Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Газы абс влияние скорости жидкости

    Приведенные уравнения позволяют проанализировать влияние внешних факторов (давления и температуры) на диффузию. В частности, повышение температуры приводит к увеличению коэффициента дифс )узии как газов, так и жидкостей. Увеличение давления в системе уменьшает скорость диффузии в газах, а повышение вязкости жидкости снижает скорость диффузии газа в жидкости. [c.26]


    Проведение опытов в этих условиях преследует обычно цель моделирования на лабораторных установках процесса абсорбции в промышленной аппаратуре, например в насадочных колоннах. Как показано в главе V, количественные оценки влияния химической реакции на скорость абсорбции обычно мало отличаются друг от друга независимо от того, сделаны ли они на основе пленочной модели или моделей поверхностного обновления Хигби или Данквертса. В большинстве случаев для данного значения коэффициента массоотдачи при физической абсорбции, k , по всем моделям получаются близкие предсказания в отношении этого влияния. Поэтому можно ожидать, что если лабораторная модель промышленного абсорбционного аппарата, предназначенная для изучения влияния реакции на скорость абсорбции, сконструирована с соблюдением существенного условия одинаковости значений в натуре и в модели, то, в соответствии с изложенным в главе V, данная реакция будет приводить к увеличению скорости абсорбции в обоих аппаратах в одинаковой степени (при одном и том же значении А, или парциального давления растворяемого газа у поверхности жидкости). [c.175]

    Как указывалось выше, действие сил вязкого трения в наибольшей степени проявляется вблизи твердых стенок, ограничивающих поток жидкости (газа). Здесь скорости жидкости минимальны, а напряжения вязкого трения максимальны. По мере удаления от стенок скорости потока увеличиваются, а напряжения вязкого трения уменьшаются. В связи с этим при определенных условиях силами вязкого трения по сравнению с другими силами можно пренебречь. Чаще всего такая возможность возникает, если вязкость жидкости (газа) мала, а скорости движения велики (например, при течении газов). Но и для сравнительно вязких жидкостей часто оказывается возможным и целесообразным пренебречь в расчетах силами вязкости ввиду их относительно малого влияния и учитывать действие этих сил путем введения соответствующих поправок. [c.97]

    В работе [306] изучено влияние скоростей жидкости и газа на коэффициент перемешивания при различных вязкостях и поверхно- [c.158]

    Здесь следует обратить внимание на одну особенность уравнения (IV.48). Оно содержит такой параметр, как зависящий помимо скорости газа еще и от скорости циркулирующей жидкости. Однако кажущееся влияние скорости жидкости на массо- [c.111]


    Скорость фаз. Скорость жидкости влияет на эффективность массопередачи через Зависимость от Юж носит степенной характер, причем максимальная интенсификация может быть достигнута в области мгновенной химической реакции. При переходе в область реакции псевдопервого порядка влияние скорости жидкости уменьшается. Скорость газа оказывает заметное влияние на поверхность контакта фаз, что приводит к сильной зависимости К а от скорости газа, например, в насадочных колоннах в режиме подвисания жидкости или в барботажных колоннах, особенно при умеренных скоростях газа (см. рис. 6.3). [c.199]

    В дальнейшем он пришел к выводу, что на скорость испарения жидкости оказывает влияние скорость воздуха (газа), в среде которого происходит испарение. [c.107]

    У1-2-2. Очень медленные реакции. Если реакция достаточно медленна, то вся жидкость становится и остается насыщенной непрореагировавшим газом (концентрация которого соответствует его парциальному давлению над жидкостью), и реакция растворенного в жидкости газа является истинно гомогенной. В таких условиях концентрация газа в жидкости отвечает его растворимости (с учетом влияния на нее других веществ, растворенных в жидкости, в соот ветствии с изложенным в главе I), и скорость дальнейшего погло щения газа равна скорости гомогенной реакции в жидкой фазе Скорость реакции г, отнесенная к единице объема жидкости, опре деляется скоростью поглощения газа, деленной на объем жидкости Этот метод, детально рассмотренный Диксоном применялся для исследования кинетики ряда реакций. [c.166]

    Как показывает этот график, увеличение отношения скорости-жидкости к скорости газа вызывает увеличение критерия Пекле. Поверхностное натяжение сушественного влияния не оказывает. Для насадки, состоящей из небольших шариков, критерий Пекле будет несколько больше, чем для цилиндрической насадки. [c.49]

    Влияние скорости газа и жидкости. Скорость газа в пенном аппарате — один из основных параметров, определяющих пределы существования взвешенного слоя подвижной пены, высоту слоя (при данном ка) и его турбулентность, а, следовательно, общую поверхность контакта фаз и скорость ее обновления. Соответственно скорость газа оказывает весьма существенное влияние на коэффициент массопередачи. Характер влияния Шг на К зависит, во-первых, от растворимости газового компонента в данной жидкости и, во-вторых, от вида принятого коэффициента массопередачи К, К в, К . [c.130]

    Если средняя длина свободного пробега молекул намного меньше диаметра поры, то молекулы диффундирующих веществ сталкиваются друг с другом гораздо чаще, чем со стенками поры, и последние не оказывают существенного влияния на скорость диффузии в пористом зерне. В этих условиях диффузия в порах протекает так же, как и в объеме неподвижной жидкости или газа, и скорость переноса вещества вдоль поры, отнесенная к единице ее поперечного сечения, определяется законом Фика  [c.151]

    Для слоев твердых частиц размером 6 мм и при прямотоке жидкости и газа задержка последнего уменьшается с ростом скорости жидкости, поскольку в отмеченных случаях изменение этой скорости не оказывает влияния на размер пузыря и на скорость [c.665]

    Массо- и теплопередача в порах. Наиболее важное значение в процессах гетерогенного катализа имеет перенос вещества и тепла внутри пористой частицы катализатора. Перенос вещества в порах осуществляется исключительно путем молекулярной диффузии. Если диаметр поры значительно превышает среднюю длину свободного пробега, то молекулы диффундирующих веществ сталкиваются друг с другом гораздо чаще, чем со стенками поры и последние не оказывают существенного влияния на скорость диффузии в пористом зерне. В этих условиях диффузия в порах протекает так же, как в объеме неподвижной жидкости или газа и скорость переноса вещества вдоль поры, отнесенная к единице ее поперечного сечения, определяется законом Фика - [c.98]

    При определении удельной поверхности тонкоизмельченных веществ по методу фильтрации воздуха или другого газа при давлениях, близких к атмосферному, получаются преуменьшенные значения по сравнению с величинами, определенными другими методами. Это можно объяснить тем, что при выводе уравнения, связывающего скорость фильтрации и удельную поверхность, предполагают отсутствие скольжения между твердой стенкой и жидкостью или газом. Однако при течении газа вдоль твердой стенки всегда имеет место скольжение на их границе. Влияние скольжения газа на скорость фильтрации мало в том случае, когда размеры пор велики по сравнению со средней длиной пробега молекулы газа. При атмосферном давлении средняя длина пробега молекулы меньше 0,1 мк, так что если поперечное сечение пор равно нескольким десяткам микрон, то для определения удельной поверхности можно вполне пользоваться уравнением (И). [c.79]


    Влияние физических свойств газа (пара) и жидкости на скорость ш сравниваемых систем в первом приближении может быть оценено как [c.479]

    В этой главе рассматриваются вопросы учета сырой нефти при ее дальнейшей транспортировке, не затрагивая вопросов измерения дебита нефтяных скважин. Под сырой нефтью будем подразумевать любую нефть (жидкость), полученную после сепарации, без всякого ограничения содержания каких-либо примесей (воды, солей, механических примесей и т.д.) и перекачиваемую на установки подготовки нефти. Эта жидкость представляет собой сложную смесь нефти, растворенного газа, пластовой воды, содержащей, в свою очередь, различные соли, парафина, церезина и других веществ, механических примесей, сернистых соединений. При недостаточном качестве сепарации в жидкости может содержаться свободный газ в виде пузырьков - так называемый окклюдированный газ. Все эти компоненты могут образовывать сложные дисперсные системы, структура и свойства которых могут быть самыми разнообразными и, самое главное, не постоянными в движении и времени. Например, структура и вязкость водонефтяной эмульсии могут изменяться в широких пределах в процессе движения по трубам, в зависимости от скорости, температуры, давления и других факторов. Всё это создаёт очень большие трудности при учете сырой нефти, особенно при использовании средств измерений, на показания которых влияют свойства жидкости, например, турбинных счетчиков. Особенно большое влияние оказывают структура потока, вязкость жидкости и содержание свободного газа. Частицы воды и других примесей могут образовывать сложную пространственную решетку, которая в процессе движения может разрушаться и снова восстанавливаться. Поэтому водонефтяные эмульсии часто проявляют свойства неньютоновских жидкостей. Измерение вязкости таких жидкостей в потоке представляет большие трудности из-за отсутствия методов измерения и поточных вискозиметров. Измерения, проводимые с помощью лабораторных приборов, не дают истинного значения вязкости, так как вязкость отобранной пробы жидкости отличается от вязкости в условиях трубопровода из-за разгазирования пробы и изменения условий измерения. Содержание свободного газа зависит от условий сепарации и свойств жидкости. Газ, находясь в жидкости в виде пузырьков, изменяет показание объемных счетчиков на такую долю, какую долю сам составляет в жидкости, то есть если объем газа в жидкости составляет 2 %, то показание счетчика повысится на 2 %. Точно учесть содержание свободного газа при определении объема и массы нефти очень трудно по.двум причинам. Во-первых, содержание свободного газа непостоянно и может изменяться в зависимости от условий сепарации (расхода жидкости, вязкости, уровня в сепараторах и т.д.). Во-вторых, технические средства для непрерывного измерения содержания газа в потоке в настоящее время отсутствуют. Имеющиеся средства, например, устройство для определения свободного газа УОСГ-ЮОМ, позволяют производить измерения только периодически и дают не очень достоверные результаты. Единственным способом борьбы с влиянием свободного газа является улучшение сепарации жидкости, чтобы исключить свободный газ или свести его к минимуму. Для уменьшения влияния газа УУН необходимо устанавливать на выкиде насосов. При этом объем газа уменьшается за счет сжатия. [c.28]

    В насадочных башнях, в пределах пленочного режима, и в абсорберах с разбрызгиванием жидкости влияние скорости газа сказывается меньше, чем в пенном слое. [c.132]

    Изучение массообмена на такой модели проводилось Якушки-ным [96 ] при каталитическом окислении сульфита натрия кислородом воздуха. Диаметр барботажной трубы изменялся от 40 до 125 мм, а длина от 2 до Зм. Для проверки влияния скорости жидкости на массообмен в циркуляционной трубе в некоторых опытах устанавливалась диафрагма, изменяющая кратность циркуляции при неизменном расходе газа в барботажной трубе. Приведенная скорость газа в этой трубе составляла 0,055—0,90 м/с. Эффективность массообмена оценивалась объемным коэс ициентом массопереноса [c.111]

    Существенное влияние на коэффициент теплоотдачи а оказывают приведенная скорость барботирующего газа и свойства жидкости, в чем можно убедиться, проанализировав опытные данные [77], представленные на рис. 33. [c.67]

    Скорость циркуляции жидкости. Содержание предыдущих параграфов показывает, что скорость циркуляции жидкости оказывает существенное влияние на гидродинамические характеристики газожидкостного потока в газлифтных реакторах, а следовательно, и на условия тепло-массопереноса. Поэтому одной из основных задач гидродинамического расчета этих аппаратов является определение приведенной скорости жидкости в барботажных трубах. Газлифтный трубчатый реактор работает на принципе затопленного эрлифта с естественной циркуляцией жидкости, скорость которой зависит от расхода газа, подаваемого в барботажную трубу. Типичная зависимость изменения приведенной скорости жидкости от приведенной скорости газа в барботажной трубе представлена на рис. 52. При малых скоростях вследствие быстрого увеличения газосодержания в пузырьковом и пенном режимах барботажа быстро возрастает приведенная скорость жидкости. При дальнейшем увеличении Шр наступает переход к стержневому режиму движения, при котором Фг возрастает слабо, а увлечение жидкости газовым потоком тормозится трением ее о стенку трубы, вследствие чего приведенная скорость жидкости меняется незначительно. [c.95]

    Влияние сжимаемости газа, по-видимому, становится существенным при скоростях основного потока жидкости, составляющих от 20 до 50% скорости звука. В большинстве обычных конструкций при изменении направления потока в коленах или при обтекании препятствий, как правило, образуются небольшие области, в которых местные скорости в 2—5 раз превышают среднюю скорость и, следовательно, могут приблизиться или даже превысить скорость звука, если скорость основного потока составляет более 20% скорости звука. В таких случаях влияние сжимаемости в этих локальных областях может привести к большим изменениям режима течения и, следовательно, к большому увеличению потерь давления. Отношение скорости газа к скорости звука называется числом Маха. На рис. 3.12 показано влияние скорости воздуха на потери давления в двух лучших из нескольких вариантов колен для [c.52]

    Описаны осложнения в работе скважин, оборудованных штанговыми насосами, если в перекачиваемой жидкости содержатся свободный газ и песок, дана их классификация. Рассмотрено движение частиц песка и пузырьков газа и потоке жидкости, поступающей в насос. Рекомендованы меры по устранению вредного влияния газа и песка на работу скважинного насоса выбор оптимальной скорости восходящего потока жидкости, применение противопесочных фильтров, сепараторов, специальных насосов. Описаны защитные приспособления от совместного воздействия на насосы газа и песка. [c.152]

    Статические и кинетические параметры хроматографического опыта. Размеры колонки. Влияние отношения весовых количеств жидкой фазы и носителя. Максимальная температура колонки для различных жидких фаз. Выбор жидкой фазы для решения конкретных задач разделения. Влияние природы жидкости, газа-носителя и температуры (ширина полосы, продолжительность анализа, чувствительность детектора), Влияние скорости потока газа-носителя. Ис- [c.297]

    В диффузионной кинетике исследуют химические процессы, уделяя особое внимание закономерностям проникновения молекул реагентов в поры твердого вещества (внутренняя диффузия), выравнивания концентраций по объему жидкости или газа (внешняя диффузия) и влиянию скорости диффузии на скорость химического превращения. [c.17]

    Коэффициент массопередачи, рассчитанный по жидкой фазе, увеличивается при повышении степени карбонизации а, плотности орошения и высоты пенного слоя влияние скорости газа незначительно. К. п. д. тарелок уменьшается при понижении степени карбонизации при а = 0,4—0,5 величина т] составляет 0,25—0,4, при а = 0,25—0,3 т] = 0,15—0,25. К. п. д. снижается также при увеличении скорости жидкости, причем особенно заметно — при больших расходах жидкости. [c.199]

    Абсорбция. Скорость абсорбции аммиака в разлхиных жидких средах явилась предметом весьма обширных исследований в литературе опубликованы данные, полученные с применением абсорбционных аппаратов различного типа. Перечень важнейших исследовательских работ, проведенных в этой области, дается в табл. 10.3. Все исследователи единодушно признают, что абсорбция аммиака в воде определяется главным образом массовой скоростью газа. Ряд исследователей обнаружил, что в колоннах со смоченной стенкой и насадочных колоннах с насадкой, выполненной из некоторых материалов, влияние массовой скорости жидкости па обш ий коэффициент массообмена весьма мало и им можно пренебречь отсюда следует, что скорость абсорбции аммиака определяется только пленочным сопротивлением со стороны газа. Однако другие исследователи обнаружили отчетливое влияние скорости ЖИДКОСТ на обш ий коэффициент массообмена и на основании этого пришли к выводу, что скорость абсорбции определяется сопротивлением газовой и жидкостной пленок. Опубликован [28] анализ теории абсорбции аммиака в воде и в разбавленных кислотах. [c.239]

    На рис.6 и 7 приведены зависимости, построенные на основе экспериментальных данных, из которых видно, что и скорость газа, и скорость жидкости оказывают звачительное влияние на величину сопротивления секционирующих тарелок. Следует заметить, что зависимость сопротивления тарелки от скорости газа и жидкости носит сложный характер. Так,с увеличением скорости жидкости степень влияния скорости газа на сопротивление уменьиается. [c.120]

    Разные модели абсорбции. Кроме рассмотренных выше, были предложены и другие модели абсорбции. По кинетической модели Миямото [33] передача вещества происходит в результате проникновения молекул из газовой фазы в жидкую и одновременного обратного выделения их из жидкости в газ. Последний поглощается жидкостью, если число молекул, переходящих из газа в жидкость, больше числа молекул, выделяющихся из нее. Кинетическая модель не учитывает влияния на массопередачу гидродинамических условий и поэтому недостаточна для анализа передачи массы. В настоящее время кинетическая модель используется при анализе переноса вещества через поверхность раздела фаз (стр. 124). Ваковский [34] применил кинетическую модель с учетом скорости среды для анализа массоотдачи в газовой фазе. [c.108]

    Максимальное потребление мощности наблюдается при перемешивании чистой жидкости (без газа). Исследования, проведенные без подачи газа, показали, что Л ж увеличивается с увеличением частоты вибраций (Л ж п2 5) и амплитуды вибраций (Л/ ж 5 ), что близко к теоретическим выводам. Влияния скорости жидкости в исслёдова нном диапазоне на величину затрачиваемой мощности обнаружено не было. Подтверждено, что потребляемая мощность на перемешивание жидкости пропорциональна числу установленных тарелок. [c.59]

    Влиянием волн можно пренебречь. Произвести следующие расчеты а) вычислить толщину пленки б) вычислить продолжительность контакта поверхности с газом в) вычислить общую скорость абсорбции СО2 при ее давлении 1 атм г) проверить характер движения пленки д) определить для низа стержня расстояние от поверхности в глубь жидкости, на котором концентрация СО2 составляет 1% от Л е) вычислить скорость в этой точке, выразив ее значение в виде доли от скорости жидкости у поверхности ж) если бы СО2 абсорбировали раствором 0,5 моль л NaOH в тех же условиях, как следует уменьшить давление СО2, чтобы устранить обеднение реагентом у поверхности з) какова тогда будет общая скорость абсорбции  [c.83]

    Здесь А — концентрация растворенного газа у поверхности раздела между жидкостью и газом, соответствующая условиям равновесия с парциальным давлением газа в газовой фазе. Пока будем считать, что парциальное давление газа одинаково во всех точках рассматриваемого элемента пространства. Влияние на это парциальное давление других газов, обладающих низкой растворимостью, будет рассмотрено в разделеУ-13. Символом а обозначена поверхность контакта между газом и жидкостью, заключенная в единице объема системы, — коэффициент физической массоотдачи в жидкой фазе. Величина Н представляет собой среднюю скорость переноса газа через единицу поверхности действительная же скорость массопередачи может меняться как от точки к точке, так и со временем. Значение Л соответствует средней концентрации растворенного газа в массе жидкости. [c.99]

    Турбулентные течения жидкостей и газов оказьшают существенное влияние на ход многих технологических процессов, в том числе при очистке сточных вод от взвешенных частиц. Так, в аппарате совмещенного действия [1] создается турбулентный поток между коаксиаяьно расположенными цилиндрическими мешалками. Математическое описание состояния движущейся жидкости осуществляется с помощью функций, определяющих распределение скорости жидкости V = V(x,y,z,l) и каких-либо ее двух термодинамических величин, например, давления P(x,y,z,l) и плотности p(x,y,z,t). Как известно, все термодинамические величины определяются по значениям каких-либо двух из них с помощью уравнения состояния вещестца, поэтому задание пяти величин трех компонент скорости V, давления Р и плотности р, полностью определяет состояние движущейся жидкости. Все эти величины являются функциями координат X, у, Z и времени t в цнлшадри ческой системе коорд нат г, ф, z и t [c.26]

    Мы считаем [187], что не следует дифференцировать гидравлическое сопротивление пенного слоя, можно установить непосредственную связь между этой величиной и количеством жидкости (в виде Ло), образуюпщм пену при разных скоростях газа и различных физических свойствах газа и жидкости. Опыты показали, что конструктивные параметры аппарата, а также размеры отверстий и свободное сечение решетки не оказывают определяющего влияния на АРсл- Несущественно также влияние скорости газа w ., вязкостей газа Vp и жидкости v , что находит подтверждение и в других работах [9, 357, 426]. Гидравлическое сопротивление слоя пены гфопор-ционально [187] высоте исходного слоя жидкости, ее плотности и поверхностному натяжению [c.63]

    Интересно рассмотреть влияние скорости газа в условия , когда высота слоя пены остается постоянной, т. е. при одновременном увеличении и уменьшении количества жидкости на решетке — h . Оказывается, что в этих условиях проявляется тенденция к понижению величины т)п более заметная при малых высотах слоя пены и почти не сказывающаяся при Я > 140 мм. В общем же, при данн( высоте пены степень пылеулавливания практически мало изменяется со скоростью газа, в то время как производительность аппарата, а, следовательно, и интенсивность его работы с повышением Wp пропорционально увеличиваются. С ростом Wy уменьшается удельный расход воды m (количество воды, приходящееся на единицу объема газа, кг/м ) как при работе с постоянньш исходным слоем воды йц, так и в еще большей степени при работе с постоянной Я. [c.171]

    Кроме температуры на растворимость газов боль-< шое влияние оказывает давление, под которым находится газ. Действительно, при данной температуре и давлении газ растворяется в жидкости до тех пор, пока скорость отрыва молекул газа от поверхности станет равной скорости, с которой молекулы газа пронич кают в жидкость, — тогда устанавливается состояние равновесия, жидкость становится насыщенной газом. Если же давление газа увеличить, например, в два раза, то во столько же раз увеличится и концентрация его молекул над жидкостью, а следовательно, и скорость растворения газа. Равновесие нарушится. Чтобы при этом новом давлении снова установилось равновесие, концентрация растворенных молекул газа, очевидно, тоже должна увеличиться в два раза. В общем виде зач [c.155]

    Евгеньев А.Е. Влияние скорости вытеснения углеводородной жидкости водой на нефтеотдачу неоднородных песчаников//Изв. вузов. Нефть и газ. 1961. № И. С. 47-52. [c.78]

    Движение газа при режимах ниже точки подвисания почти не влияет на активную поверхность. По влиянию движения газа на смоченную поверхность данные различных исследований противоречивы в одних работах [126, 128, 130] не обнаружено влияния скорости газа на в других работах [133, 1341 замечалось уменьшение с увеличением скорости газа, что объяснялось отдуванием части жидкости движущимся газом. Выше точки подвисания увеличение скорости газа ведет к повышению [c.441]

    Первоначально Ф.-х. г. изучала тепло- и массоперенос при конвективном движении среды, сопровождающий прохождение электрич. тока в р-рах электролитов, абсорбцию и экстракцию при движении капель, пузырьков газа, твердых частиц и тонких жнпких пленок исследовалось также влияние ПАВ на волновое движение и массоперенос на пов-сти жидкости и т. п. В подобных системах вблизи межфазной фаницы образуется гвдродинамич. пофаничный слой Зд, скорость течения внутри к-рого постепенно меняется от скорости движения одной фазы (И)) до скорости движения др. фазы ( з). Толщина слоя 5о и картина течения внутри него помимо скоростей и, и 2 зависят от вязкости и плотности движущихся фаз, типа течения и др. характеристик контактирующих сред. Напр., вблизи неподвижной твердой стенки, обтекаемой потоком жидкости, внутри пофаничного слоя скорость жидкости постепенно нарастает от нуля у твердой стенки до скорости потока и. Если в жидкости содержится к.-л. активный компонент А, участвующий в гетерогенных превращениях или адсорбирующийся на твердой стенке, концентрация этого компонента меняется от значения на стенке до в потоке, что создает внутри жидкости диффузионный пограничный слой (толщина 5 ). Перенос компонента А в диффузионном слое 5, вблизи межфазной фаницы осуществляется пзтем конвективной диффузии в поле постепенно ускоряющейся жидкости. Расчет скорости массообмена в описанных условиях составляет одну из типичных задач Ф.-х. г. [c.89]


Смотреть страницы где упоминается термин Газы абс влияние скорости жидкости: [c.40]    [c.109]    [c.115]    [c.115]    [c.225]    [c.582]    [c.288]    [c.72]    [c.257]    [c.131]    [c.480]   
Справочник инженера-химика Том 1 (1937) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Газы в жидкости

для скоростей газов



© 2025 chem21.info Реклама на сайте