Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Десорбция каталитическая

    Независимо от того, происходит разряд в кислой или в щелочной среде, его непосредственным продуктом будут адсорбированные электродом атомы водорода . Для стационарного протекания электролиза необходимо поддерживать постоянной поверхностную концентрацию атомов водорода, т. е. обеспечивать их непрерывный отвод с поверхности катода. Атомы водорода могут удаляться тремя путями каталитической рекомбинацией, электрохимической десорбцией и эмиссией. При каталитическом механизме отвод атомов водорода происходит за счет их рекомбинации в молекулы с одновременной десорбцией  [c.403]


    При электрохимическом выделении водорода удаление его адсорбированных атомов может совершаться несколькими способами. Если эта стадия (стадия III в приведенной схеме) является замедленной, то скорость всего процесса должна определяться скоростью наиболее эффективного из указанных выше трех механизмов десорбции. Замедленная рекомбинация, например, означает, что каталитическое образование молекул водорода отличается большим торможением, чем разряд или стадия транспортировки, и в то же время совершается заметно быстрее, чем электрохимическая десорбция или эмиссия водородных атомов. При близких значениях [c.404]

    Т. е. обусловлено замедленностью рекомбинации атомов водорода в молекулу (каталитическая десорбция), было высказано впервые Тафелем в 1905 г. и положено в основу первой количественной трактовки кинетики электродных процессов. [c.408]

    Если использовать экспериментальные данные о степени заполнения поверхности адсорбированными атомами водорода, то можно сделать достаточно вероятные предположения о том, каким путем преимущественно соверщается отвод адсорбированных водородных атомов. Скорость разряда на адатомах водорода (электрохимическая адсорбция) зависит от поверхностной концентрации водородных атомов в первой степени, а скорость рекомбинации — во второй. Поэтому на металлах, слабо адсорбирующих водород, удаление его с поверхности должно осуществляться главным образом за счет электрохимической десорбции. Наоборот, с поверхности металлов, обладающих высокой адсорбционной способностью по отношению к атомам водорода, наиболее эффективным будет их отвод путем каталитической рекомбинации (Фрумкин). [c.413]

    Катализаторный шлам вместе с частью тяжелого газойля рекомендуется возвращать на крекинг не вместе с сырьем, а по отдельной линии в верхнюю часть реактора или зоны десорбции, так как полициклические углеводороды из тяжелого газойля резко снижают активность ЦСК. Имеются даже разновидности каталитического крекинга ("двухступенчатый крекинг"), в которых крекинг рециркулята проводится в отдельном реакторе. [c.126]

    Адсорбцию и дейтерообмен метана и этана, реакции гидрогенолиза этана, гидрогенолиза и изомеризации бутанов и некоторых углеводородов состава Сг исследовали также в присутствии черней Ки, КН и 1г [43]. Более высокую каталитическую активность Ки, КЬ и 1г в реакции гидрогенолиза по сравнению с активностью Р(1, Р1, Со или N1 объясняли легкостью образования прочно связанных (многоцентровая адсорбция) поверхностных частиц, ответственных за гидрогенолиз. Предполагается, что начальная стадия быстрого многократного разрыва С—С-связей молекулы углеводорода сопровождается медленной десорбцией продуктов реакции, которая, по-видимому, и является лимитирующей стадией гидрогенолиза на Ки-, КЬ- и 1г-катализаторах. [c.96]


    Процессы, проводимые в условиях, близких к нормальным (давление не превышает нескольких атмосфер, температура незначительно отличается от температуры окружающей среды). К ним относятся процессы в растворах (ионные реакции), диффузионные процессы с одновременной химической реакцией (адсорбция, абсорбция, десорбция, выщелачивание), многие каталитические реакции. [c.344]

    Участие поверхности в парофазном частичном окислении парафиновых угловодородов заключается обычно либо в образовании активных центров, либо в разрушении некоторых активных центров. Имеется много данных, свидетельствующих о протекании на поверхности раз-.личных реакций рекомбинации радикалов. С другой стороны, образование продуктов частичного окисления почти никогда но происходит в результате процессов хемисорбции парафиновых углеводородов и -кислорода на каталитической поверхности с последующей химической трансформацией на поверхности и десорбцией, образовавшихся стабильных продуктов в газовую фазу. Реакции, подобные конверсии этилена до окиси этилена на серебряных катализаторах, не обнаружены в случае окисления парафиновых углеводородов. Вместо этого такие обычные катализаторы окисления, как например, окислы металлов переменной валент- [c.320]

    Однако в некоторых случаях значительная часть превращения осуществляется в газовом объеме, иногда на большом расстоянии от поверхности катализатора. Исследования показали, что в ходе многих каталитических реакций окисления имеет место десорбция радикалов с поверхности катализаторов в газовую фазу. Экспериментально было доказано, что катализатор может участвовать в процессе зарождения цепи в качестве инициатора свободных радикалов и в процессе продолжения цепи в качестве одного из участников элементарных стадий на поверхности [1.30]. [c.15]

    Глубина преврашения сырья при каталитическом крекинге регулируется объемной (или массовой) скоростью подачи сырья, а также зависит от температуры процесса и кратности циркуляции катализатора. Для увеличения глубины преврашения сырья повышение температуры должно сопровождаться увеличением объемной скорости. Как видно из табл. 7, с повышением температуры крекинга снижаются выходы кокса и тяжелого газойля, что объясняется усилением десорбции и удалением тяжелых паров с поверхности катализатора. При этом заметно возрастает выход газа при практически постоянном выходе светлых (суммы бензина и легкого газойля). [c.51]

    Данную картину более наглядно можно представить следующим образом. В полостях цеолита при термодинамически подходящих условиях каталитический крекинг н-парафинов протекает по механизму, аналогичному для алюмосиликатного катализатора, однако десорбция продуктов возможна лишь для линейных структур (неразветвленные олефины и парафины). [c.307]

    Вода и водяной пар. Наличие паров воды даже в небольших количествах снижает активность катализатора и тем больше, чем выше была его первоначальная активность. Катализатор, адсорбировавший влагу из воздуха при хранении в открытой таре, при прокаливании и работе заметно снижает каталитическую активность, так как десорбция влаги осуществляется с большим трудом вода удаляется с катализатора только при прокаливании в вакууме. У прокаленного таким образом катализатора отравления не наблюдается. [c.18]

    Основная предпосылка, лежащая в основе понимания механизма гетерогенного катализа, состоит в том, что при протекании каталитической реакции происходит адсорбция (почти всегда хемосорбция) одного или нескольких реактантов на твердой поверхности, перераспределение связей п десорбция продуктов. [c.10]

    В общ,ую процедуру принятия решений при оптимизации пористой структуры катализатора, рассмотренную в разд. 3.1, входит в качестве обязательного этапа составление математической модели гетерогенно-каталитического процесса на зерне катализатора и идентификация ее параметров. Эта модель должна отражать как геометрические характеристики структуры зерна, так и важнейшие особенности собственно физико-химических процессов, протекаюш,их в нем. Для наглядности представления последних удобно мысленно выделить фиксированную группу молекул исходных веществ, которая участвует в ряде последовательных физико-химических стадий суммарного контактного процесса на зерне катализатора 1) перенос исходных веществ из реакционной смеси к внешней поверхности частиц катализатора 2) перенос исходных веществ от внешней поверхности частиц катализатора к их внутренней поверхности 3) адсорбция исходных веществ на активных центрах катализатора 4) реакция между адсорбированными исходными веществами и перегруппировка адсорбционного слоя 5) десорбция продуктов реакции 6) перенос продуктов реакции от внутренней поверхности частиц катализатора к их внешней поверхности 7) перенос продуктов реакции от внешней поверхности катализатора в объем реакционной смеси. [c.149]


    С этих же позиций могут быть объяснены наблюдаемые закономерности кинетики каталитических процессов. Различные формы моделей кинетики процессов адсорбции и десорбции с учетом вида твердой поверхности приведены в табл. 3.3. Здесь же указаны основные параметры моделей кинетики — константы скорости адсорбции и десорбции К ,. [c.151]

    Простейший пример механизма сопряжения — совместная работа двух катализаторов (например, с помощью прямого взаимодействия промежуточных продуктов частных реакций различного типа, адсорбированных на соприкасающихся кристаллах (зернах) контактов разных функций, через перемещение адсорбированных промежуточных продуктов с контакта на контакт посредством поверхностной диффузии, а также через газовую фазу с десорбцией с одного контакта и адсорбцией на другом). Преимущественное использование смешанных катализаторов перед простыми и необходимость применения носителей и модификаторов вызваны необходимостью обеспечить скрытое сопряжение, требуемое для получения определенного продукта. Для эффективного сопряжения, как правило, требуются сложные каталитические системы. До сих пор их находят в основном эмпирически. Сознательный подбор и конструирование таких систем — одна из насущных задач теории катализа. Его частный и особенно важный вид — морфологический катализ — состоит в обеспечении определенного строения продуктов реакции. [c.306]

    Сопоставление общей кислотности и силы кислотных центров, измеренных по поглощению и десорбции пиридина, показало, что изомеризация протекает на сильных кислотных центрах. Если оценить каталитическую активность сильной кислоты в 100, то для кислоты средней силы она составляет 10, а для слабой отсутствует (0). Именно высокая чувствительность изомеризации к силе кислоты используется при получении а-олефинов дегидратацией спиртов. Для этого процесса не требуются сильные кислотные центры, а использование слабой кислоты позволяет получать только а-олефины, без их изомеризации в 7- и р-изомеры. Чувствительность изомеризации к величине Н использована для определения силы кислотных центров при расчете скорости изомеризации диме-тилбутена-1 и других олефинов [13].  [c.95]

    Гетерогенно-каталитический процесс на зерне катализатора включает следующие стадии 1) транспорт реагента к внешней поверхности катализатора, 2) транспорт реагента к внутренней поверхности катализатора, 3) адсорбцию реагента и реакцию на поверхности десорбцию продуктов с поверхности, 4) обратный транспорт продуктов от внутренней и внешней поверхности. [c.267]

    Каталитическое превращение на твердом катализаторе, в отличие от гомогенных реакций, представляет собой сложный процесс, состоящий из ряда последовательных стадий 1) подведение реагентов к внешней поверхности катализатора 2) диффузия реагентов в порах катализатора к внутренней его поверхности (для пористых катализаторов) 3) адсорбция реагентов на поверхности катализатора 4) собственно химической реакции 5) десорбция продуктов реакции 6) диффузия продуктов реакции с внутренней поверхности катализатора 7) диффузия продуктов реакции с внешней поверхности катализатора. [c.79]

    Здесь мы рассмотрим закономерности кинетики гетерогенно-каталитических реакций в отсутствие диффузионного торможения, т. е. три из перечисленных стадий — адсорбцию, собственно реакцию и десорбцию. В обычных кинетических исследованиях эти стадии неразличимы тем не менее гетерогенно-каталитический процесс остается по своей природе сложным. Этим и объясняются характерные для гетерогенного катализа сложные и разнообразные кинетические закономерности. [c.79]

    Различная интенсивность адсорбционных процессов на различных участках поверхности данного адсорбента объясняется неоднородностью поверхности. Каталитическая активность материала обычно связана с адсорбцией реагирующих веществ на активных для данного процесса участках его поверхности, поэтому решающее значение имеет наличие именно этих активных участков (активных центров). Поэтому имеет значение не только адсорбция молекул исходных веществ, но и десорбция образующихся молекул п одуктов реакции. Существенно развитие поверхности, однако даже при значительной поверхности материал не будет активным катализатором, если структура и состояние ее таковы, что на ней нет необходимых активных центров. Вследствие этого для активности катализатора имеет значение не только химический его состав, но, не в меньшей степени, и способ изготовления, от которого зависят состав, структура и состояние поверхности катализатора. Так, специально приготовляемая активная окись алюминия служит хорошим катализатором реакции получения этилена путем дегидратации этилового спирта. Но для получения такой активной окиси алюминия необходимо тщательно соблюдать определенные условия, без чего она при том же химическом составе может не обладать активностью или быть мало активной. [c.495]

    Точная интерпретация химических кинетических измерений с точки зрения их практического применения является основной темой книги Юнгерса Хоуген и Ватсон подробно рассмотрели гетерогенно-каталитические газовые реакцип с твердым катализатором с учетом влияния адсорбции и десорбции. [c.235]

    Рассмотрим каталитические процессы, в которых хемосорбция и десорбция протекают с высокими скоростями и на поверхности катализатора существует равновесие адсорбции. Для описания скорости процесса на поверхности используется уравнение, аналогичное закону действующих масс  [c.645]

    Технологическая схема. В промышленности процесс осуществляют в системах с непрерывно циркулирующим катализатором, который последовательно проходит через зоны каталитического крекинга сырья, десорбции адсорбированных углеводородов, окислительной регенерации. [c.115]

    Катализом называется ускорение химических реакций в присутствии определенных веществ (катализаторов), многократно химически взаимодействующих с реагентами, но не входящих в состав продуктов реакции [1]. Каталитический процесс включает в себя три этапа адсорбцию, химические превращения на поверхности и десорбцию. Каждый из этапов состоит из нескольких последовательных или параллельных стадий физического и химического взаимодействия промежуточных соединений на поверхности друг с другом и с компонентами газовой фазы. Суммарная скорость каталитического процесса зависит от скоростей его отдельных стадий. Несмотря на специфичность каталитического действия, сущность катализа едина и состоит в том, что катализатор, входя в состав промежуточных соединений, увеличивает степень компенсации энергии разрыва старых связей энергией, освобождаемой при образовании новых связей. Этим самым обеспечивается снижение энергии активации химической реакции. [c.8]

    Каталитический крекинг нефти. По данным А. В. Агафонова и других [3] при крекинге нефти в присутствии алюмосиликатных катализаторов высококипящие углеводороды, главным образом нафтеновые и ароматические с боковыми парафиновыми цепями, а также смолистые и сернистые сиединения, разлагаются с высокой Скоростью. Присутствие в крекируемой смеси низкомолекулярных углеводородов способствует десорбции продуктов разложения и оказывает благоприятное действие вследствие значительного понижения концентрации смолистых и полициклических соединений на поверхности катализатора [3]. Ниже приведен баланс (в % вес. на нефть) однократного крекинга сернистой смолистой нефти (плотность = 0,867, содержание серы 1,6% вес., коксуемость 5,8% вес., содержание фракций ло 350° 48,5% вес.) в присутствии природного катализатора с индексом активности И—14. Условия процесса температура в реакционной зоне 450 , объемная скорость подачи сырья 1,2—1,5 час. , весовая кратность циркуляции катализатора 5. [c.215]

    В результате десорбции получают эксианзерный газ. Содержащаяся в нем углекислота используется при каталитической конверсии метана в качестве окислителя и для регулировки соотношения Н2 СО в конвертированном газе. Избытки ее сдуваются в сеть отходящих газов. [c.18]

    ИК-спектроскопией адсорбированного аммиака и пиридина установлено усиление апротонной кислотности и образование центров протонной кислотности в результате хлорирования т -оксида алюминия четыреххлористым углеродом. Исследования масс-спектров продуктов десорбции с поверхности образцов -у- и tj-оксидов алюминия до и после хлорирования и электронная оптическая спектроскопия адсорбированных состояний некоторых оснований позволили установить, что причиной принципиальной разницы в каталитической активности хлорированных tj- и 7-оксидов алюминия в низкотемпературной изомеризации парафиновых углеводородов являются различия в свойствах поверхности прокаленных при 500 °С оксидов алюминия, в том числе в количестве и расположении гидроксильных групп, обусловленных особенностями кристаллической структуры 7 - и 7-оксидов алюминия [90]. Хлорирование поверхности оксида алюминия, сопровождающееся выделением хлороводорода и диоксида углерода, усиливает кислотность апротонного и протонного типа. Бренстедовская кислотность обусловлена хемосорбированнымНС . [c.72]

    В установках продуцирующего предкатализа гидрирование протекает на железном плавленом катализаторе при 550—600°С и высоком давлении. В этом случае гидрирование СО, СО2 и О2 происходит в колонне одновременно с синтезом аммиака. На рис. 2 приведена схема моноэтаноламиновой очистки и каталитического метанирования азотоводородной смеси. Конвертированный газ под давлением 2,8 МПа при температуре около 300°С поступает в выносные кипятильники /7, в которых из отработанного моноэтаноламина при кипении происходит окончательная десорбция СО2. По выходе из кипятильников конвертированный газ охлаждается в сепараторе-конденсаторе 15 и холодильнике 12. Пройдя сепаратор 13, газ поступает в нижнюю часть абсорбционной колонны 16. Сверху колонна орошается свежим 20 /о-ным раствором моноэтаноламина (МЭА). Раствор МЭЛ подается в колонну центробежным насосом 14, предварительное охлаждение происходит в аппаратах 5 и 6. По выходе из абсорбционной колонны очищенная от СО2 азотоводородная смесь проходит сепаратор 7 и подогревается в теплообмепиике 8 и кипятильнике /7 до 300°С. Далее газ поступает сверху в реактор метаниро- [c.49]

    Процессы каталитического крекинга нефтяного углеводородного сырья над мелкодисперсным алюмосиликатным катализатором и регенерации такого катализатора можно осуществить в промынглеыном л асштабе с помощью реакторов различной конструк и1и. Принципиальные Ш1 ложения, развитые во введении к настоящему разделу, предопределили необходимость разработки непрерывного процесса каталитического крекинга, ч о привело к разделению функций аппаратов но крайней мере на три ступеци (крекинг, регенерацию, десорбцию углеводородов) и к разработке аппаратов-реакторов высокой производительности для контактирования тве])догс мелкодисперсного движущегося катализатора с газопаровыми потоками. [c.160]

    Итак автоколебания в гетерогенно-каталитической системе могут возникнуть, если система открыта, система нелинейна и в системе существует обратная связь. В открытой гетерогенно-каталитической системе выделяются следующие стадии транспорта и химического превращения реагирующих веществ подача в реактор массо- и теплоперенос к активной поверхности катализатора адсорбция исходных веществ на активных центрах катализатора реакция между адсорбированными исходными веществами и перегруппировка адсорбционного слоя десорбция продуктов реакции массоперенос продуктов реакции от активной поверхности катализатора вывод из реактора продуктов реакции. [c.316]

    При однофазном потоке, как и в газовой фазе, процессы превращения веществ протекают в несколько стадий 1) подвод реагентов пз ядра потока к вненшей поверхности катализатора 2) диффузия реагентов в порах катализатора из раствора к его внутренней поверхности 3) адсорбция реагентов 4) собственно химическая реакция на поверхности катализатора 5) отвод продуктов реакции через стадии десорбции и внутренней, и внешней диффузии. При двухфазном потоке вследствие того, что катализатор смачивается одной пз фаз, эта последовательность не нарушается, однако ей предваряется либо за ней следует стадия диффузии реагентов или продуктов в дисперсную фазу. Особенно четко это проявляется в газожидкостных реакциях, где катализатор пропитан жидкостью или покрыт ее пленкой. Диффузия из одной фазы потока в другую, которую обозначим как межфазную, протекает в общем так же, как и в случае двухфазных систем без твердого катализатора (см. гл. И). Межфазная диффузия не имеет, собственно, прямого отношения к гетерогенно-каталитической реакции, но доляша учитываться при расчетах реакторов (см. гл. 10). Поэтому в настоящей главе рассматриваются только явления, происходящие в системе раствор — твердый катализатор. [c.47]

    Легкий бензин каталитического крекинга (4% олефинов Се—С ) Стационарная с двухстадийной десорбцией Цеолиты с порами 0,4—0,5 нм 75-185 85-185 55 [35] [c.196]

    Квазистационарность. Сложный гетерогенно-каталитически про-цесс включает ряд стадий адсорбции и десорбции исходных веществ, промежуточных и конечных продуктов и реакций взаимных превращений веществ, адсорбированных на активной поверхности. Полное число стадий может быть весьма велико, и, чтобы разобраться в кинетике сложного процесса, необходимо учесть обычно наблюдаемые резкие различия между скоростями отдельных стадий. Ключ к этому дает теория стационарных реакций Хориути—Темкина [16, 171, которая опирается на понятие квазистационарности реакций, Ёпервые [c.87]

    В работах Ройтера, а также Голодца с сотрудниками [38—411 рассмотрены результаты но применению ЛССЭ к реакциям гетерогенно-каталитического окисления. Авторы установили наличие хорошей линейной взаимосвязи между теплотой хемосорбции кислорода на катализаторе и активностью последнего в реакциях полного окисления углеводородов, а также наличие восходящей и нисходящей ветвей в такой зависимости. Аналогичные результаты получены Боресковым и сотрудниками для реакции окисления СН4 и На в отношении теплоты десорбции кислорода для ряда окисных катализаторов [421. [c.162]

    Основная предпосылка для понимания катализа заключается в том, что при протекании каталитической реакции происходят хемосорбглия одного или нескольких реагентов на поверхности, перераспределение связей и десорбция продуктов. Все теории катализа можно разделить на четыре группы  [c.83]

    На рис. 4.1, а пунктирная кривая З -З отвечает малым значениям когда адсорбционная стадия требует большей затраты энергии, а десорбция является экзотермической пунктирнгш прямая 4-4 отвечает обратному случаю, а 3-3 описывает оптимальные условия, когда затраты энергии на образование и распад мультиплетного комплекса одинаковы и энергия активации их каталитического превращения будет минимальной. [c.85]

    Принцип энергетического соответствия Баландина несомненно полезен, но использование его ограничено, поскольку энергетика процесов обычно неизвестна, промежуточнызс комплексов частс образуется несколько и приходится иметь дело с селективностью., стабильностью, а не с активностью как таковой. Однако изучение явлений отравления, закоксовывания, физической блокировки устьев пор и каталитической коррозии может позволить оценить энергию образования промежуточного комплекса и его стабильность, если от суммарного значения энергий образования промежуточного комплек са и хемосорбции реагентов вычесть последнюю или от суммарного значения энергии распада промежуточного комплекса и десорбции отнять энергию десорбции продуктов. [c.85]

    Применение принципа энергетического соответствия А.А.Валандина оказывает большую помощь при подборе технологического режима процесса или синтеза катализатора в случае рассмотрения одновремен но протекающих нескольких сложных реакций с образованием кокса и[ низкой стабильностью работы катализатора. В этих случаях создание условий, благоприятствующих десорбции при постоянной конверсии, или уменьшение активности катализатора могут способствоват . энергетическому соответствию, росту стабильности работы катализатора, имеющей большое значение в промышленности. Примером можег служить каталитический крекинг мазута, в котором за счет повышения температуры в лифт-реакторе до 600 С, сокращения времени контакта сырья с катализатором до 2-3 с и сохранения конверсии [c.85]

    Чтобы каталитическая реакция протекала быстрее гомогенной некаталитической, необходимо, чтобы катализатор повышал степень компенсации энергии разрывающихся связей энергией образую1цихся. На рис. 4.2 показано изменение энергии на различных стадиях простой экзотермической реакции. .ом> - адс> де это энергия активации гомогенной реакции, адсорбции реагентов на катализаторе, образования активированного комплекса и десорбции продуктов соответственно и Чдес - экзотермическая теплота адсорбции и эндотермическая теплота десорбции А Я - общее изменение энергии в реакции, ко- [c.86]

    Повышение каталитической активности цеолитсодержащего катализатора, температуры при одновременном увеличении массовой скорости подачи сырья и сохранении постоянной глубины превращения способствует десорбции промежуточных продуктов реакции уплотнения, обрыву цепной реакции зарождения и уменьшению инициированной. цепной реакции образования на активных центрах твердых полимеров кокса. По мере утяжеления сырья, роста его коксогенности требуется все большая интенсификация процесса путем одновременного повышения температуры и сокращения продолжительности контакта сырья с катализатором. При сохранении глубины процесса постоянной наблюдается уменьшение выхода кокса на 20-30% и повышение выхода остальных продуктов. На многих заводах каталитическому крекингу подвергают мазуты и гудроны, содержащие до 50 млн 1 металлов при температуре в низу лифт-реактора 600 С и продолжительности контактирования не более 2 с. Дальнейшая интен-сификаххия процесса сдерживается ростом доли реакций термического крекинга, выхода сухого газа и ослаблением реакций Н-переноса. Таким образом, можйо сделать вывод, что многие каталитические процессы можно интенсифицировать за счет подбора для каждой пары катализатор-сырье соответствующей глубины превращения, повышения температурь и сокращения времени контактирования сырья с катализатором. [c.101]

    Изучение механизма реакции можно начать с измерения скоростей реакций смесей различного состава при разных температурах в дифференциальном реакторе, позволяющем контролировать тепло- и массоперенос. Полезны также изотопные метки и кинетические изотопные эксперименты. Такое исследование может дать достаточно ясное представление о важнейших стадиях реакции, например может позволить определить лимитирующую стадию. Информация о лимитирующей стадии может быть полезной при попытках повысить активность селективного, но относительно мало активного катализатора. Однако глубокое понимание механизма гетерогенных каталитических реакций достигается очень редко. Но благодаря успехам последних лет в приборостроении сегодня имеется больше оснований надеяться на достижение этой цели, чем 10 лет назад. Некоторые детали механизма можно понять, если сочетать тщательные кинетические исследования с подробным описанием катализатора методами хемосорбции, температурно-программированноп десорбции (ТПД), спектроскопических исследований поверхностного слоя, которые позволяют судить и о состоянии поверхно-стп катализатора, и о промежуточных соединениях, образующихся на ней в ходе данной реакции. [c.12]


Смотреть страницы где упоминается термин Десорбция каталитическая: [c.16]    [c.140]    [c.417]    [c.163]    [c.154]    [c.174]    [c.178]    [c.101]    [c.121]   
Теоретическая электрохимия Издание 3 (1975) -- [ c.429 , c.438 ]




ПОИСК





Смотрите так же термины и статьи:

Десорбция



© 2024 chem21.info Реклама на сайте