Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Переход газа в состояние жидкости

    Переход газа в жидкое и кристаллическое состояния называется конденсацией. Иногда процесс перехода газа в жидкость называют сжижением, а в кристалл — десублимацией. Переход [c.11]

    Конденсация - переход газа в жидкое и кристаллическое состояние. Переход газа в жидкость называют также сжижением, а в кристалл — десублимацией. [c.118]

    На рис. 1 приведена графическая зависимость между объемом и давлением диоксида углерода при постоянных температурах. Такие кривые называются изотермами. У изотерм при низких температурах (О, 10, 20°С) можно выделить три участка АВ, ВС и СО. Участок АВ, показывающий, что с уменьшением объема давление увеличивается, соответствует газообразному состоянию вещества. Участок ВС отвечает переходу газа в жидкость, т. е. равновесию между жидкостью и газом в состоянии насыщенного пара. Участок СО характеризует жидкое состояние, так как даже при очень высоких давлениях объем жидкости практически не меняется. С повышением температуры участок ВС уменьшается и превращается [c.14]


    Зависимость между величинами V и р при постоянной Т в уравнении реального состояния газа можно представить графически (рис. 5). Кривая ОСВА на рисунке 5 носит название изотермы состояния реального газа. Изотерма состоит из трех частей. На участке кривой АВ объем изменяется обратно пропорционально давлению, т. е. согласно уравнению Бойля — Мариотта. На участке СО большому изменению давления соответствует малое изменение объема. Такое поведение характерно для жидкого состояния, следовательно, эта часть кривой соответствует жидкому состоянию. Участок кривой ВС отвечает переходу газа в жидкость. Следовательно, кривая изотермы охватывает и газообразное и жидкое состояние. [c.24]

    Такое поведение характерно для жидкого состояния, следовательно, эта часть кривой соответствует жидкому состоянию. Участок кривой ВС отвечает переходу газа в жидкость. Следовательно, кривая изотермы охватывает и газообразное и жидкое состояние. [c.31]

    Опытным путем установлено, что при переходе газа в жидкость или, наоборот, жидкости в газообразное (парообразное) состояние, несмотря на то, что объем системы изменяется. [c.61]

    Для таких пересчетов обычно требуется знать параметры процесса испарения, но не в равновесных условиях, а при переходе вещества из стандартного состояния жидкости в стандартное же состояние идеального газа. Ранее ( 7) были описаны соотношения между параметрами процессов испарения в стандартных и в равновесных условиях. Для области невысоких давлений насыщенного пара, в пределах применимости к нему законов идеальных газов, эти соотношения могут быть представлены в простом виде  [c.302]

    Объем жидкости при увеличении давления остается постоянным. Область I соответствует газовому состоянию, область II — переходу газа в жидкость, область III — жидкому состоянию. [c.113]

    Поставлен вопрос об общем уравнении состояния для сжатых газов и жидкостей. В этом отношении уравнение Ван-дер-Ваальса имеет преимущества даже перед наиболее точными уравнениями состояния реальных газов — уравнениями с вириальными коэффициентами. Однако трудность этой проблемы связана с отсутствием статистической теории фазовых переходов. Здесь преимущества уравнения (1У,15) являются только качественными, так как ни одно из известных уравнений состояния пока не описывает с необходимой точностью фазовые переходы газа в жидкость. [c.100]


    Температура кипения и теплота парообразования каждого вещества зависят от давления при увеличении давления температура кипения повышается, а теплота парообразования уменьшается. Состояние вещества, в котором обе предельные точки переходной области из жидкости в пар совмещаются в одну с теплотой парообразования, равной О, называется критическим. При температурах выше критических ни при каких условиях невозможен переход газов в жидкость. Приоритет в установлении критического состояния принадлежит Д. И. Менделееву (1861 г.). [c.15]

    Разогретый газ поступает в верхнюю часть конденсатора, обтекает расположенные ниже трубки и занимает свободное пространство между трубками и корпусом. По трубкам течет холодная вода, поступающая снизу и выходящая сверху. На головках имеются специальные перегородки (так называемые проходы воды ), позволяющие воде проходить через конденсатор один или более раз. Разогретый газ, соприкасаясь с трубками, по которым течет вода, охлаждается и конденсируется, переходя в состояние жидкости, и затем накапливается в нижней части конденсатора. Вода, в свою очередь, восприняв теп- [c.201]

    Равновесный процесс является предельным типом процесса, абстракцией реальные физические и химические процессы всегда в большей или меньшей степени неравновесны. Примерами крайних случаев неравновесных процессов являются переход энергии горячего тела к холодному в форме теплоты при конечной разности температур, переход механической работы в теплоту при трении, расширение газа в пустоту, самопроизвольное смешение газов или жидкостей путем дис узии, взрыв смеси горючего с окислителем. Эти процессы не могут быть проведены в обратном направлении через те же промежуточные состояния, что и прямые процессы. [c.36]

    Пористые мембраны представляют гетерогенные системы с весьма развитой поверхностью раздела твердое тело (матрица)— газ. Известно, что состояние газа или жидкости вблизи поверхности раздела фаз отличается от свойств той же среды в большом объеме. Особенности поведения веществ в этой области принято называть поверхностными явлениями. Термодинамически поверхностные явления трактуются как проявление особого вида взаимодействия системы, которое характеризуется уменьшением свободной энергии Гиббса при переходе вещества из объемной в поверхностную фазу. Убыль свободной энергии Гиббса пропорциональна площади поверхности и количественно определяется работой, которую необходимо затратить на образование поверхности или перемещения массы из объема в поверхностный слой в изотермическом процессе. Следовательно, речь идет о существовании потенциала поверхностных сил. [c.42]

    Переход вещества из жидкого состояния в газообразное называют парообразованием (в частном случае испарением, если парообразование происходит только с поверхности жидкости). Аналогичный переход из твердого состояния в парообразное называется сублимацией. Процесс перехода газа в жидкое или твердое состояние называется конденсацией. В соответствии с этим твердое и жидкое состояние обычно объединяют общим термином конденсированных состояний. Переход из твердого состояния в жидкое называется плавлением, а обратный процесс — затвердеванием. [c.34]

    Переход вещества из жидкого состояния в газообразное называется парообразованием, а в частном случае, когда парообразование происходит только с поверхности жидкости, процесс называется испарением. Аналогичный переход из твердого состояния в газообразное принято называть возгонкой или сублимацией. Обратные процессы перехода называются сжижением при переходе газа в жидкое состояние и десублимацией — при переходе его в твердое состояние. В обоих случаях их называют также конденсацией пара. (В соответствии с этим твердое и жидкое состояния часто объединяют общим термином конденсированные состояний.) Переход из твердого состояния в жидкое называется плавлением, а обратный процесс — отвердеванием (или замерзанием, если оно происходит при невысокой температуре). Переход из одной модификации твердого состояния в другую называется полиморфным превращением или просто переходом. [c.91]

    Для 25 °С изменение энтальпии воды при переходе из стандартного состояния жидкости в стандартное состояние газа =. = 10,519 ккал/моль. Поэтому [c.209]

    Пористые тела — это твердые тела, внутри которых имеются поры, обусловливающие наличие внутренней межфазной иовем-ности. Поры могут быть заполнены газом или жидкостью. По классификации дисперсных систем ио агрегатному состоянию фаз пористые тела относятся к дисперсным системам с твердой дисперсионной средой и газообразной или жидкой дисперсными фазами. Свободнодисперсные системы с твердой дисперсной фазой и пористые тела являются своеобразными обращенными системами. Если в первом случае твердым телом является дисперсная фаза, то во втором — дисперсионная среда. С повышением дисперсности суспензии переходят в золи, а затем в истинные растворы. Таким же образом макропористые тела с ростом дисперсности переходят в микропористые тела с размерами пор, соизмеримыми с размерами молекул. В последнем случае, как подчеркивает М. М. Дубинин, представление о внутренней поверхности теряет физический смысл, как и в истинных растворах. [c.129]


    При прохождении газа через слой жидкости, находящейся в аппарате с дырчатой решеткой, происходит барботаж. При увеличении скорости газа наступает момент, когда часть жидкости переходит в состояние пены. Слой образующейся пены может быть непрочным (т. е. исчезнуть при задержке газового потока) или же недостаточно прочным в зависимости от поверхностного натяжения. Над слоем пены (рис. П-89) обычно возникает зона брызг жидкости. [c.182]

    Состояние системы жидкость — газ, определяемое точкой над изотермой (рис. У-91), является состоянием, в котором парциальное давление над раствором выше, чем это соответствует равновесию с жидкостью. Вследствие стремления к равновесию будет происходить растворение компонента в жидкости (процесс абсорбции). Аналогично можно показать, что если состояние будет определяться точкой под изотермой, то будет происходить переход компонента из жидкости в газ (процесс десорбции). [c.442]

    Пленки на воде или иной жидкости, в зависимости от сжатия, могут вести себя, как двумерные образования в различных агрегатных состояниях. Участки ад, аЬ и Ьс на рис. 17 соответствуют двумерному газу, двумерной жидкости и. двумерному твердому веществу (двумерному кристаллу). Переход от жидкой пленки к твердой очень наглядно доказывается тем, что пылинки ликоподия, быстро передвигающиеся по поверхности пленки на участке аЬ, моментально становятся неподвижными в точке 6 и на участке Ьс. В области ай при повышенных температурах или очень малых сжатиях пленки настолько расширены, что их можно рассматривать как газообразные. Они не имеют определенной предельной площади и переходят в газовые пленки. [c.99]

    При изменениях агрегатного состояния происходит сильное изменение сил взаимодействия, определяющих строение вещества. При повышении температуры твердого вещества частицам, его слагающим, сообщается все более сильное колебательное движение относительно положений равновесия. При определенной температуре в структуре разрывается часть связей, тем самым возникает состояние с более низким структурным порядком (более высокой энтропией), в котором частицы обладают большей подвижностью. Различают переходы твердое тело — жидкость (плавление), твердое тело —газ (сублимация) и жидкость-газ (испарение). При охлаждении, т. е. при обратной последовательности процессов, возникают состояния с более высоким порядком. [c.366]

    В жидком состоянии энергия взаимодействия молекул соизмерима с энергией тепловых колебаний, поэтому они могут перемещаться, вращаться и колебатьсй. Сжимаемость жидкостей мала, плотность их близка к плотности твердого тела, но более заметно меняется с температурой. Внутреннее строение жидкостей выяснено только в самых общих чертах. Оно более сложное, чем строение газов и кристаллов. Сохраняя отдельные черты указанных состояний, жидкости обладают своими характерными особенностями и прежде всего текучестью. Подобно кристаллам, жидкости сохраняют свой объем, имеют свободную поверхность, обладают определенной прочностью на разрыв и т. д. С другой стороны, жидкости принимают форму сосуда, в котором находятся, что сближает жидкое и газообразное состояния. Принципиальная возможность непрерывного перехода жидкости в газ также свидетельствует о близости жидкого и газообразного состояний. [c.135]

    Если в результате протекания процессов в прямом и обратном направлениях в системе или в окружающей среде останутся не исчезающие изменения, то процесс называют необратимым. Такой процесс возможно реализовать в обратном направлении только с применением внешних воздействий, как правило, оставляющих изменения в системе или среде. Необратимые процессы обычно идут самопроизвольно и только в одном направлении — в сторону приближения к равновесному состоянию и прекращаются, когда такое состояние будет достигнуто. Например, переход теплоты от более нагретого тела к менее нагретому, кристаллизация переохлажденной жидкости или испарение перегретой ж] дкд щ взаимная диффузия газов или жидкостей и др. [c.94]

    Необратимые процессы. Повседневный опыт показывает, что существуют процессы, которые протекают самопроизвольно. Наиболее яркими примерами таких процессов являются переход теплоты от горячего тела к холодному, замерзание переохлажденной жидкости, расширение газа в пустоту, взаимная диффузия газов или жидкостей. Это все примеры одностороннего течения процессов. Они всегда направлены в сторону приближения к равновесному состоянию и прекращаются, когда это состояние достигнуто. При теплопередаче равновесие определяется равенством температур, при кристаллизации — равенством давлений во всем объеме, при диффузии — равенством концентраций. Для самопроизвольных (спонтанных) процессов характерен общий признак они сопровождаются превращением различных видов энергии в теплоту, а теплота равномерно распределяется между всеми частями системы. При этом подведение к системе того количества теплоты, которое освободилось при процессе, не вызывает обратного течения ни одного из названных процессов. Важно заметить, что косвенными путями можно вернуть систему в первоначальное состояние, однако при этом неизбежно придется произвести какие-либо энергетические изменения в окружающей среде. В противном случае необходимо было бы признать возможность вечного двигателя второго рода. [c.45]

    Переход газа в состояние жидкости [c.127]

    Расстояние между частицами вещества в газовом состоянии значительно превышает их размеры. Отс Ода вытекают два следствия. Во-первых, суммарный объем частиц газа по сравнению с емкостью занимаемого газом сосуда очень мал. Косвенн )1м признаком этого служит хотя бы гот факт, что переход газа в жидкость обычно сопровождается более чем тысячекратным уменьшением объема. Во-вторых, си Ы взаимодействия между частицами газа очень незначительны. При этом кинетическая энергия (средняя) частиц, находящихся в непрерывном хаотическом движении, значительно болыле их средней потеицналыюй энергии — силы притяжения между ними недостаточны для того, чтобы удержать их друг около друга. [c.73]

    Системы коллоидной дисперсности находятся на границе между молекулярнодисперсными и грубодисперсными системами. Такое положение вполне определяет и объясняет образование коллоиднодисперсных систем при переходе гомогенных (молекулярнодисперсных) систем в гетерогенные, что хорошо наблюдать в критической точке при переходе из газообразного в жидкое состояние или при растворении двух несмешивающихся жидкостей, т. е. в момент, когда гомогенная система (газ или жидкость) распадается на две фазы, разграниченные поверхностью раздела (газ — жиДкость, жидкость — жидкость). Вблизи критической температуры, при переходе газа и жидкость (перед появлением мениска), получается промежуточный слой, отличающийся не только большой вязкостью, но и эластическими свойствами Известно также, что при критической температуре наблюдается помутнение, указывающее на наличие коллоиднодисперсной системы 2. [c.16]

    Имеющиеся в литературе численные значения восприимчивостей ряда газообразных веществ СН4, С2Н5, 41450 и С2Н4 вызывают серьезные сомнения с теоретической точки зрения. С другой стороны, с чисто экспериментальной точки зрения измерения восприимчивости газов гораздо менее надежны, чем измерения, произведенные на жидкостях. Исходя из имеющихся надежных данных относительно членов гомологических рядов, исследованных в жидком состоянии, мы попытались определить молярные восприимчивости интересующих нас веществ методом экстраполяции. При этом мы руководствовались хорошо установленным фактом, что молярные восприимчивости не претерпевают изменения при переходах газ 7 жидкость в отсутствие явлений ассоциации. [c.222]

    Наряду с положительными особенностями восходящий прямоток обладает рядом недостатков по сравнению с нисходящим 1) nepeiw давления в слое выше, что ведет к увеличению энергетических затрат, связанных с необходимостью повышения напора по жидкости и по газу 2) спой катализатора при подаче потока снизу вверх может переходить в состояние шевеления и псевдоожнження, что может привести к уносу частиц катализатора из слоя, для предотвращения которого необходимо применять специальные затворные устройства, исключающие нарушение компактности слоя. [c.93]

    Механизм псевдоожижения заключается в следующем. При подаче вертикального восходящего потока псевдоожижающего агента (газа или жидкости) через слой зернистого материала, лежащий на перфорированной решетке аппарата, на его частицы действуют аэродинамические силы. При малых скоростях слой остается неподвижным, с увеличением скорости отдельные частицы начинают двигаться одна относительно другой, и слой расширяется. При более высокой скорости потока достигается состояние, когда почти все частицы совершают сложное относительное движение, слой переходит во взвешенное (псевдоожиженное) состояние. Началу псевдоожижения соответствует равенство сил гидродинамического сопротивления слоя весу всех его частиц. В действительности требуется еще учитывать силы сцепления между частицами. Началу псевдоожижения соответствует некоторая скорость при которой преодолеваются силы сцепления и перепад давления становится равным весу частиц, приходящемуся на единицу поперечного сечения слоя. Зависимости перепада давления на высоте слоя с учетом архимедовых сил имеют следующий вид  [c.119]

    Справочные данные о значениях термодинамических функций разных веществ относятся большей частью к стандартному состоянию их. Поэтому при сопоставлении термодинамических свойств данного веи1ества в жидком и газообразном состояниях и для расчета изменения этих свойств в процессе испарения нередко возникает необходимость перехода от величин, относящихся к стандартным состояниям жидкости и газа, к величинам, относящихся к равновесным их состояниям. Тепловые эффекты процесса (кроме области высоких давлений и концентрированных растворов) различаются в этом случае незначительно. Однако изменения энтропии (и, следовательно, AG) могут сильно различаться. Энтропия жидкости в стандартном состоянии мало отличается от энтрепии ее в состоянии равновесия с насыщенным паром при той же температуре, и этим отличием можно пренебречь, но для газообразного состояния значения энтропии могут быть весьма различными, так как энтропия газа сильно зависит от давления. Ограничиваясь условиями, в которых допустимо применение законов идеальных газов, и учитывая, что для стандартного состояния газа р— атм, можио, пользуясь ур. (VII, 53), выразить разность между энтропией газа в стандартном состоянии 8° и в состоянии насыщенного пара SpaBH равенством  [c.256]

    Теперь вычтем из обоих значений энтропии энтропию одного моля вещества в жидком состоянии при той же температуре, полагая ее одинаковой и для стандартного, и для равновесного с паром состояний жидкости. Полученное соотношение связывает изменение энтропии при переходе одного моля вещества из жидкости в стандартное состояние идеального газа А8° с аналогичным изменением ее при переходе того же количества вещества из жидкости в состояние насыщенного пара Д5равн при той же температуре [c.256]

    Псевдоожиженный слой может существовать лишь в определенном диапазоне скоростей газа или жидкости. Первая критическая скорость т)кр,, называемая скоростью начала псевдоожижения, соответствует переходу слоя из неподвижного в псевдоожиженное состояние. Вторая критическая скорость соответствует разрушению псевдоожиженного слоя и его транспортированию (уносу). Отношение рабочей скорости потока ожижающего агента w к скорости начала псевдоожижения никр, называется числом псев-доожижения и обозначается [c.361]

    Критическое состояние перехода к взвешенному слою в случае взаимодействия газа с жидкостью наблюдается визуально менее ясно, чем в системе газ — твердое, так как переход маскируется образованием при скоростях газа, меньших критической, обычной коллоидной пены ячеистого вида. Переходное состояние (полувзве-шенный слой) в системе газ — жидкость соответствует изменению скорости газа в значительных пределах. [c.13]

    Первый режим 0—1), наблюдающейся при низких скоростях газа, определяется как режим смоченной решетки и характеризуется очень незначительным количеством жидкости, удерживаемой на ней. С увеличением Wr этот режим сменяется барботажный 1—2), в й<1тором газовые пузыри барботируют через слой жидкости на решетке. По мере дальнейшего роста скорости газа жидкость переходит в состояние турбулизованной пены, наступает пенный режим 2—3), или режим аэрации. В пределах этого режима происходит незначительный рост гидравлического сопротивления с увеличением скорости газа. В конце пенного режима рост скорости газа приводит к образованию газовых струй, которые, прорываясь то в одном, то в другом месте решетки, создают колебания слоя жидкости — начинается волновой режим 3—4). Характерной чертой этого режима [c.35]

    Различие в парциальном давлении извлекаемого компопента в газе и жидкости и является той дзипкущей силой, нод действием которой происходит поглощение (абсорбция) данного компопента жидкой фазой пз газовой фазы. Чем бoльпJO эта движущая сила, тем интенсивнее переходит этот компонент из газовой фазы в жидкую. При уменьшении движущей силы поглощение его происходит менее интенсивно, и в пределе, когда газовая н жидкая фазы достигнут состояния равновесия, поглощение прекратится. Если парциальное [c.222]

    Эффективность химических превращений в системах газ—жидкость зависит не только от скорости химической реакции, но и от условий тепло-массообмена, определяемых в первую очередь гидродинамическим состоянием системы. Поэтому прежде, чем переходить к детальному анализу различных типов барботажных реакторов, рассмотрим основные закономерности гидродинамики, теп-ло-массопереноса и кинетики химических превращений при барбо-таже газа через жидкость. [c.17]

    ДЯ°98) . Значения АЯпар отличаются от АЯпар, поскольку вторая величина относится не к равновесным условиям, а к условиям перехода от стандартного состояния жидкости (или в случае сублимации — кристалла) в стандартное же состояние идеального газа (а не насыщенного пара). Для низких давлений (в предположении применимости к насыщенному пару законов идеальных газов) можно считать, что АЯпар АЯпар. Тзк, ДЛЯ ВОДЯНОГО пяра (АЯпар)298 = 10767, а (АЯ°,ар)298= 10719. Однако при высоких давлениях и особенно [c.216]


Смотреть страницы где упоминается термин Переход газа в состояние жидкости: [c.21]    [c.38]    [c.41]    [c.40]    [c.199]    [c.376]    [c.47]    [c.9]    [c.102]    [c.115]   
Смотреть главы в:

Курс общей и неорганической химии -> Переход газа в состояние жидкости




ПОИСК





Смотрите так же термины и статьи:

Газы в жидкости



© 2025 chem21.info Реклама на сайте