Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электрохимические детекторы для жидкостной хроматографии

    Детекторы. В качестве детекторов в жидкостной хроматографии обычно используют высокочувствительные спектрофотометры, которые позволяют детектировать до 10 М соединений, поглощающих свет в УФ или видимой части спектра (190—800 нм). В последнее время начали применять высокоскоростные спектрофотометры, регистрирующие спектр в течение 0,01—0,05 с, что весьма ценно при качественной идентификации соединений. Для детектирования неокрашенных веществ можно использовать дифференциальный рефрактометр. При анализе соединений, способных к окислению или восстановлению, применяют электрохимический детектор, по сути представляющий собой миниатюрный полярограф. Используют также флуоресцентные детекторы и детекторы по электропроводности. Последние используют главным образом в ионообменной хроматографии. Для уменьшения размывания хроматографической зоны объемы измерительных ячеек в детекторах сведены к минимуму (I—10 мкл). [c.596]


    Новые возможности открывает жидкостная хроматография с электрохимическим детектированием компонентов [7]. Предложены детекторы с несколькими рабочими (микро)электродами, детекторы с переносом ионов через поверхность границы раздела вода / отвержденный нитробензол, химическй модифицированные электроды, катализирующие химические реакции. [c.87]

    В качестве детекторов в жидкостной хроматографии обычно используют спектрофотометрический детектор в переменной (190—900 нм) или фиксированной (чаще при 254 нм) длиной волны, рефрактометрический или флуориметрический детекторы. Могут быть использованы и другие детекторы, например ионизационно-пламенный, электрохимические, масс-спектрометрический и т. д. [c.111]

    При выборе детектора для вашего жидкостного хроматографа помните, что спектрофотометрические детекторы предназначены для анализа веществ, хорошо поглощающих УФ-излучение. Если ваши соединения плохо поглощают УФ-излучение, но можно легко получить производные этих соединений [9], хорошо поглощающие УФ-излучение, то также можно использовать СФД-УФ флуориметрические детекторы предназначены для анализа веществ, имеющих природную флуоресценцию, или для анализа веществ, для которых можно легко получить флуоресцирующие производные [9 ] рефрактометрические детекторы предназначены для анализа веществ, не поглощающих УФ-излучение и нефлуоресцирующих, наиболее часто этот тип детектора используется для анализа сахаров [9] вольтамперометрический детектор (часто называемый электрохимическим) предназначен для анализа легко окисляемых или восстанавливаемых соединений в высококлассных исследовательских лабораториях, так как требует чрезвычайно тщательной подготовки реактивов, особенно воды. Вольтамперометрический детектор в основном применяется для прямого определения катехоламинов в крови или ликворе [9]. Бессмысленно требовать проведения анализа, например, сахаров на жидкостном хроматографе, укомплектованном СФД-детектором. [c.126]

    Жидкостная хроматогра- фия ЖХ1 Хроматограф жидкостной Цвет-404 с электрохимическим детектором. Дополнительно в комплект могут быть включены блок аналитический БА-120, блок подачи жидкости БПЖ-80 ОАО Цвет , г. Дзержинск [c.556]

    ДЕТЕКТОР ЭЛЕКТРОХИМИЧЕСКИЙ ДЛЯ ВЫСОКОЭФФЕКТИВНОЙ ЖИДКОСТНОЙ ХРОМАТОГРАФИИ [c.80]

    Рассмотрены электроаналитические методы, наиболее перспективные для анализа объектов окружающей среды и биологических материалов вольтамперометрия в прямом и инверсионном вариантах, потенциометрия с ионоселективными электродами, кулонометрия и кондуктометрия. Приведены основные характеристики методов, условия их оптимального применения, эксплуатационные и экономические показатели. Описаны автоматические анализаторы и средства мониторинга окружающей среды. Показаны возможности электрохимических детекторов в проточных аналитических системах, в том числе в высокоэффективной жидкостной хроматографии. [c.127]


    Пробу воды доводят до pH 6.5—7.5 и экстрагируют хлороформом. Бензидины извлекают повторной экстракцией раствором 1 М серной кислоты и после нейтрализации вновь экстрагируют хлороформом. Анализ проводят на жидкостном хроматографе с электрохимическим детектором. [c.161]

    В настоящее время наметились два основных направления в развитии ТСХ. В первом случае (двухэтапный метод) процессы разделения смеси и детектирования обособлены друг от друга и отделены во времени и в пространстве. После разделения смеси содержание каждого из компонентов в хроматографических зонах на пластинке определяют с использованием детекторов различного типа (оптические, ядерно-физические, электрохимические и т. д.). Во втором случае пластинка используется аналогично колонке в колоночной жидкостной хроматографии. Через нее непрерывно проходит поток подвижной фазы, в начале пластинки импульсно дозируется анализируемая смесь и непрерывно с помощью проточного [c.3]

    Описан простой жидкостный хроматограф с очень чувствительным электрохимическим детектором, предназначенный для анализов биогенных аминов в количествах 5—10 нг [135, 136]. По всей вероятности, этот метод можно использовать для определения и других аминов, а также диаминов. Адамс определял о-дианизидин, получая высокую чувствительность на детекторной системе, которая использовалась при работе с катехоламином [137]. Если свободный амин экстрагировать из 100 мл водной пробы 10 мл растворителя, то предел определения составит 10-7 г/л. [c.564]

    Примеры применения электрохимических детекторов в высокоэффективной жидкостной хроматографии [c.117]

    В табл.2 приведены некоторые примеры использования электрохимических детекторов при определении различных веществ методом жидкостной хроматографии. [c.117]

    Предел обнаружения многих органических соединений, имеющих приемлемый окислительно-восстановительный потенциал, составляет от 10 до 10-> моль в образце [126], жидкостная хроматография с электрохимическим детектированием может оказаться весьма полезной при определении микроколичеств соединений. Этот метод часто позволяет обнаруживать пикограммовые количества соединений, что в ГЖХ с ДЭЗ достижимо только после превращения анализируемого соединения в соответствующее производное [126]. Применение жидкостной хроматографии с электрохимическим детектором в аналитических целях рассмотрено в обзоре [134]. [c.289]

    В жидкостной хроматографии используют такие аналитические сигналы, как светопоглощение выходящего раствора (фотометрические детекторы), показатель преломления (рефрактометрические детекторы), потенциал и электрическая проводимость (электрохимические детекторы). [c.57]

    Состав элюата непрерывно контролируют детектором. Детекторы в жидкостных хроматографах можно объединить в следующие группы 1) оптические детекторы, составляющие около 92% всех применяемых детекторов (абсорбционные, люминесцентные, рефрактометры) 2) электрохимические детекторы (потенциометрические, по электропроводности, амперометрические и др.) 3) другие детекторы (транспортные, газовые, микроад-сорбционные). [c.204]

    Для обнаружения анализируемых компонентов в ВЭЖХ широко применяются устройства, работа которых основана на измерении поглощения в ультрафиолетовой области, флуоресценции или электрохимических характеристик. Возможно также сочетание жидкостного хроматографа с масс-спектрометром (39). Несмотря на то, что наиболее универсальным детектором является рефрактометр, его невысокая чувствительность и селективность, несовместимость с градиентами давления привели [c.272]

    Конструкция ячеек должна предусматривать проведение измерений с тремя или даже с четырьмя электродами, обновление поверхности индикаторного или рабочего электрода (при необходимости его вращение), смену исследуемого раствора, его протекание через ячейку и, наконец, измерение токов на уровне наноамперов и в ультрамалых объемах жидкости (до 1 мкл). Такие ячейки применяются в детекторах для контроля выходящих зон в жидкостной хроматографии и в других методах, использующих поток жидкости. В больщинстве случаев ячейки поставляются в комплекте с прибором (иономером, вольтамперографом и др.). В современных приборах электрохимическая ячейка, как правило, располагается на штативе, на котором кроме нее находятся электронные и электромеханические устройства, являющиеся ее неотъемлемой частью. Однако аналитик может сам сконструировать и изготовить ячейку, удовлетворяющую условиям эксперимента. [c.77]

    Одна из основных тенденций в развитии электрохимического анализа - миниатюризация электрохимических ячеек и электродов. Во многом это связано со все более широким применением электрохимических детекторов в проточных методах анализа, в частности, в высокоэффективной жидкостной хроматографии и капиллярном зонном электрофорезе, а также с внедрением в практику измерительных устройств на основе ультрамикроэлектродов (УМЭ). Указанные электроды, благодаря наличию у них комплекса уникальных свойств, представляют интерес не только для специалистов в области электрохимического анализа, но и для более широкого круга исследователей. [c.94]


    Следует заметить, что динамическое поведение детектора, отражающее скорость изменения его отклика, является сложным свойством всей системы детектирования. Поскольку в жидкостной хроматографии определяемые вещества распределены по зонам, перемещающимся с потоком жидкости, то выходные сигналы детектора регистрируются в виде пиков. Ширина пиков определяется главным образом дисперсией зон в подводящих коммуникациях и внутри детектора. Поэтому коммуникации должны иметь малый внутренний диаметр (0,5 или даже 0,25 мм) и минимальную длину. Расширение зоны внутри детектора зависит не только от его внутреннего объема, но и от профиля скорости потока жидкости, формы ячейки, типа электродов и т.д. Большинство современных электрохимических детекторов имеют внутренний объем, близкий к 1мкл и даже меньше. Особый интерес вызывают миниатюрные вольтамперометрические детекторы, пригодные для использования с капиллярными колонками. В общем случае предпочтительнее работать с ячейками малого объема и при достаточно высоких скоростях потока. [c.566]

    В литературе отсутствует общепринятое сокращение электрохимического детектора для проточного анализа. Чаще всего используют начальные буквы названий методов разделения и детектирования, например, высокоэффективная жидкостная хроматография с электрохимическим детектированием ВЭЖХ-ЭХД. [c.566]

    В сверхкритической флюидной хроматографии (СФХ) подвижной фазой служит сверхкритический флюид. СФХ объединила важные преимущества газовой и жидкостной хроматографии. Она особенно полезна для определения соединений, которые не определяются ни газовой, ни жидкостной хроматографией. Она применима ко всем веществам, которые, с одной стормзны, нелетучи или ве могут испаряться без разложения, а следовательно, не могут быть определены в ГХ. С другой стороны, это метод для соединений, которые напрямую нельзя определить и с помощью ЖХ, поскольку они не содержат функциональных групп и поэтому не могут давать сигнал в обычных спектроскопических или электрохимических детекторах для ЖХ. [c.298]

    За иоследние годы электрохимический детектор все более широко ирименяется в жидкостной хроматографии. [c.23]

    В ходе развития ЖХ было испытано более 20 типов детекторов для ЖХ. Основную массу предложенных детекторов можно разделить на оптические, электрические, электрохимические и детекторы для измерения радиоактивных веществ [4, 20, 62, 67—71). В некоторых детекторах используют сразу несколько принципов детектирования, причем такие детекторы можно разделить на две группы в первой — механическое совмещение нескольких разных или одинаковых типов детекторов в единой конструкции, во второй — регистрации различных фиЬико-химических явлений в одной ячейке детектора. К первой группе детекторов можно отнести электрохимические детекторы (ЭХД) с двумя рабочими электродами, один из которых окислительный, а другой восстановительный. Типичными представителями второй группы являются кварцевый флуориметрический — фотоакустический — фотоионизационный детектор или ультрафиолетовый — электрохимический детектор. В настоящее время для жидкостной хроматографии более 60 фирм серийно производят ультрафиолетовый абсорбционный детектор на фиксированную длину волны, более 50 фирм — спектрофотометрические с переменной длиной волны, более 40 фирм — флуориметрические детекторы, более 30 фирм — рефрактометрические, более 15 фирм — электрохимические. [c.265]

    В высокоэффективной жидкостной хроматографии (ВЭЖХ) наряду с широким применением оптических детекторов за последние 10—15 лет наметился значительный прогресс в развитии электрохимического метода детектирования. Доказательством этого является увеличение числа публикуемых работ по разработке и применению электрохимических детекторов (ЭХД) и, главным образом, увеличение выпуска аппаратуры,,пригодной для практического использования [56, 59]. [c.277]

    Хроматографический метод разделения основан на малых различиях в таких свойствах веществ, как растворимость, сорбируемость, летучесть, пространственная структура, скорость ионного обмена. Поэтому основой развития хроматографии является понимание химических взаимодействий, определяющих эти свойства. Впечатляет рост масштабов использования жидкостной хроматографии, достигнутый с момента ее появления в 1970 г. В настоящее время на приобретение жидкостных хроматографов, производимых в основном в США, ежегодно затрачивается 400 млн. долл. Такой быстрый рост стал возможен благодаря применению новых приемов и средств, обеспечивших значительное повышение скорости анализа и его разрешающей способности, в частности благодаря использованию давления и подвижных фаз переменного состава (градиентного режима). Повысить селективность разделения и увеличить срок службы колонки позволяют неподвижные фазы с привитыми молекулами . Применение электрохимических, флуориметрических и масс-спектрометрических детекторов повысило чувствительность обнаружения разделяемых компонентов вплоть до 10 г. Газовая хроматография старше жидкостной примерно на десятилетие, но и в ней достигнуты в последнее время заметные успехи. Современные высокоэффективные методы позволяют осуществить разделение всего за несколько десятых секунды. Вне лаборатории применяются портативные хроматографы размером со спичечную коробку. Сложные смеси можно разделять буквально на тысячи компонентов, применяя капиллярные колонки из кварцевого стекла, которые производятся непосредственно по той же технологии, что и оптические волокна для линий связи. Наконец, стало возможно разделять соединения, раз-личаюцщеся только по изотопному составу. [c.241]

    Анализ проводят на жидкостном хроматографе с электрохимическим детектором (ЭХД). Чувствительность метода 0,01 ppb. Бензидины отделяют от сопутствующих примесей на колонке со Сферисорбом при температуре 40°С. Надежность результатов идентификации бензидинов очень высока, так как ЭХД не реагирует на органические соединения, не способные вступать в реакции окисления—восстановления. Информативность такой идентификации не менее 90—100% [8]. [c.159]

    ВЭЖХ во многих случаях не уступает, а порой и превосходит соответствующие методы ГЖХ. Достижения в области разработки колоночных сорбентов, обладающих высокой селективностью, и повышение чувствительности проточных спектрофотометрических, спектрофлуориметрических и электрохимических детекторов должны еще больше способствовать применению ВЭЖХ в анализе лекарственных препаратов [1]. Кроме того, использование автоматических пробоотборников и применение в ВЭЖХ автоматических анализаторов с реакторами в значительной степени способствовали автоматизации жидкостной хроматографии [3—5] и ее более широкому применению в фармакокинетических исследованиях [6]. [c.89]

    По данным [83], в 1993-1995 гг. выпускались следующие детекторы для жидкостной хроматографии (в скобках указано количество фирм) спектрофотометрические (73) флуоресцентные (60) рефрактометрические (53) спектрофотометрические — на фильтрах или с фиксированными длинами волн (49), на диодной линейке и сканирующие (42) электрохимические (45) кондуктометрические (41) амперометрические (22) хе-милюминесцентные (18) масс-спектрометрические, микроколо-ночные и светорассеивающие (17) хиральные и массовые (по испарению) (13) инфракрасные, ультразвуковые и радиоактивные (12) пламенно-ионизационные (10). [c.184]

    В жидкостной хроматографии для количественного определения соединений в потоке жидкой подвижной фазы чаще всего применяют устройства, работа которых строится на принципах измерения светопоглощения, относящегося к заданным длинам волн (УФ-детектор), или светопреломления (рефрактометр), а также гораздо более селективные детекторы по флуоресценции и электрохимический. Табулирование относительных откликов 8ТИХ детекторов не представляется возможным из-за большого влияния, оказываемого как на абсолютный, так и на относительный сигнал детектора, природы и состава растворителей, образующих подвижную фазу. Лаже незначительные отклонения в качественном и количественном составе подвижной фазы могут, например, изменить коэффициент экстинкции фото-метрируемого соединения на несколько порядков его численной величины. Вследствие этого обстоятельства из трех основных методов количественного хроматографического анализа, предусматривающих градуировку прибора в прямой форме (метод абсолютной градуировки), либо в косвенной (методы внутренней нормализации, внутреннего стандарта и их модификации), в жидкостной хроматографии преимущественно используют метод абсолютной градуировки и реже два других метода [325]. Суть каждого из них будет рассмотрена ниже. [c.348]

    В качестве метки и с определением продукта ферментативной реакции фенола в тонкослойной электрохимической ячейке с помощью проточно-инжекционного анализа с электрохимическим детектором (ПИА-ЭХ) или жидкостной хроматографии с электрохимическим детектором (ЖХ-ЭХ) (рис. 15.5). В системе ПИА-ЭХ пробу (обычно 20 мкл) непосредственно инжектируют в тонкослойную ячейку, тоща как в системе ЖХ-ЭХ фенол задерживается на предколонке с октилдецидсиланом (10 мкм). Каждая система имеет свои достоинства. Например, в ПИА-ЭХ достигается достаточно большая пропускная способность, но меньшая чувствительность, так как инжекция порождает емкостный ток, даже если компоненты раствора субстрата при используемых потенциалах электрохимически неактивны. Емкостный ток обусловлен небольшими различиями между матриксом раствора субстрата и буферной неподвижной фазой. С другой стороны, при ЖХ-ЭХ фенол отделяется от других компонентов смеси, в том числе и тех, с которыми связано возникновение емкостного тока, но это достигается только эа счет значительного увеличения продолжительности анализа (2,4 мин для ЖХ-ЭХ по сравнению с 25 с для ПИА-ЭХ). [c.214]

    Для определения химических форм элементов используют все инструментальные методы, обеспечивающие необходимые пределы обнаружения элементов. Для ряда элементов, главным образом, неметаллов, разработаны и применяются в практике анализа для оценки качества природных, питьевых и сточных вод методы определения как суммарных содержаний, так и различных молекулярных и ионных форм. Панример, для серы предусматривается раздельное определение сульфат-, сульфид-, сульфит- и тиосульфат-ионов [9 - 10]. При оценке содержания фосфора также раздельно определяют полифосфаты, эфиры фосфорной кислоты и растворенные ортофосфаты [9 - 10]. Содержание азота в водах характеризуется главным образом концентрацией свободного аммиака и ионов аммония, а также нитрит- и нитрат-ионов, аналогичная ситуация для пары хлорид-свободный хлор [9 - 10]. Для раздельного определения химических форм азота, фосфора, серы, хлора и других широко применяют спек-трофото-метрические методы анализа, а также различные варианты хроматографии ионной, жидкостной, газовой [9 - 10]. Определение химических форм металлов - более сложная задача, для решения которой требуются высокочувствительные инструментальные методы, обеспечивающие возможность онределения на более низком уровне концентраций, чем их реальные содержания в водах, т.е. на уровне от 1 мкг/л до 1 нг/л. В сочетании с хроматографическими методами разделения эти методы выполняют роль детекторов. Наиболее предпочтителен вариант элемент-селективного детектора, к которым и относятся большинство современных инструментальных методов (ААС, АЭС, МС), в отличие от снектро-фотометрического и электрохимических. [c.25]


Смотреть страницы где упоминается термин Электрохимические детекторы для жидкостной хроматографии: [c.203]    [c.648]    [c.545]    [c.18]    [c.97]    [c.242]    [c.131]    [c.290]    [c.145]   
Смотреть главы в:

Основы современного электрохимического анализа -> Электрохимические детекторы для жидкостной хроматографии




ПОИСК





Смотрите так же термины и статьи:

Детектор для жидкостной хроматографи

Жидкостная хроматография детекторы

Жидкостная хроматография хроматографы

Хроматография жидкостная

Хроматография жидкостно-жидкостная

Хроматографы жидкостные



© 2025 chem21.info Реклама на сайте