическое разрушение, образование некоторых растворов (например, газовых) не попадут в химические явления. [c.6]

    На основе современных квантово-механических представлений об электронном строении атомов можно детально проанализировать структуру периодической системы. При этом выявляются не только наиболее общие закономерности в изменении свойств элементов (расположение их по группам и подгруппам), но и более тонкие детали, позволяющие объяснить вторичную и внутреннюю периодичность, горизонтальную и диагональную аналогии. Одним из важных представлений, объясняющих немонотонный характер изменения свойств элементов в пределах группы, является представление о кайноспмметричных орбиталях и кайносимметричных элементах. [c.5]

    Таким образом, основные параметры, определяющие структурно-механические свойства полимерных материалов (модуль эластичности, пластическая вязкость, время релаксации и другие параметры), являются функциями строения полимеров. Изучив природу этой связи, химик, подобно архитектору, может в настоящее время, скрепляя или раздвигая цепи, вводя полярные группы, заместители больщих размеров и т. д., создавать новые материалы с требуемыми свойствами, заранее заданными, сообразно с целью их практического применения. Это — основная задача фиэико-хи мической механики полимеров. [c.298]

    По Ребиндеру, структурно-механический барьер возникает при адсорбции молекул ПАВ, которые могут быть не сильно поверхностно-активными для данной границы раздела фаз, но способны к образованию гелеобразного структурированного слоя на межфазной границе (ПАВ третьей и четвертой групп по классификации, приведенной в 3 гл. И). Этот слой подобен трехмерной структуре — гелю, который может возникать в растворах ряда веществ при достаточной их концентрации. К таким веществам относятся глюкозиды, белки, производные целлюлозы (карбоксиметилцеллюлоза) и другие так называемые защитные коллоиды — высокомолекулярные вещества со сложным строением молекул, которые имеют области меньшей и большей гидрофильности в пределах одной молекулы. По отноше-лию к дисперсиям гидрофильных порошков в неполярных жидкостях высокой стабилизирующей способностью обладают многие маслорастворимые ПАВ, способные прочно (химически) адсорбироваться на поверхности гидрофильных частиц. Стабилизированные таким путем лиофобные системы приобретают свойства дисперсий данного стабилизатора, т. е. становятся лиофилизованнымн. По Ребиндеру, следующие условия определяют высокую эффективность структурно-механического барьера. [c.261]

    Синтез полимеров проводили как в среде органических растворителей, так и в расплаве. В результате получены растворимые полимеры различной молекулярной массы с функциональными группами, способные в результате термической обработки образовывать сшитые трехмерные продукты с высокой термостойкостью и хорошими механическими свойствами [1-3]. Учитывая большуто ценность таких полимеров, расширен круг используемых реакций и исходных мономеров. Синтезированы новые мономеры, в т.ч. Содержащие пиримидиновый цикл [4]. Возможность протекания реакции полиприсоединения изучалась на модельных реакциях. Найдены оптимальные условия синтеза полимеров. Исследованы строение исходных и модельных соединений, а также строение и свойства полимеров [5]. [c.101]

    Особенности молекулярного строения высокомолекулярных силоксановых и ге-теросилоксановых полимеров приводят к очень низким механическим характеристикам. Вследствие отсутствия в составе их макромолекул активных групп (например, непредельных, эпоксидных и т.п.) и высокой стойкостью к различного рода физическим и химическим воздействиям, отверждение и модификация свойств данных полимеров затруднены и обычно проходят в жестких условиях. [c.110]

    В связи с особенносгями молекулярного строения их механические характеристики очень низки. Однако вследствие отсутствия в составе их макромолекул активных групп (например, непредельных, эпоксидных и г и ) и высокой стойкости к различного рода воздействиям, отверадение и модификация свойств данных полимеров затруднены [c.94]

    Как указывает в этой рабоге А. С. Предводителев, Существует еще один путь, позволяющий получать зависимости особого рода. Эти завиоимости представляют некоторое число параметров, характеризующих данное жидкое вещество, скомбинированное в группы в такой форме, которая изменяется с течением главных переменных (температура, давление), каличествеино одинаково, независимо от природы вещества. Такие зависимости мы назовем инвариантными количествами , и далее Метод механического подобия, впервые примененный в области молекулярной физики Камерлинг-Оннесом. и метод адиабатических инвариантов, указанный впервые Томсоном и Тэтом, а впоследствии Зренфестом, — эти два метода при надлежащем их использовании могут сильно продвинуть вперед наши познания о строении жидкостей . [c.300]

    Поливинилбутиральная смола нерастворима и не набухает в углеводородах. Как пленкообразующий материал поливинилбутираль обладает комплексом очень ценных свойств механической прочностью, высокой адгезией, прочностью при изгибе, хорощей прочностью при прямом и обратном ударах и др. Было показано, что особенно высокие физико-механические и химические свойства имеет покрытие на основе поливинилбутиральной смолы в сочетании с крезолоформальдегидными смолами ре-зольного типа, так как фенольная смола сообщает смоляной композиции термореактивность. Кроме того, в процессе сушки пленки протекают не только реакции между метилольными. группами, содержащимися в фенольной смоле, но и реакции между метилольными и гидроксильными группами, содержащимися в поливинилбутирале. В результате данных реакций происходит образование структур сетчатого строения, что повышает механическую прочность покрытий, их водо- и паростойкость, а также устойчивость к нефтепродуктам и ароматическим углеводородам (бензолу, толуолу). Эмаль на поверхность технических средств наносят пневматическим распылением, кистью или обливом. Для разведения эмали до необходимой вязкости применяют растворитель Р-60 (ТУ 6-10-1256—72), состоящий из технического этилового спирта (70%) и этилцеллозольва (30%). Для обеспечения необходимой сплошности и высоких антикоррозионных свойств толщина покрытия на основе эмали ВЛ-515 должна составлять 55—85 мкм. Покрытие не нуждается в специальном грунте, так как обладает высокой адгезией к металлу. [c.51]

    Полипропилен относится к группе полиолефинов. Получают его полимеризацией пропилена в присутствии металлсодержащих катализаторов. Полипропилен характеризуется высокой кристалличностью и изотак-тическпм строением молекул, что и обусловливает его хорошую механическую прочность и высокую термостойкость. Морозостойкость немодифицирован ного полипропилена изменяется от —10 до -—15 С, а модифицированного — от —10 до —30 С. Полипропилен по механической прочности, химической стойкости, водостойкости и стойкости к воздействию нефти и нефтепродуктов превосходит полиэтилены. Хорошо поддается механической обработке, а также сварке нагретым воздухом или азотом при температуре 220—240 °С. При температуре 18—23 °С и при условии, что воздействие прямых солнечных лучей исключается, полипропилен устойчив к старению. Для предотвращения теплового старения в полипропилен вводят до 0,2 7о ароматических аминов, а для замедления светового старения — 0,3% технического углерода. [c.92]

    Получены и другие карборансодержащие полимеры циклоцепного строения [304-309], например, полиоксадиазолы на основе 1,2- и 1,7-бис(4-карбокси-фенил)карборанов [306, 307] и полиимиды из 1,2- и 1,7-бис(3,4-дикарбокси-фенил)карборанов и различных ароматических диаминов [308, 309]. Эти полимеры теплостойки (температуры размягчения полиоксадиазолов составляют 330-350 °С, полиимида на основе 1,7-бис(3,4-дикарбоксифенил)карборана и и-фенилендиами-на - -375 °С), обладают хорошими механическими свойствами и благодаря специфическому влиянию карборановых групп хорошо растворимы в органических растворителях. [c.230]


Смотреть страницы где упоминается термин Строение механическое группы: [c.37]    [c.237]    [c.11]    [c.452]    [c.255]    [c.198]    [c.79]    [c.145]   
Сочинения Теоретические и экспериментальные работы по химии Том 1 (1953) -- [ c.2 , c.3 , c.178 ]




ПОИСК







© 2025 chem21.info Реклама на сайте