Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ударное сжатие и детонация

    В последние годы большое развитие получила химия ударного сжатия. При сжатии твердых тел и жидкостей ударными волнами, образуемыми, например, детонацией взрывчатых веществ при взрывах, в миллионные доли секунды развиваются в веществе очень высокие давления. При этом образуются активные частицы как радикального, так и ионного типов. Последствия прохождения через вещество ударной волны могут быть самыми различными. Взрыв, с одной стороны, вызывает раздробление вещества, распад сложного вещества на относительно более простые. Но возможно и обратное превращение —образование из простых молекул более сложных и длинных полимерных цепей. [c.204]


    Самовоспламенение горючей смеси возможно в горячем сосуде в результате адиабатического сжатия или нагревания под действием ударной волны (детонация).  [c.22]

    УДАРНОЕ СЖАТИЕ И ДЕТОНАЦИЯ [c.31]

    На рис. 2.3. фронт ударного сжатия в детонации изображен плоскостью ВВ, перпендикулярной плоскости чертежа, фронт воспламенения -поверхностью ББ. Фронт сгорания искажен случайным - на рисунке утрированным - возмущением КЛК. [c.26]

    В последние годы большое развитие получила химия ударного сжатия. При сжатии твердых тел и жидкостей ударными волнами, образуемыми, например, детонацией взрывчатых веществ при взрывах, в миллионные доли секунды развиваются в веществе давления [c.221]

    При детонации реакция распространяется по сжатому и разогретому в ударной волне веществу. Передача энергии путем ударного сжатия происходит зна чительно быстрее, чем теплопередачей, так как скорость распространения ударной волны всегда больше, а скорость горения меньше скорости звука в исходном веществе. Сильные ударные волны, какими являются детонационные волны, принципиально отличаются от звуковых волн. Ударные волны распространяются в виде отдельного скачка уплотнения и сопровождаются движением сжатого и нагретого ими вещества в направлении распространения фронта волны. Скорость ударной волны зависит от ее интенсивности, в то время как скорость звука зависит только от свойств исходной среды. [c.64]

    Сжатие и нагрев несгоревших газов ударной волной привадит к воспламенению. В этом случае во взрывной зоне в свою очередь выделяется большое количество тепла, которого почти достаточно для того, чтобы поддержать стационарную ударную волну. Если допустить, что между концом ударного фронта и началом взрывной волны имеется небольшая зона, где не идет никакой реакции, то газы в этой области будут более горячими, чем несжатые газы, и более плотными в результате большого давления. Следовательно, их локальная поверхностная скорость относительно ударного фронта меньше, чем скорость несжатых газов перед фронтом. Последующая химическая реакция, хотя и нагревает газы, по они сохраняют более высокую плотность, а следовательно, и более низкую скорость по сравнению с несгоревшими газами. Таким образом, относительно фронта детонации продукты горения удаляются с объемной скоростью, меньшей, чем скорость несгоревших газов. Это противоположно положению для обычной волны горения. Профиль одномерной детонационной волны схематично изображен на рис. XIV. . [c.405]


    Расширение газов при горении смеси приводит к образованию ударной волны, распространяющейся перед фронтом пламени. Сжатие газа и его нагревание в ударной волне тем сильнее, чем больше скорость движения расширяющихся газов, которая в свою очередь определяется скоростью горения. При быстром сгорании нагревание смеси в ударной волне может стать настолько значительным, что произойдет ее воспламенение перед фронтом пламени. В этом случае создается такой режим горения, при котором послойный процесс поджигания осуществляется не путем теплопроводности, а под действием импульса давления, т. е. путем детонации. Прн детонационном горении образуется комплекс ударной волны и следующей за ней зоны сжатой и нагретой реагирующей смеси — так называемая детонационная волна. [c.23]

    Для ацетилена известно так называемое каскадное двухстадийное) разложение , при котором часть газа сгорает, а остальная часть сжимается перед фронтом пламени и детонирует уже в сжатом состоянии. Давление, развивающееся при таком каскадном разложении, превышает давление, которое может возникнуть в результате детонации даже при увеличении давления вследствие отражения ударной волны от препятствия (торец, поворот и т. д.). [c.23]

    Детонационное сгорание чаще всего происходит при неправильном выборе бензина для двигателей с высокой степенью сжатия. При детонационном горении скорость распространения фронта пламени резко увеличивается, достигая 1500...2000 м/с. Поскольку пространство камеры сгорания невелико, упругие детонационные волны многократно ударяются и отражаются от стенок камеры сгорания, что вызывает характерный для детонации металлический стук. Отражающиеся ударные волны нарушают нормальный процесс сгорания, вызывают вибрацию деталей двигателя, в результате чего значительно возрастает износ. Выпускные газы приобретают темный, иногда черный цвет, т.е. при детонации увеличивается неполнота сгорания топлива. [c.43]

    Детонационная стойкость является основным показателем качества авиа- и автобензинов, она характеризует способность бензина сгорать в ДВС с воспламенением от искры без детонации. Детонацией называется особый ненормальный режим сгорания карбюраторного топлива в двигателе, при зтом только часть рабочей смеси после воспламенения от искры сгорает нормально с обычной скоростью. Последняя порция несгоревшей рабочей смеси, находящаяся перед фронтом пламени, мгновенно самовоспламеняется, в результате скорость распространения пламени возрастает до 1500 - 2000 м/с, а давление нарастает не плавно, а резкими скачками. Этот резкий перепад давления создает ударную детонационную волну, распространяющуюся со сверхзвуковой скоростью. Удар такой волны о стенки цилиндра и ее многократное отражение от них приводит к вибрации и вызывает характерный звонкий металлический стук высоких тонов. При детонационном сгорании двигатель перегревается, появляются повышенные износы цилиндро-поршневой группы, увеличивается дымность отработавших газов. При длительной работе на режиме интенсивной детонации возможны и аварийные последствия. Особенно опасна детонация в авиационных двигателях. На характер сгорания бензина и вероятность возникновения детонации в карбюраторных двигателях оказывают влияние как конструктивные особенности двигателя (степень сжатия, диаметр цилиндра, форма камеры сгорания, расположение свечей, материал, из которого изготовлены поршни, цилиндры и головка блока цилиндра, число оборотов коленчатого вала, угол опережения зажигания, коэффициент избытка и влажность воздуха, нагарообразование, тепловой режим в блоке цилиндров и др.), так и качество применяемого топлива. [c.123]

    При переходе горения в детонацию ВВ подвергается воздействию волн сжатия, что может приводить к дополнительному дроблению вещества, если таковая возможность существует, т. е. когда не достигнута предельная степень измельчения. Вопрос о дроблении кристаллов ВВ в динамических (ударных) условиях нагружения специально исследовался в работе [33]. Заряды ВВ насыпной плотности с начальным размером частиц 1 мм подвергались сжатию ударной волной амплитудой 1500—2000 атм. Образцы сохранялись, после чего определялось распределение частиц по размеру. Найдено, что конечный размер частиц, соответствующий максимуму распределения, составляет 10—20 мк. [c.37]

    Скорость низкоскоростного режима существенно ниже (в 2—10 раз) скорости нормальной детонации. В настоящее время доказана волновая природа низкоскоростного режима химическая )еакция инициируется движущейся по заряду ВВ волной сжатия 120, 125—127]. Низкоскоростные режимы возникают как при поджигании ВВ в оболочке, так и при воздействии на ВВ слабой ударной волны. [c.143]

    Возникновение детонации впереди ускоряющегося фронта горения, а также подпрессовка ВВ в переходной области (см. рис. 81, а, г) подтверждают точку зрения, что основной причиной возникновения детонации является ударная волна, которая образуется в результате сложения волн сжатия, инициируемых фронтом горения, т. е. по классическому поршневому механизму. Данный механизм обсуждался в литературе [121,142,143]. [c.181]


    Уже первыми исследователями детонационная волна рассматривалась как ударная, в которой развивается достаточно высокая температура, приводяшая к самовоспламенению прилегающих слоев смеси (волна ударного сжатия и сгорания). На основе этих представлений были разработаны основы теории детонации, получившей название гидродинамической теории [21, 144]. [c.140]

    В данной схеме детонационная волна рассматривается как комплекс ударная волна - юна реакции. Вследствие экспоненциальной зависимости скорости реакции от температуры энерговыделение происходит на малом участке НБ. Сгорание происходит не мтновенно, как утверждали первые исследователи детонации [11], а занимает некоторое время т [30]. Поэтому перед продуктами сгорания существует участок старой, но непрореагировавшей смеси, передняя граница которого - фронт ударного сжатия - движется со скоростью детонации V (состояние сжатой смеси долишо находиться одновременно на кривой II и на продолжении гфямой [c.25]

    Детонация представляет собой процесс распространений в газе, жидкости или твердом теле экзотермического химического превращения в виде узкой зоны, движущейся относительно исходного вещества со скоростью, превышающей скорость звука. Эта зона названа детонационной волной. Быстрая реакция в зоне возбуждается не вследствие передачи тепла от прореагировавшего слоя вещества к непрореагировавшему, а путем ударного сжатия и соответствующего нагревания исходной среды, вызванного давлением продуктов реакции. Поэтому детонация возможна только в таких средах, продукты реакции которых занимают больший объем, чем исходное вещество. Строгим критерием принципиальной возможности детонации в данной среде является положительный знак изобарическо-изохорическо-го теплового эффекта соответствующей реакции Qpv. Эта величина измеряется теплотой, выделяемой в условиях постоянства давления р и удельного объема V. [c.311]

    На основе существуюш,их представлений переход горения твердых ВВ в детонацию можно представить обш,ей упрош енной схемой (рис. 44), которая включает следующие стадии I — устойчивое послойное горение II — конвективное горение III — низкоскоростной (800—3500 м1сек) режим взрывчатого превращения IV стационарная, нормальная детонация. Каждая из стадий различается механизмом передачи тепла и возбуждения реакции. Основной формой передачи тепла при послойном горении является молекулярная теплопроводность, при конвективном горений — вынужденная конвекция. Низкоскоростной режим возбуждается волнами сжатия, детонация — ударной волной. В общем случае развитие процесса является ускоренным. Конечным результатом ускоренного развития является формирование ударной волны, которая инициирует детонацию ВВ, если ее амплитуда превышает критическое значение, и система является детонационноспособной (диаметр заряда превышает критический диаметр детонации). Существование и пространственная протяженность отдельных стадий зависят от структуры заряда, физико-химических (индивидуальных) свойств ВВ, условий проведения опыта. Так, например, конвективное горение может непосредственно переходить в детонацию, минуя стадию III. Развитие процесса может заканчиваться установлением низкоскоростного режима с постоянной скоростью, и возникновение детонации отсутствует. [c.110]

    Изложенное выше относилось к высокоплотным ВВ. Не исключено, что полученные здесь результаты могут оказаться полезными при объяснении закономерностей распространения низкоскоростной детонации в порошкообразных ВВ. В этом отношении представляет интерес работа Болховитинова с сотр. [154], в которой было показано, что ударное сжатие порошкообразного тротила в нестационарной детонационной волне носит сложный ступенчатый характер, и наблюдаются две волны. По мнению авторов, вначале происходит закрытие пор, после чего —дальнейшее сжатие гомогенного вещества. [c.161]

    Рассмотрим явления, происходящие при сферической детонации топливо-кислородных и топливо-воздзопных смесей. Распространение сферической детонационной волны отличается от распространения плоской детонационной волны в трубке постоянного сечения прежде всего тем, что в первом случае поверхность ударной волны, распространяющейся во фронте детонационной волны и обеспечивающей воспламенение ударно-сжатого газа, непрерывно возрастает как квадрат ее радиуса, во втором случае поверхность ударной волны остается постоянной. Из эксперимента известно, что плоская детонационная волна может стационарно распространяться со скоростью, пониженной на 10—15% по сравнению с расчетной. Следовательно, если при распространении сферической детонационной волны обеспечить условия, при которых падение скорости не будет превышать 10—15% от расчетной, то такая волна, по-видимому, будет распространяться стационарно. Из чисто геометрического рассмотрения структуры сферической детонационной волны можно получить зависимость ослабления ударной волны во фронте сферической детонационной волны от ее радиуса и периода индукции воспламенения смеси в условиях сжатия ее ударной волной [7]. Эта зависимость имеет следующий вид  [c.185]

    Детонационное горение. Детонационное горение возникает во взрывоопасной среде при прохождении по ней достаточно сильно ударной волны (или волны ударного сжатия). Например, если в сосуде с горючей газовбздушной смесью взорвать точечный заряд взрывчатого вещества, то по газовой смеси от точки расположения заряда начнет распространяться ударная волна. В ударной волне происходит внезапное (скачкообразное) повышение параметров состояния газа — давления, те.мперату-ры, плотности. Повышение температуры газа при сжатии в ударной волне значительно больше, че.м при аналогичном сравнительно медленном адиабатическо.м сжатии.. Абсолютная температура газа, сжатого ударной волной, пропорциональна давлению ударной волны. Следовательно, если ударная волна достаточно сильная, то температура газа под действием ударного сжатия может повыситься до температуры са.мовоспламенения. Так как смесь реакционноспособна, произойдет химическая реакция. Выделившееся тепло пойдет частично на энергетическое развитие и усиление ударной волны, поэтому она будет перемещаться по смеси, не ослабевая. Этот комплекс, представляющий собой ударную волну и зону химической реакции, называется детонационной волной, а само явление — детонацией. Так как химическая реакция при детонации протекает по тому же уравнению, что при самовоспламенении, определяюще.м процесс горения, то детонацию можно считать детонационным горением. [c.132]

    Значительная экзотермичность процессов окисления горючего может привести к возникновению в камерах сгорания локализованных зон реакций, распространяющихся в окружающей их непрореагировавшей смеси. Различают два механизма такого распространения — дефлаграцию и детонацию. При дефлаграции фронт пламени распространяется с дозвуковой скоростью инициирование реакции при этом осуществляется посредством диффузии активных центров и теплопроводности. При детонации фронт пламени распространяется со сверхзвуковой скоростью, причем инициирование реакции происходит вследствие газодинамического ударного сжатия и нагрева, а выделяющаяся теплота реакции подпитывает ударную волну и обеспечивает режим самоподдержания реакции. В обоих случаях распространение фронта реакции определяется сильной взаимосвязью химической кинетики и газовой динамики. [c.31]

    Взрыв плава аммиачной селитры может инициироваться при нагревании от прямого сжатия ударной волны. Для жидкой и твердой аммиачной селитры, как и для ВВ, существует минимальный (критический) диаметр заряда, ниже которого инициирование и распространение детонации невозможны. Чем выше температура, тем меньше критический диаметр заряда он зависит также от размеров частиц, плотности и влажности материала. Критический диаметр для аммиачной селитры колеблется в широких пределах в зависимости от указанных условий и примерно в 100 раз больше, чем типичных ВВ. Но для одной и той же селитры критический диаметр резко и значительно снижается даже в слабоограниченном и особенно в ограниченном пространстве. Это особенно важно учитывать при выборе диаметра трубопроводов для транспортировки плава и сыпучего продукта. [c.47]

    При возбуждении ударной волны в химически реагирующем горючем газе под влиянием адиабатического сжатия смеси наряду с ударной волной возникает волна горения. Совокупность этих волн представляет собой детонационную волну. В детонационной волне потери на трение и теплоотдачу при ее движении по трубе компенсируются энергией, выделяющейся в волне горения. Благодаря этому при распространении по трубе детонационной волны становится возможным стационарный режим, когда скорость детонации (О) остается постоянной. Условие существования стационарного режима определяется правилом Чемпена — Жуге, согласно которому стабильность детонационной волны достигается, если скорость потока сжатого газа за фронтом детонационной волны равна или выше скорости звука в этом газе. Правило Чемпена — Жуге позволяет найти на адиабате Гюгоньо точку с такими значениями Рг и Уг, которые обеспечивают стабильность детонационной волны и позволяют вычислить скорость детонации В  [c.141]

    Наблюдения и прямая регистрация процесса на ударных трубах показали, что в области низких температур меняются не только значения но и гидродинамический характер протекания реакции — быстро развивающийся резкий взрыв, возникающий в некоторой совокупности очагов — центров взрыва, заменяется мягким режимом воспламенения, сопровождающимся образованием, областей, ограниченных фронто.м пламени. Переход в детонацию в режиме мягкого взрыва возможен лишь при дополнительном сжатии и нагреве газа в процессе развития пламени и его ускорения, тогда как в высокотемпературной области Е детонационный режим мо5кет развиться да- [c.304]

    Детонация ьоанвкает под действием ударных воли, в частности, в результате самоускорения пламени (при распространении горения в трубах). Образующаяся при этом волна сжатия (ударная волна) благодаря высоким температуре и давлению воспламеняет смесь [47]. [c.241]

    ДЕФЛАГРАЦИЯ (deflagration) - режим сгорания парового облака (а также других взр1лвчатых веществ и смесей). В соответствии с классическим определени< М распространение пламени в этом режиме происходит посредством процессов диффузии и теплопроводности, а скорость горения меньше скорости звука. Расширение продуктов горения при дефлаграции может приводить к возникновению движения среды, волны сжатия и, в ряде случаев, ударной волны. При этом, хотя скорость распространения горения по частицам определяется процессами теплопроводности и диффузии (вообще говоря, турбулентными), видимая скорость распространения горения может приближаться к скорости звука и даже превосходить ее. В современной литературе под дефлаграцией понимается весь спектр процессов горения - от распространения ламинарного пламени, до высокоскоростных процессов с ударными волнами, в которых отсутствует жесткая связь между ударным фронтом и фронтом химического превращения, которая имеет место при детонации. Основным поражающим фактором при высокоскоростной дефлаграции является ударная волна. -См. разд. 12.3.4.5. [c.594]

    Возникновение детонации. Детонационный режим горения возникает во взрывчатой среде при ее сжатии достаточно сильной ударной волной. Такая волна может создаваться В1нешним инициирующим импульсом сжатия, например, от заряда твердого или жидкого взрывчатого вещества. Известны случаи возникновения детонации по этому механизму иа промышленных объектах при воздушных бомбардировках во время войны. [c.36]

    Явление детонации заключается в том, что при зажигании смеси бензин-воздух запальной свечей ударная волна распространяется быстрее, че.м собственно взрывная волна. Вызванное этим самовоспла.мененне приводит к несинхронным взрывным процессам, вследствие чего в моторе возникают вибрации ( стук ). Связанная с эти.ч потеря кинетической энергии тем больше, чем сильнее сжатие. В то же время высокое сжатие необходимо для более полного использования энергии топлива. [c.86]

    При некоторых режимах работы двигателя на бензине может возникать детонационное горение, сопровождшощееся металлическим пуком в цилиндре двигателя, дымлением, падением мощности и повышением температуры двигателя. Детонационный (взрывной) процесс горения отличается скоростью распространения фронта пламени до 1500-2500 м/с. В рабочей смеси в тактах всасывания и сжатия ускоряются реакции окисления углеводородов и образования активных промежуточных продуктов (гидроперекисей). Особенно высока их концентрация в последних порциях несгоревшей части смеси, где наиболее высоки температура н давление. При детонации микроколичеств гидроперекисей возникают ударные волны (см. рис. 2), которые могуг вызывать перегрев двигателя, вибрационные напряжения на деталях камеры сгорания, удаление масляной пленки с поверхности гальзы цилиндра и повышение износа цилиндров и колец. Ресурс работы двигателя в условиях детонации может снизиться в 1,5-3 раза. Глубина и скорость химических превращений при горении рабочей смеси возрастают при повышении температуры и давления ( степени сжатия ) в камере сгорания. [c.39]

    Как видно, при динамическом сжатии в отличие от статического давление и температура оказываются функционально связанными между собой. Это усложняет исследования, проводимые в условиях действия ударных волн. Во фронте ударной волны имеют место также сильные сдвиговые микродеформации. После сжатия происходит снятие достигнутых давлений и температур волнами разрежения процесс разгрузки является адиабатическим. Большим достоинством динамического способа создания давления является то, что можно достичь очень больших степеней сжатия так, в ударных волнах можно получать давление порядка нескольких сотен ГПа, что пока недостижимо в области статических давлений для сколько-нибудь значительных объемов сжатого вещества. Например, при использовании в качестве заряда сплава тротила с гексогеном в соотношении 40 60, который имеет скорость детонации 7,90 км/с, в ЫаС1, Си и У развиваются давления 54,7, 184 и 465 ГПа соответственно. [c.213]

    При изучении детонационных волн в квази-гомогенной жидкопористой среде (в том числе в водосодержащих аэрированных коллоидных системах) бьшо обращено особое внимание на существенное повышение детонационной способности веществ, находящихся во вспененном состоянии. В этом случае в порах, заполненных газом, при адиабатическом ударно-волновом сжатии происходит сильный разогрев газа и каждая ячейка пористой структуры ведет себя как своеобразный мощный источник тепла, в том числе источник теплового излучения, мгновенно воспламеняющего окружающие слои ВВ. Распределение пор по размерам в начальный период формирования аэрированной коллоидной системы определяется теорией Лифшица-Слезова. Однако в процессе структурирования кривая распределения по размерам размывается, и в дальнейшем состояние системы определяется в рамках теории Кларка-Бекмана-Де Фриза. В этих условиях к стационарному распространению детонации, что обстоятельно показано экспериментально, способны не только водосодержащие аэрированные системы, но и органические соединения, которые никогда ранее не рассматривались, как взрывоопасные - мононитробензол, пропаргиловый спирт и т.п. Это направление наших исследований, несомненно, является оригинальным, и в дальнейшем предполагается его существенное развитие. [c.84]

    Сильный стук двигателя вызывается или иреждевремеиныы воспламенением плп детонацией. Под преждевременным воспламенением понимают неожиданную вспышку смесп воздуха с горючпм в камере сгорания пз-за наличия сильно нагретых участков камеры, прежде чем смесь могла воспламениться от пскры свечи. Поэтому преждевременное воспламенение может вызвать сгорание топлива раньше, чем поршень достигнет верхнего положения Б ходе сжатия, нарушая этны самым нормальный рабочий цикл и создавая огромные ударные нагрузки на поршень, кольца, клапаны и подшипнпки. Детонацией называют мгновенную вспышку части смеси топлпва с воздухом в камере сгорания вместо постепенного, равномерного сгорания, которое должно нормальном протекать во время рабочего хода поршня. Эти мгновенные взрывы также создают большую ударную нагрузку, так называемые удары молота , на поршни и кольца. Часто трудно отличить преждевременное зажигание от детонации, так как оба явления вызывают одинаковые на слух звуки и шумы. В некоторых случаях хронические явления преждевременного воспламенения могут быть установлены переводом хорошо разогретого двигателя на холостой ход и последуюш,им выключением зажигания. Если мотор продолжает работать в течение многих оборотов с ударами или стуком, явление преждевременного воспламенения можно считать установленным. Причиной возникновения детонации может быть работа мотора с полной или почти полной нагрузкой ири прикрытом дросселе. [c.455]

    Наибольший интерес представляют результаты одновременного измерения скоростей фронта реакции и давления, показанные на рис. 80, из которых следует, что волны сжатия распространяются впереди фронта реакции. Из записи рис. 80,а, полученной с применением чувствительных (0,8 кбар) датчиков сдавливания, видно, что они срабатывают под действием слабого затухающего импульса давления или, возможно, серии таких импульсов, которые догоняются сильной волной сжатия (или ударной волной) вблизи лшста возникновения стационарной детонации. -Применение бопее грубых датчиков сдавливания (порог сраба--тывания 2 кбар) (рис. 80,6) показало, что возникновение детонации осуществляется волнами давления, параметры которых плавно возрастают. [c.168]


Смотреть страницы где упоминается термин Ударное сжатие и детонация: [c.132]    [c.28]    [c.160]    [c.186]    [c.103]    [c.306]    [c.79]    [c.9]    [c.154]    [c.160]    [c.170]    [c.172]   
Смотреть главы в:

Взрывобезопасность паро-газовых систем в технологических процессах -> Ударное сжатие и детонация




ПОИСК





Смотрите так же термины и статьи:

Детонация



© 2025 chem21.info Реклама на сайте